1
|
Xue X, Ye G, Zhang L, Zhu X, Liu Q, Rui G, Geng G, Lin Y, Chen X. PI3Kα inhibitor GNE-493 triggers antitumor immunity in murine lung cancer by inducing immunogenic cell death and activating T cells. Int Immunopharmacol 2024; 130:111747. [PMID: 38442576 DOI: 10.1016/j.intimp.2024.111747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Phosphatidylinositol 3-kinase (PI3K) is frequently hyperactivated in cancer, playing pivotal roles in the pathophysiology of both malignant and immune cells. The impact of PI3K inhibitors on the tumor microenvironment (TME) within lung cancer remains largely unknown. In this study, we explored the regulatory effects of GNE-493, an innovative dual inhibitor of PI3K and mammalian target of rapamycin (mTOR), on the TME of lung cancer. First, through the analysis of The Cancer Genome Atlas-lung squamous cell carcinoma (LUSC) cohort, we found PIK3CA to be related to CD8 T cells, which may affect the overall survival rate of patients by affecting CD8 function. We herein demonstrated that GNE-493 can significantly inhibit tumor cell proliferation and promote cell apoptosis while increasing the expression of the immunogenic death-related molecules CRT and HSP70 using in vitro cell proliferation and apoptosis experiments on the murine KP lung cancer cell line and human A549 lung cancer cell line. Next, through the establishment of an orthotopic tumor model in vivo, it was found that after GNE-493 intervention, the infiltration of CD4+ and CD8+ T cells in mouse lung tumor was significantly increased, and the expression of CRT in tumors could be induced to increase. To explore the mechanisms underlying PI3K inhibition-induced changes in the TME, the gene expression differences of T cells in the control group versus GNE-493-treated KP tumors were analyzed by RNA-seq, and the main effector pathway of anti-tumor immunity was identified. The IFN/TNF family molecules were significantly upregulated after GNE-493 treatment. In summary, our findings indicate that GNE-493 promotes immunogenic cell death in lung cancer cells, and elucidates its regulatory impact on molecules associated with the adaptive immune response. Our study provides novel insights into how PI3K/mTOR inhibitors exert their activity by modulating the tumor-immune interaction.
Collapse
Affiliation(s)
- Xiaomin Xue
- Department of Pulmonary and Critical Care Medicine, The First Hospital Affiliated of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, PR China
| | - Guanzhi Ye
- Department of Pulmonary and Critical Care Medicine, The First Hospital Affiliated of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, PR China; Department of Thoracic Surgery, The First Hospital Affiliated of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, PR China
| | - Long Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361003 PR China
| | - Xiaolei Zhu
- Department of Thoracic Surgery, The First Hospital Affiliated of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, PR China
| | - Qun Liu
- Department of Pulmonary and Critical Care Medicine, The First Hospital Affiliated of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, PR China
| | - Gang Rui
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361003 PR China
| | - Guojun Geng
- Department of Thoracic Surgery, The First Hospital Affiliated of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, PR China
| | - Yihua Lin
- Department of Pulmonary and Critical Care Medicine, The First Hospital Affiliated of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, PR China.
| | - Xiaohui Chen
- Department of Pulmonary and Critical Care Medicine, The First Hospital Affiliated of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, PR China; Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361003 PR China.
| |
Collapse
|
2
|
Xie Y, Zhao G, Lei X, Cui N, Wang H. Advances in the regulatory mechanisms of mTOR in necroptosis. Front Immunol 2023; 14:1297408. [PMID: 38164133 PMCID: PMC10757967 DOI: 10.3389/fimmu.2023.1297408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
The mammalian target of rapamycin (mTOR), an evolutionarily highly conserved serine/threonine protein kinase, plays a prominent role in controlling gene expression, metabolism, and cell death. Programmed cell death (PCD) is indispensable for maintaining homeostasis by removing senescent, defective, or malignant cells. Necroptosis, a type of PCD, relies on the interplay between receptor-interacting serine-threonine kinases (RIPKs) and the membrane perforation by mixed lineage kinase domain-like protein (MLKL), which is distinguished from apoptosis. With the development of necroptosis-regulating mechanisms, the importance of mTOR in the complex network of intersecting signaling pathways that govern the process has become more evident. mTOR is directly responsible for the regulation of RIPKs. Autophagy is an indirect mechanism by which mTOR regulates the removal and interaction of RIPKs. Another necroptosis trigger is reactive oxygen species (ROS) produced by oxidative stress; mTOR regulates necroptosis by exploiting ROS. Considering the intricacy of the signal network, it is reasonable to assume that mTOR exerts a bifacial effect on necroptosis. However, additional research is necessary to elucidate the underlying mechanisms. In this review, we summarized the mechanisms underlying mTOR activation and necroptosis and highlighted the signaling pathway through which mTOR regulates necroptosis. The development of therapeutic targets for various diseases has been greatly advanced by the expanding knowledge of how mTOR regulates necroptosis.
