1
|
Núñez-Martínez HN, Tapia-Urzúa G, Cerecedo-Castillo Á, Peralta-Alvarez C, Guerrero G, Huarte M, Recillas-Targa F. The lncRNA DUBR is regulated by CTCF and coordinates chromatin landscape and gene expression in hematopoietic cells. Nucleic Acids Res 2025; 53:gkaf093. [PMID: 39995041 PMCID: PMC11850227 DOI: 10.1093/nar/gkaf093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Master hematopoietic transcription factors (TFs) and long noncoding RNAs (lncRNAs) coordinate shaping lineage-specific gene expression programs during hematopoietic differentiation. The architectural protein CCCTC-binding factor (CTCF) has emerged as a pivotal regulator of gene expression in cell differentiation. However, the relationship and its regulatory effect of CTCF on lncRNA genes in hematopoiesis remain elusive. We demonstrated that CTCF constrains the lncRNA DUBRtranscription throughout erythroid differentiation. DUBR is highly expressed in human hematopoietic stem and progenitor cells (HSPCs) but depleted in erythroblasts. DUBR perturbation dysregulates hematopoietic-erythroid cell differentiation genes and facilitates genome-wide activation of regulatory elements. A genomic map of RNA occupancy revealed that DUBR associates with a set of genes involved in regulating hematopoietic differentiation, including the erythroid repressor HES1, which targets a subset of regulatory elements of DUBR-dysregulated genes. Our results support the role of DUBR as a regulator of a hematopoietic differentiation gene program by coordinating the expression of genes and influencing their chromatin regulatory landscape.
Collapse
Affiliation(s)
- Hober Nelson Núñez-Martínez
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Gustavo Tapia-Urzúa
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Ángel Josué Cerecedo-Castillo
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Carlos Alberto Peralta-Alvarez
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
- Unidad de Bioinformática y Manejo de la Información, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Georgina Guerrero
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Maite Huarte
- Center for Applied Medical Research, Department of Gene Therapy and Regulation of Gene Expression, University of Navarra, Pamplona, 31008, Spain
| | - Félix Recillas-Targa
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| |
Collapse
|
2
|
Wang Z, Chen C, Ai J, Gao Y, Wang L, Xia S, Jia Y, Qin Y. The crosstalk between senescence, tumor, and immunity: molecular mechanism and therapeutic opportunities. MedComm (Beijing) 2025; 6:e70048. [PMID: 39811803 PMCID: PMC11731108 DOI: 10.1002/mco2.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Cellular senescence is characterized by a stable cell cycle arrest and a hypersecretory, proinflammatory phenotype in response to various stress stimuli. Traditionally, this state has been viewed as a tumor-suppressing mechanism that prevents the proliferation of damaged cells while activating the immune response for their clearance. However, senescence is increasingly recognized as a contributing factor to tumor progression. This dual role necessitates a careful evaluation of the beneficial and detrimental aspects of senescence within the tumor microenvironment (TME). Specifically, senescent cells display a unique senescence-associated secretory phenotype that releases a diverse array of soluble factors affecting the TME. Furthermore, the impact of senescence on tumor-immune interaction is complex and often underappreciated. Senescent immune cells create an immunosuppressive TME favoring tumor progression. In contrast, senescent tumor cells could promote a transition from immune evasion to clearance. Given these intricate dynamics, therapies targeting senescence hold promise for advancing antitumor strategies. This review aims to summarize the dual effects of senescence on tumor progression, explore its influence on tumor-immune interactions, and discuss potential therapeutic strategies, alongside challenges and future directions. Understanding how senescence regulates antitumor immunity, along with new therapeutic interventions, is essential for managing tumor cell senescence and remodeling the immune microenvironment.
