1
|
Martano S, Faktor J, Kote S, Cascione M, Di Corato R, Faktorova D, Semeraro P, Rizzello L, Leporatti S, Rinaldi R, De Matteis V. DIA/SWATH-Mass Spectrometry Revealing Melanoma Cell Proteome Transformations with Silver Nanoparticles: An Innovative Comparative Study. Int J Mol Sci 2025; 26:2029. [PMID: 40076651 PMCID: PMC11901134 DOI: 10.3390/ijms26052029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Melanoma is an aggressive cancer with rising incidence and high mortality rates, largely due to chemotherapy resistance and molecular dysregulation. Nanotechnology, particularly silver nanoparticles (AgNPs), has emerged as a promising therapeutic avenue because of the nanoparticles' ability to induce oxidative stress and apoptosis in cancer cells. However, conventional colloidal AgNPs lack selectivity, often causing significant damage to healthy cells. In this study, we introduce a green synthesis of AgNPs using plant extracts, providing an eco-friendly alternative with improved antitumor selectivity compared to traditional colloidal AgNPs. Leveraging label-free Data-Independent Acquisition/Sequential Window Acquisition of All Theoretical Mass Spectrometry (DIA/SWATH MS) quantitative proteomics, we investigated the antitumor effects of green-synthesized versus traditional AgNPs on A375 melanoma cells at 24 and 48 h. Our findings reveal that green AgNPs selectively reduced melanoma cell viability while sparing healthy keratinocytes (HaCaT), a benefit not observed with colloidal AgNPs. Proteomic analysis highlighted that green AgNPs significantly downregulated oncogenes, enhanced carbohydrate metabolism, and disrupted copper homeostasis in melanoma cells. This marks the first study to explore the differential effects of green and traditional AgNPs on melanoma using an integrated proteomic approach, underscoring the molecular potential of green AgNPs as a targeted and sustainable option for cancer therapy.
Collapse
Affiliation(s)
- Simona Martano
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (S.M.); (M.C.); (R.R.)
| | - Jakub Faktor
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland;
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland;
| | - Mariafrancesca Cascione
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (S.M.); (M.C.); (R.R.)
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy;
| | - Riccardo Di Corato
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy;
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia (IIT), 73010 Arnesano, Italy
| | - Dagmar Faktorova
- Faculty of Special Technology, Alexander Dubček University of Trenčín, 911 06 Trenčín, Slovakia;
| | - Paola Semeraro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Loris Rizzello
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
| | - Stefano Leporatti
- CNR Nanotec-Istituto Di Nanotecnologia, C/O Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy;
| | - Rosaria Rinaldi
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (S.M.); (M.C.); (R.R.)
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy;
| | - Valeria De Matteis
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy;
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
2
|
Ryzhkova A, Maltseva E, Battulin N, Kabirova E. Loop Extrusion Machinery Impairments in Models and Disease. Cells 2024; 13:1896. [PMID: 39594644 PMCID: PMC11592926 DOI: 10.3390/cells13221896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Structural maintenance of chromosomes (SMC) complexes play a crucial role in organizing the three-dimensional structure of chromatin, facilitating key processes such as gene regulation, DNA repair, and chromosome segregation. This review explores the molecular mechanisms and biological significance of SMC-mediated loop extrusion complexes, including cohesin, condensins, and SMC5/6, focusing on their structure, their dynamic function during the cell cycle, and their impact on chromatin architecture. We discuss the implications of impairments in loop extrusion machinery as observed in experimental models and human diseases. Mutations affecting these complexes are linked to various developmental disorders and cancer, highlighting their importance in genome stability and transcriptional regulation. Advances in model systems and genomic techniques have provided deeper insights into the pathological roles of SMC complex dysfunction, offering potential therapeutic avenues for associated diseases.
Collapse
Affiliation(s)
- Anastasiya Ryzhkova
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.R.); (N.B.)
| | - Ekaterina Maltseva
- Department of Genetics and Genetic Technologies, Sirius University of Science and Technology, 354340 Sirius, Russia;
| | - Nariman Battulin
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.R.); (N.B.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Evelyn Kabirova
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.R.); (N.B.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Chen R, Li Y, Ouyang W, Chen S. Bioinformatics Analysis Reveals the Biomarker Value and Potential Mechanism of miR-675-3p in Gastric Cancer. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5456554. [PMID: 35814566 PMCID: PMC9259288 DOI: 10.1155/2022/5456554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
Abstract
Background Gastric cancer (GC) is still the main challenge for the social and clinical system. Increasing studies have proved that microRNA dysfunction is closely associated with the GC progression. miR-675-3p has been confirmed as the tumor support in multiple tumor cells, while its role in GC remains unclear. Methods. The clinical data in the TCGA database were excavated for analyzing the role of miR-675-3p in pan-cancer and GC. qRT-PCR was applied to detect the abundances of the genes. The Starbase 2.0 was executed to target the prediction of miR-675-3p. Moreover, the enrichment analysis was performed with the DAVID database. The PPI-network analysis of the targets was performed with Cytoscape. Results miR-675-3p was dramatically upregulated in multiple types of cancer, and elevated miR-675-3p was also found in GC tissues. Moreover, increased miR-675-3p was closely related with the poor survival rates of the patients. The qRT-PCR showed that miR-675-3p was extremely upregulated in GC tissues and cell lines. The enrichment analysis showed that the targets of miR-675-3p were located in the cellular nucleus and associated with the transcriptional misregulation in cancer. The PPI-network showed that three clusters and total of 40 genes were screened as potential hub nodes. Moreover, BRIP1, MYO5B, and PDS5B were related with the prognostic survival of the patients according to the TCGA database and decreased BRIP1, MYO5B, and PDS5B were also found in GC cell lines. Conclusion This study identified miR-675-3p as a potential biomarker in GC development and revealed the potential regulation network of miR-675-3p.
Collapse
Affiliation(s)
- Ruyi Chen
- Department of Gastrointestinal, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Yi Li
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Wei Ouyang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Shaoji Chen
- Department of Gastrointestinal, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|