Collapse
Affiliation(s)
- Yawen Xie
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guoyu Zhao
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xianli Lei
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hao Wang
- Department of Critical Care Medicine, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Cheng F, Tang YF, Cao Y, Peng SQ, Zhu XR, Sun Y, Wang SH, Wang B, Lu YM. KCNAB2 overexpression inhibits human non-small-cell lung cancer cell growth in vitro and in vivo. Cell Death Discov 2023; 9:382. [PMID: 37852974 PMCID: PMC10584983 DOI: 10.1038/s41420-023-01679-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer cases. NSCLC patients often have poor prognosis demanding urgent identification of novel biomarkers and potential therapeutic targets. KCNAB2 (regulatory beta subunit2 of voltage-gated potassium channel), encoding aldosterone reductase, plays a pivotal role in regulating potassium channel activity. In this research, we tested the expression of KCNAB2 as well as its potential functions in human NSCLC. Bioinformatics analysis shows that expression of KCNAB2 mRNA is significantly downregulated in human NSCLC, correlating with poor overall survival. In addition, decreased KCNAB2 expression was detected in different NSCLC cell lines and local human NSCLC tissues. Exogenous overexpression of KCNAB2 potently suppressed growth, proliferation and motility of established human NSCLC cells and promoted NSCLC cells apoptosis. In contrast, CRISPR/Cas9-induced KCNAB2 knockout further promoted the malignant biological behaviors of NSCLC cells. Protein chip analysis in the KCNAB2-overexpressed NSCLC cells revealed that KCNAB2 plays a possible role in AKT-mTOR cascade activation. Indeed, AKT-mTOR signaling activation was potently inhibited following KCNAB2 overexpression in NSCLC cells. It was however augmented by KCNAB2 knockout. In vivo, the growth of subcutaneous KCNAB2-overexpressed A549 xenografts was significantly inhibited. Collectively, KCNAB2 could be a novel effective gene for prognosis prediction of NSCLC. Targeting KCNAB2 may lead to the development of advanced therapies.
Collapse
Affiliation(s)
- Feng Cheng
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Yu-Fei Tang
- Department of Soochow Medical college, Soochow University, Suzhou, China
| | - Yang Cao
- Department of Respiratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Shi-Qing Peng
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Xiao-Ren Zhu
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yue Sun
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Shu-Hang Wang
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Bin Wang
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, China.
| | - Yi-Min Lu
- Department of Respiratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| |
Collapse
|
4
|
Li X, Yao L, Wang T, Gu X, Wu Y, Jiang T. Identification of the mitochondrial protein POLRMT as a potential therapeutic target of prostate cancer. Cell Death Dis 2023; 14:665. [PMID: 37816734 PMCID: PMC10564732 DOI: 10.1038/s41419-023-06203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
RNA polymerase mitochondria (POLRMT) is essential for mitochondrial transcription machinery and other mitochondrial functions. Its expression and potential functions in prostate cancer were explored here. The Cancer Genome Atlas prostate cancer cohort (TCGA PRAD) shows that POLRMT mRNA expression is upregulated in prostate cancer tissues and POLRMT upregulation is correlated with poor patients' survival. POLRMT mRNA and protein levels were upregulated in local prostate cancer tissues and different primary/immortalized prostate cancer cells. Genetic depletion of POLRMT, using viral shRNA or CRISPR/Cas9 gene editing methods, impaired mitochondrial functions in prostate cancer cells, leading to mitochondrial depolarization, oxidative stress, mitochondria complex I inhibition, and ATP depletion. Moreover, POLRMT depletion resulted in robust inhibition of prostate cancer cell viability, proliferation, and migration, and provoked apoptosis. Conversely, prostate cancer cell proliferation, migration, and ATP contents were strengthened following ectopic POLRMT overexpression. In vivo, intratumoral injection of POLRMT shRNA adeno-associated virus impeded prostate cancer xenograft growth in nude mice. POLRMT silencing, oxidative stress, and ATP depletion were detected in POLRMT shRNA-treated prostate cancer xenograft tissues. IMT1 (inhibitor of mitochondrial transcription 1), the first-in-class POLRMT inhibitor, inhibited prostate cancer cell growth in vitro and in vivo. Together, overexpressed POLRMT is an important mitochondrial protein for prostate cancer cell growth, representing a novel and promising diagnostic and therapeutic oncotarget.