Collapse
Affiliation(s)
- Zehua Wang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chen Chen
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiaoyu Ai
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yaping Gao
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lei Wang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shurui Xia
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yongxu Jia
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yanru Qin
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
3
|
Giménez-Llorente D, Cuadrado A, Andreu MJ, Sanclemente-Alamán I, Solé-Ferran M, Rodríguez-Corsino M, Losada A. STAG2 loss in Ewing sarcoma alters enhancer-promoter contacts dependent and independent of EWS::FLI1. EMBO Rep 2024; 25:5537-5560. [PMID: 39487368 PMCID: PMC11624272 DOI: 10.1038/s44319-024-00303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024] Open
Abstract
Cohesin complexes carrying STAG1 or STAG2 organize the genome into chromatin loops. STAG2 loss-of-function mutations promote metastasis in Ewing sarcoma, a pediatric cancer driven by the fusion transcription factor EWS::FLI1. We integrated transcriptomic data from patients and cellular models to identify a STAG2-dependent gene signature associated with worse prognosis. Subsequent genomic profiling and high-resolution chromatin interaction data from Capture Hi-C indicated that cohesin-STAG2 facilitates communication between EWS::FLI1-bound long GGAA repeats, presumably acting as neoenhancers, and their target promoters. Changes in CTCF-dependent chromatin contacts involving signature genes, unrelated to EWS::FLI1 binding, were also identified. STAG1 is unable to compensate for STAG2 loss and chromatin-bound cohesin is severely decreased, while levels of the processivity factor NIPBL remain unchanged, likely affecting DNA looping dynamics. These results illuminate how STAG2 loss modifies the chromatin interactome of Ewing sarcoma cells and provide a list of potential biomarkers and therapeutic targets.
Collapse
MESH Headings
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Humans
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/genetics
- Proto-Oncogene Protein c-fli-1/metabolism
- Proto-Oncogene Protein c-fli-1/genetics
- RNA-Binding Protein EWS/genetics
- RNA-Binding Protein EWS/metabolism
- Promoter Regions, Genetic
- Enhancer Elements, Genetic
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/genetics
- Gene Expression Regulation, Neoplastic
- Chromatin/metabolism
- Chromatin/genetics
- Cell Line, Tumor
- Cohesins
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Antigens, Nuclear/metabolism
- Antigens, Nuclear/genetics
- Protein Binding
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/pathology
- Nuclear Proteins
Collapse
Affiliation(s)
- Daniel Giménez-Llorente
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Ana Cuadrado
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| | - María José Andreu
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Inmaculada Sanclemente-Alamán
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Maria Solé-Ferran
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Miriam Rodríguez-Corsino
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
4
|
Göder A, Maric CA, Rainey MD, O’Connor A, Cazzaniga C, Shamavu D, Cadoret JC, Santocanale C. DBF4, not DRF1, is the crucial regulator of CDC7 kinase at replication forks. J Cell Biol 2024; 223:e202402144. [PMID: 38865090 PMCID: PMC11169917 DOI: 10.1083/jcb.202402144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 05/04/2024] [Indexed: 06/13/2024] Open
Abstract
CDC7 kinase is crucial for DNA replication initiation and is involved in fork processing and replication stress response. Human CDC7 requires the binding of either DBF4 or DRF1 for its activity. However, it is unclear whether the two regulatory subunits target CDC7 to a specific set of substrates, thus having different biological functions, or if they act redundantly. Using genome editing technology, we generated isogenic cell lines deficient in either DBF4 or DRF1: these cells are viable but present signs of genomic instability, indicating that both can independently support CDC7 for bulk DNA replication. Nonetheless, DBF4-deficient cells show altered replication efficiency, partial deficiency in MCM helicase phosphorylation, and alterations in the replication timing of discrete genomic regions. Notably, we find that CDC7 function at replication forks is entirely dependent on DBF4 and not on DRF1. Thus, DBF4 is the primary regulator of CDC7 activity, mediating most of its functions in unperturbed DNA replication and upon replication interference.
Collapse
Affiliation(s)
- Anja Göder
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - Michael D. Rainey
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Aisling O’Connor
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Chiara Cazzaniga
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Daniel Shamavu
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - Corrado Santocanale
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
5
|
Collins VJ, Ludwig KR, Nelson AE, Rajan SS, Yeung C, Vulikh K, Isanogle KA, Mendoza A, Difilippantonio S, Karim BO, Caplen NJ, Heske CM. Enhancing Standard of Care Chemotherapy Efficacy Using DNA-Dependent Protein Kinase (DNA-PK) Inhibition in Preclinical Models of Ewing Sarcoma. Mol Cancer Ther 2024; 23:1109-1123. [PMID: 38657228 PMCID: PMC11293986 DOI: 10.1158/1535-7163.mct-23-0641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/26/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Disruption of DNA damage repair via impaired homologous recombination is characteristic of Ewing sarcoma (EWS) cells. We hypothesize that this disruption results in increased reliance on nonhomologous end joining to repair DNA damage. In this study, we investigated if pharmacologic inhibition of the enzyme responsible for nonhomologous end joining, the DNA-PK holoenzyme, alters the response of EWS cells to genotoxic standard of care chemotherapy. We used analyses of cell viability and proliferation to investigate the effects of clinical DNA-PK inhibitors (DNA-PKi) in combination with six therapeutic or experimental agents for EWS. We performed calculations of synergy using the Loewe additivity model. Immunoblotting evaluated treatment effects on DNA-PK, DNA damage, and apoptosis. Flow cytometric analyses evaluated effects on cell cycle and fate. We used orthotopic xenograft models to interrogate tolerability, drug mechanism, and efficacy in vivo. DNA-PKi demonstrated on-target activity, reducing phosphorylated DNA-PK levels in EWS cells. DNA-PKi sensitized EWS cell lines to agents that function as topoisomerase 2 (TOP2) poisons and enhanced the DNA damage induced by TOP2 poisons. Nanomolar concentrations of single-agent TOP2 poisons induced G2M arrest and little apoptotic response while adding DNA-PKi-mediated apoptosis. In vivo, the combination of AZD7648 and etoposide had limited tolerability but resulted in enhanced DNA damage, apoptosis, and EWS tumor shrinkage. The combination of DNA-PKi with standard of care TOP2 poisons in EWS models is synergistic, enhances DNA damage and cell death, and may form the basis of a promising future therapeutic strategy for EWS.
Collapse
Affiliation(s)
- Victor J. Collins
- Translational Sarcoma Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Katelyn R. Ludwig
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ariana E. Nelson
- Translational Sarcoma Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Choh Yeung
- Translational Sarcoma Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ksenia Vulikh
- Molecular Histopathology Lab, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Kristine A. Isanogle
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Arnulfo Mendoza
- Translational Sarcoma Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Baktiar O. Karim
- Molecular Histopathology Lab, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Christine M. Heske
- Translational Sarcoma Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
Wu Z, Zhang L, Li X, Liu L, Kuang T, Qiu Z, Deng W, Wang W. The prognostic significance and potential mechanism of DBF4 zinc finger in hepatocellular carcinoma. Sci Rep 2024; 14:10662. [PMID: 38724606 PMCID: PMC11082141 DOI: 10.1038/s41598-024-60342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
DBF4 zinc finger (DBF4) is a critical component involved in DNA replication and cell proliferation. It acts as a positive regulator of the cell division cycle 7 kinase. In this study, our investigation encompassed the impact of DBF4 on hepatocellular carcinoma (HCC) progression and delved into the potential mechanisms. We utilized open-access databases like TCGA and GEO to analyze the association between DBF4 and 33 different tumor types. We also conducted immunohistochemistry experiments to validate the expression of DBF4 in HCC, STAD, COAD, READ, PAAD, and LGG. Furthermore, we employed lentiviral transduction to knockdown DBF4 in HLF and SMMC cells, as well as to overexpress DBF4 in Huh7 cells. Subsequently, we evaluated the impact of DBF4 on proliferation, migration, and invasion of hepatocellular carcinoma cells. RNA sequencing and KEGG pathway enrichment analysis were also conducted to identify potential pathways, which were further validated through WB experiments. Finally, pathway inhibitor was utilized in rescue experiments to confirm whether DBF4 exerts its effects on tumor cells via the implicated pathway. Our findings revealed that DBF4 exhibited significant expression levels in nearly all examined tumors, which were further substantiated by the results of immunohistochemistry analysis. High DBF4 expression was correlated with poor overall survival (OS), disease-specific survival (DSS), progression-free interval (PFI), disease-free interval (DFI), relapse-free interval (RFI) in majority of tumor types, particularly in patients with HCC. In vitro experiments demonstrated that inhibition of DBF4 impaired the proliferative, migratory, and invasive abilities of HCC cells, whereas overexpression of DBF4 promoted these phenotypes. Sequencing results indicated that DBF4 may induce these changes through the ERBB signaling pathway. Further experimental validation revealed that DBF4 activates the ERBB signaling pathway, leading to alterations in the JNK/STAT, MAPK, and PI3K/AKT signaling pathways, thereby impacting the proliferative, migratory, and invasive abilities of tumor cells. Lastly, treatment of Huh7 cells overexpressing DBF4 with the ERBB2 inhibitor dacomitinib demonstrated the ability of ERBB2 inhibition to reverse the promoting effect of DBF4 overexpression on the proliferative, migratory, and invasive abilities of HCC cells. DBF4 plays a pivotal oncogenic role in HCC by promoting the ERBB signaling pathway and activating its downstream PI3K/AKT, JNK/STAT3, and MAPK signaling pathways. DBF4 may serve as a prognostic biomarker for patients with HCC.