Collapse
Affiliation(s)
- Xiaojun Li
- Department of Urology, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Taicang, China
| | - Linya Yao
- Department of Urology, Kunshan Hospital of Traditional Chinese Medicine Affiliated to Yangzhou University, Kunshan, China
| | - Tao Wang
- Department of Urology, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Taicang, China
| | - Xiaolei Gu
- Department of Urology, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Taicang, China
| | - Yufan Wu
- Department of Urology, Kunshan Hospital of Traditional Chinese Medicine Affiliated to Yangzhou University, Kunshan, China
| | - Ting Jiang
- Department of Urology, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Taicang, China.
| |
Collapse
|
5
|
Hashemi M, Taheriazam A, Daneii P, Hassanpour A, Kakavand A, Rezaei S, Hejazi ES, Aboutalebi M, Gholamrezaie H, Saebfar H, Salimimoghadam S, Mirzaei S, Entezari M, Samarghandian S. Targeting PI3K/Akt signaling in prostate cancer therapy. J Cell Commun Signal 2023; 17:423-443. [PMID: 36367667 PMCID: PMC10409967 DOI: 10.1007/s12079-022-00702-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Urological cancers have obtained much attention in recent years due to their mortality and morbidity. The most common and malignant tumor of urological cancers is prostate cancer that imposes high socioeconomic costs on public life and androgen-deprivation therapy, surgery, and combination of chemotherapy and radiotherapy are employed in its treatment. PI3K/Akt signaling is an oncogenic pathway responsible for migration, proliferation and drug resistance in various cancers. In the present review, the role of PI3K/Akt signaling in prostate cancer progression is highlighted. The activation of PI3K/Akt signaling occurs in prostate cancer, while PTEN as inhibitor of PI3K/Akt shows down-regulation. Stimulation of PI3K/Akt signaling promotes survival of prostate tumor cells and prevents apoptosis. The cell cycle progression and proliferation rate of prostate tumor cells increase by PI3K/Akt signaling induction. PI3K/Akt signaling stimulates EMT and enhances metastasis of prostate tumor cells. Silencing PI3K/Akt signaling impairs growth and metastasis of prostate tumor cells. Activation of PI3K/Akt signaling mediates drug resistance and reduces radio-sensitivity of prostate tumor cells. Anti-tumor compounds suppress PI3K/Akt signaling in impairing prostate tumor progression. Furthermore, upstream regulators such as miRNAs, lncRNAs and circRNAs regulate PI3K/Akt signaling and it has clinical implications for prostate cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Gholamrezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- League of European Research Universities, European University Association, University of Milan, Milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
6
|
Jin L, Zhu J, Yao L, Shen G, Xue BX, Tao W. Targeting SphK1/2 by SKI-178 inhibits prostate cancer cell growth. Cell Death Dis 2023; 14:537. [PMID: 37604912 PMCID: PMC10442381 DOI: 10.1038/s41419-023-06023-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/23/2023]
Abstract
Sphingosine kinases (SphK), including SphK1 and SphK2, are important enzymes promoting progression of prostate cancer. SKI-178 is a novel and highly potent SphK1/2 dual inhibitor. We here tested the potential anti-prostate cancer cell activity of SKI-178. Bioinformatics analyses and results from local tissues demonstrated that that both SphK1 and SphK2 are upregulated in human prostate cancer tissues. Ectopic overexpression of SphK1 and SphK2, by lentiviral constructs, promoted primary prostate cancer cell proliferation and migration. In primary human prostate cancer cells and immortalized cell lines, SKI-178 potently inhibited cell viability, proliferation, cell cycle progression and cell migration, causing robust cell death and apoptosis. SKI-178 impaired mitochondrial functions, causing mitochondrial