Collapse
Affiliation(s)
- Zhongkai Wu
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Hubei Key Laboratory of Digestive System Disease, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Hubei Key Laboratory of Digestive System Disease, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Xinyi Li
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Hubei Key Laboratory of Digestive System Disease, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Li Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Hubei Key Laboratory of Digestive System Disease, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Tianrui Kuang
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Hubei Key Laboratory of Digestive System Disease, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Zhendong Qiu
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Hubei Key Laboratory of Digestive System Disease, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China.
- Hubei Key Laboratory of Digestive System Disease, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China.
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China.
- Hubei Key Laboratory of Digestive System Disease, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
7
|
Zhao SJ, Prior D, Heske CM, Vasquez JC. Therapeutic Targeting of DNA Repair Pathways in Pediatric Extracranial Solid Tumors: Current State and Implications for Immunotherapy. Cancers (Basel) 2024; 16:1648. [PMID: 38730598 PMCID: PMC11083679 DOI: 10.3390/cancers16091648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
DNA damage is fundamental to tumorigenesis, and the inability to repair DNA damage is a hallmark of many human cancers. DNA is repaired via the DNA damage repair (DDR) apparatus, which includes five major pathways. DDR deficiencies in cancers give rise to potential therapeutic targets, as cancers harboring DDR deficiencies become increasingly dependent on alternative DDR pathways for survival. In this review, we summarize the DDR apparatus, and examine the current state of research efforts focused on identifying vulnerabilities in DDR pathways that can be therapeutically exploited in pediatric extracranial solid tumors. We assess the potential for synergistic combinations of different DDR inhibitors as well as combinations of DDR inhibitors with chemotherapy. Lastly, we discuss the immunomodulatory implications of targeting DDR pathways and the potential for using DDR inhibitors to enhance tumor immunogenicity, with the goal of improving the response to immune checkpoint blockade in pediatric solid tumors. We review the ongoing and future research into DDR in pediatric tumors and the subsequent pediatric clinical trials that will be critical to further elucidate the efficacy of the approaches targeting DDR.
Collapse
Affiliation(s)
- Sophia J. Zhao
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| | - Daniel Prior
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| | - Christine M. Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Juan C. Vasquez
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| |
Collapse
|
8
|
Bai Z, Zhou Y, Peng Y, Ye X, Ma L. Perspectives and mechanisms for targeting mitotic catastrophe in cancer treatment. Biochim Biophys Acta Rev Cancer 2023; 1878:188965. [PMID: 37625527 DOI: 10.1016/j.bbcan.2023.188965] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
Mitotic catastrophe is distinct from other cell death modes due to unique nuclear alterations characterized as multi and/or micronucleation. Mitotic catastrophe is a common and virtually unavoidable consequence during cancer therapy. However, a comprehensive understanding of mitotic catastrophe remains lacking. Herein, we summarize the anticancer drugs that induce mitotic catastrophe, including microtubule-targeting agents, spindle assembly checkpoint kinase inhibitors, DNA damage agents and DNA damage response inhibitors. Based on the relationships between mitotic catastrophe and other cell death modes, we thoroughly evaluated the roles played by mitotic catastrophe in cancer treatment as well as its advantages and disadvantages. Some strategies for overcoming its shortcomings while fully utilizing its advantages are summarized and proposed in this review. We also review how mitotic catastrophe regulates cancer immunotherapy. These summarized findings suggest that the induction of mitotic catastrophe can serve as a promising new therapeutic approach for overcoming apoptosis resistance and strengthening cancer immunotherapy.
Collapse
Affiliation(s)
- Zhaoshi Bai
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China.
| | - Yiran Zhou
- Department of General Surgery, Rui Jin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, China
| | - Yaling Peng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xinyue Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
9
|
Croushore EE, Koppenhafer SL, Goss KL, Geary EL, Gordon DJ. Activator Protein-1 (AP-1) Signaling Inhibits the Growth of Ewing Sarcoma Cells in Response to DNA Replication Stress. CANCER RESEARCH COMMUNICATIONS 2023; 3:1580-1593. [PMID: 37599787 PMCID: PMC10434289 DOI: 10.1158/2767-9764.crc-23-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023]
Abstract
Ribonucleotide reductase (RNR) catalyzes the rate-limiting step in the synthesis of deoxyribonucleosides and is required for DNA replication. Multiple types of cancer, including Ewing sarcoma tumors, are sensitive to RNR inhibitors or a reduction in the levels of either the RRM1 or RRM2 subunits of RNR. However, the polypharmacology and off-target effects of RNR inhibitors have complicated the identification of the mechanisms that regulate sensitivity and resistance to this class of drugs. Consequently, we used a conditional knockout (CRISPR/Cas9) and rescue approach to target RRM1 in Ewing sarcoma cells and identified that loss of the RRM1 protein results in the upregulation of the expression of multiple members of the activator protein-1 (AP-1) transcription factor complex, including c-Jun and c-Fos, and downregulation of c-Myc. Notably, overexpression of c-Jun and c-Fos in Ewing sarcoma cells is sufficient to inhibit cell growth and downregulate the expression of the c-Myc oncogene. We also identified that the upregulation of AP-1 is mediated, in part, by SLFN11, which is a replication stress response protein that is expressed at high levels in Ewing sarcoma. In addition, small-molecule inhibitors of RNR, including gemcitabine, and histone deacetylase inhibitors, which reduce the level of the RRM1 protein, also activate AP-1 signaling and downregulate the level of c-Myc in Ewing sarcoma. Overall, these results provide novel insight into the critical pathways activated by loss of RNR activity and the mechanisms of action of inhibitors of RNR. Significance RNR is the rate-limiting enzyme in the synthesis of deoxyribonucleotides. Although RNR is the target of multiple chemotherapy drugs, polypharmacology and off-target effects have complicated the identification of the precise mechanism of action of these drugs. In this work, using a knockout-rescue approach, we identified that inhibition of RNR upregulates AP-1 signaling and downregulates the level of c-Myc in Ewing sarcoma tumors.
Collapse
Affiliation(s)
- Emma E. Croushore
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa
| | - Stacia L. Koppenhafer
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa
| | - Kelli L. Goss
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa
| | - Elizabeth L. Geary
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa
| | - David J. Gordon
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa
| |
Collapse
|
10
|
Identifying CDC7 as a synergistic target of chemotherapy in resistant small-cell lung cancer via CRISPR/Cas9 screening. Cell Death Dis 2023; 9:40. [PMID: 36725843 PMCID: PMC9892530 DOI: 10.1038/s41420-023-01315-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 02/03/2023]
Abstract
There is currently a lack of efficacious treatments for patients with chemo-resistant small-cell lung cancer (SCLC), leading to poor prognoses. We examined a chemo-resistant SCLC cell line using genome-wide CRISPR/Cas9 screening and identified serine/threonine kinase cell division cycle 7 (CDC7) as a potential synergistic target. Silencing CDC7 in chemo-resistant SCLC cells decreased the IC50 and improved the efficacy of chemotherapy. Based on the highest single agent model, the CDC7 inhibitor XL413 had a synergistic effect with both cisplatin and etoposide in chemo-resistant SCLC cells, but had no such effect in chemo-sensitive SCLC cells; the combination of XL413 and chemotherapy significantly inhibited cell growth. Western blot and flow cytometry showed that the combined treatments increased apoptosis, whereas XL413 alone had little effect on apoptosis. An analysis of cell cycle and cyclin protein levels indicated that the combination of XL413 and chemotherapy-induced G1/S phase arrest and DNA damage in chemo-resistant SCLC cells. Xenografted tumor and histoculture drug response assays using patient-derived xenografts showed that XL413 improved the efficacy of chemotherapy in vivo and with SCLC tissues. These results suggest that XL413 exerts a synergistic effect with chemotherapy on chemo-resistant SCLC.
Collapse
|
11
|
Catitti G, De Fabritiis S, Brocco D, Simeone P, De Bellis D, Vespa S, Veschi S, De Lellis L, Tinari N, Verginelli F, Marchisio M, Cama A, Patruno A, Lanuti P. Flow Cytometry Detection of Anthracycline-Treated Breast Cancer Cells: An Optimized Protocol. Curr Issues Mol Biol 2022; 45:164-174. [PMID: 36661499 PMCID: PMC9857732 DOI: 10.3390/cimb45010013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The use of anthracycline derivatives was approved for the treatment of a broad spectrum of human tumors (i.e., breast cancer). The need to test these drugs on cancer models has pushed the basic research to apply many types of in vitro assays, and, among them, the study of anthracycline-induced apoptosis was mainly based on the application of flow cytometry protocols. However, the chemical structure of anthracycline derivatives gives them a strong autofluorescence effect that must be considered when flow cytometry is used. Unfortunately, the guidelines on the analysis of anthracycline effects through flow cytometry are lacking. Therefore, in this study, we optimized the flow cytometry detection of doxorubicin and epirubicin-treated breast cancer cells. Their autofluorescence was assessed both by using conventional and imaging flow cytometry; we found that all the channels excited by the 488 nm laser were affected. Anthracycline-induced apoptosis was then measured via flow cytometry using the optimized setting. Consequently, we established a set of recommendations that enable the development of optimized flow cytometry settings when the in vitro assays of anthracycline effects are analyzed, with the final aim to reveal a new perspective on the use of those in vitro tests for the further implementation of precision medicine strategies in cancer.