depolarization, reactive oxygen species production and ATP depletion.SKI-178 potently inhibited SphK activity and induced ceramide production, without affecting SphK1/2 expression in prostate cancer cells. Further, SKI-178 inhibited Akt-mTOR activation and induced JNK activation in prostate cancer cells. Contrarily, a constitutively-active Akt1 construct or the pharmacological JNK inhibitors attenuated SKI-178-induced cytotoxicity in prostate cancer cells. In vivo, daily intraperitoneal injection of a single dose of SKI-178 potently inhibited PC-3 xenograft growth in nude mice. SphK inhibition, ceramide production, ATP depletion and lipid peroxidation as well as Akt-mTOR inactivation and JNK activation were detected in PC-3 xenograft tissues with SKI-178 administration. Together, targeting SphK1/2 by SKI-178 potently inhibited prostate cancer cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Lu Jin
- Department of Urology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Zhu
- Department of Urology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Linya Yao
- Department of Urology, Kunshan Hospital of Traditional Chinese Medicine Affiliated to Yangzhou University, Kunshan, China
| | - Gang Shen
- Department of Urology, DUSHU Lake Hospital Affiliated to Soochow University, Suzhou, China.
| | - Bo-Xin Xue
- Department of Urology, the Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Wei Tao
- Department of Urology, the Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
7
|
He P, Dai Q, Wu X. New insight in urological cancer therapy: From epithelial-mesenchymal transition (EMT) to application of nano-biomaterials. ENVIRONMENTAL RESEARCH 2023; 229:115672. [PMID: 36906272 DOI: 10.1016/j.envres.2023.115672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 05/21/2023]
Abstract
A high number of cancer-related deaths (up to 90) are due to metastasis and simple definition of metastasis is new colony formation of tumor cells in a secondary site. In tumor cells, epithelial-mesenchymal transition (EMT) stimulates metastasis and invasion, and it is a common characteristic of malignant tumors. Prostate cancer, bladder cancer and renal cancer are three main types of urological tumors that their malignant and aggressive behaviors are due to abnormal proliferation and metastasis. EMT has been well-documented as a mechanism for promoting invasion of tumor cells and in the current review, a special attention is directed towards understanding role of EMT in malignancy, metastasis and therapy response of urological cancers. The invasion and metastatic characteristics of urological tumors enhance due to EMT induction and this is essential for ensuring survival and ability in developing new colonies in neighboring and distant tissues and organs. When EMT induction occurs, malignant behavior of tumor cells enhances and their tend in developing therapy resistance especially chemoresistance promotes that is one of the underlying reasons for therapy failure and patient death. The lncRNAs, microRNAs, eIF5A2, Notch-4 and hypoxia are among common modulators of EMT mechanism in urological tumors. Moreover, anti-tumor compounds such as metformin can be utilized in suppressing malignancy of urological tumors. Besides, genes and epigenetic factors modulating EMT mechanism can be therapeutically targeted for interfering malignancy of urological tumors. Nanomaterials are new emerging agents in urological cancer therapy that they can improve potential of current therapeutics by their targeted delivery to tumor site. The important hallmarks of urological cancers including growth, invasion and angiogenesis can be suppressed by cargo-loaded nanomaterials. Moreover, nanomaterials can improve chemotherapy potential in urological cancer elimination and by providing phototherapy, they mediate synergistic tumor suppression. The clinical application depends on development of biocompatible nanomaterials.