Collapse
Affiliation(s)
- Giulia Catitti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Neurology, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Simone De Fabritiis
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Davide Brocco
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Pasquale Simeone
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Domenico De Bellis
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Simone Vespa
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Serena Veschi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Laura De Lellis
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Nicola Tinari
- Department of Medical, Oral & Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Fabio Verginelli
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Antonia Patruno
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence:
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
12
|
CDC7 Expression in Selected Odontogenic Tumors. Int J Dent 2022; 2022:6336003. [DOI: 10.1155/2022/6336003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022] Open
Abstract
Objectives. CDC7 is a serine-threonine kinase that plays a key role in initiating DNA replication. It has been implicated in the growth and invasion of many pathologic lesions and suggested as a diagnostic marker. The aim of this study was to evaluate CDC7 in some odontogenic tumors. Materials and Methods. In this cross-sectional study, 45 cases, including 19 ameloblastomas, 15 dentigerous cysts, 7 ameloblastic fibromas, and 4 adenomatoid odontogenic tumors (AOT), were studied immunohistochemically. ANOVA and post hoc methods were used for statistical analysis. Results. CDC7 expression was observed in 93% of tumors and all dentigerous cysts. The expression rate was low. The results showed a higher expression rate of CDC7 in ameloblastoma and ameloblastic fibroma compared to AOT (
and
, respectively). Ameloblastoma and ameloblastic fibroma were not significantly different in CDC7 expression (
). Conclusion. According to the results, the expression of the CDC7 protein in odontogenic tumors is low. The higher expression of CDC7 in ameloblastoma and ameloblastic fibroma in comparison with AOT confirms the hamartomatous growth of the latter, so it can be considered as a potential diagnostic marker. Future studies with a larger sample size are suggested to obtain a cut-off point for diagnostic purposes.
Collapse
|
13
|
Martin JC, Sims JR, Gupta A, Bakin AV, Ohm JE. WEE1 inhibition augments CDC7 (DDK) inhibitor-induced cell death in Ewing sarcoma by forcing premature mitotic entry and mitotic catastrophe. CANCER RESEARCH COMMUNICATIONS 2022; 2:471-482. [PMID: 36338546 PMCID: PMC9635308 DOI: 10.1158/2767-9764.crc-22-0130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 05/25/2022] [Indexed: 06/16/2023]
Abstract
Ewing sarcoma is an aggressive childhood cancer for which treatment options remain limited and toxic. There is an urgent need for the identification of novel therapeutic strategies. Our group has recently shown that Ewing cells rely on the S-phase kinase CDC7 (DDK) to maintain replication rates and cell viability and that DDK inhibition causes an increase in the phosphorylation of CDK1 and a significant delay in mitotic entry. Here, we expand on our previous findings and show that DDK inhibitor-induced mitotic entry delay is dependent upon WEE1 kinase. Specifically, WEE1 phosphorylates CDK1 and prevents mitotic entry upon DDK inhibition due to the presence of under-replicated DNA, potentially limiting the cytotoxic effects of DDK inhibition. To overcome this, we combined the inhibition of DDK with the inhibition of WEE1 and found that this results in elevated levels of premature mitotic entry, mitotic catastrophe, and apoptosis. Importantly, we have found that DDK and WEE1 inhibitors display a synergistic relationship with regards to reducing cell viability of Ewing sarcoma cells. Interestingly, the cytotoxic nature of this combination can be suppressed by the inhibition of CDK1 or microtubule polymerization, indicating that mitotic progression is required to elicit the cytotoxic effects. This is the first study to display the potential of utilizing the combined inhibition of DDK and WEE1 for the treatment of cancer. We believe this will offer a potential therapeutic strategy for the treatment of Ewing sarcoma as well as other tumor types that display sensitivity to DDK inhibitors.
Collapse
Affiliation(s)
- Jeffrey C. Martin
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jennie R. Sims
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Ajay Gupta
- Division of Pediatric Oncology, Roswell Park Comprehensive Cancer Center, Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Andrei V. Bakin
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Joyce Ellen Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|