Collapse
Affiliation(s)
- Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
8
|
Xie Y, Lei X, Zhao G, Guo R, Cui N. mTOR in programmed cell death and its therapeutic implications. Cytokine Growth Factor Rev 2023; 71-72:66-81. [PMID: 37380596 DOI: 10.1016/j.cytogfr.2023.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Mechanistic target of rapamycin (mTOR), a highly conserved serine/threonine kinase, is involved in cellular metabolism, protein synthesis, and cell death. Programmed cell death (PCD) assists in eliminating aging, damaged, or neoplastic cells, and is indispensable for sustaining normal growth, fighting pathogenic microorganisms, and maintaining body homeostasis. mTOR has crucial functions in the intricate signaling pathway network of multiple forms of PCD. mTOR can inhibit autophagy, which is part of PCD regulation. Cell survival is affected by mTOR through autophagy to control reactive oxygen species production and the degradation of pertinent proteins. Additionally, mTOR can regulate PCD in an autophagy-independent manner by affecting the expression levels of related genes and phosphorylating proteins. Therefore, mTOR acts through both autophagy-dependent and -independent pathways to regulate PCD. It is conceivable that mTOR exerts bidirectional regulation of PCD, such as ferroptosis, according to the complexity of signaling pathway networks, but the underlying mechanisms have not been fully explained. This review summarizes the recent advances in understanding mTOR-mediated regulatory mechanisms in PCD. Rigorous investigations into PCD-related signaling pathways have provided prospective therapeutic targets that may be clinically beneficial for treating various diseases.
Collapse
Affiliation(s)
- Yawen Xie
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xianli Lei
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guoyu Zhao
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ran Guo
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Mi YY, Ji Y, Zhang L, Sun CY, Wei BB, Yang DJ, Wan HY, Qi XW, Wu S, Zhu LJ. A first-in-class HBO1 inhibitor WM-3835 inhibits castration-resistant prostate cancer cell growth in vitro and in vivo. Cell Death Dis 2023; 14:67. [PMID: 36709328 PMCID: PMC9884225 DOI: 10.1038/s41419-023-05606-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/30/2023]
Abstract
The prognosis and overall survival of castration-resistant prostate cancer (CRPC) patients are poor. The search for novel and efficient anti-CRPC agents is therefore extremely important. WM-3835 is a cell-permeable, potent and first-in-class HBO1 (KAT7 or MYST2) inhibitor. Here in primary human prostate cancer cells-derived from CRPC patients, WM-3835 potently inhibited cell viability, proliferation, cell cycle progression and in vitro cell migration. The HBO1 inhibitor provoked apoptosis in the prostate cancer cells. It failed to induce significant cytotoxicity and apoptosis in primary human prostate epithelial cells. shRNA-induced silencing of HBO1 resulted in robust anti-prostate cancer cell activity as well, and adding WM-3835 failed to induce further cytotoxicity in the primary prostate cancer cells. Conversely, ectopic overexpression of HBO1 further augmented primary prostate cancer cell proliferation and migration. WM-3835 inhibited H3-H4 acetylation and downregulated several pro-cancerous genes (CCR2, MYLK, VEGFR2, and OCIAD2) in primary CRPC cells. Importantly, HBO1 mRNA and protein levels are significantly elevated in CRPC tissues and cells. In vivo, daily intraperitoneal injection of WM-3835 potently inhibited pPC-1 xenograft growth in nude mice, and no apparent toxicities detected. Moreover, intratumoral injection of HBO1 shRNA adeno-associated virus (AAV) suppressed the growth of primary prostate cancer xenografts in nude mice. H3-H4 histone acetylation and HBO1-dependent genes (CCR2, MYLK, VEGFR2, and OCIAD2) were remarkably decreased in WM-3835-treated or HBO1-silenced xenograft tissues. Together, targeting HBO1 by WM-3835 robustly inhibits CRPC cell growth.
Collapse
Affiliation(s)
- Yuan-Yuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yu Ji
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Lifeng Zhang
- Department of Urology, Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Chuan-Yu Sun
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bing-Bing Wei
- Department of Urology, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Dong-Jie Yang
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Hong-Yuan Wan
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao-Wei Qi
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Sheng Wu
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Li-Jie Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
10
|
Moreira-Silva F, Henrique R, Jerónimo C. From Therapy Resistance to Targeted Therapies in Prostate Cancer. Front Oncol 2022; 12:877379. [PMID: 35686097 PMCID: PMC9170957 DOI: 10.3389/fonc.2022.877379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the second most common malignancy among men worldwide. Although early-stage disease is curable, advanced stage PCa is mostly incurable and eventually becomes resistant to standard therapeutic options. Different genetic and epigenetic alterations are associated with the development of therapy resistant PCa, with specific players being particularly involved in this process. Therefore, identification and targeting of these molecules with selective inhibitors might result in anti-tumoral effects. Herein, we describe the mechanisms underlying therapy resistance in PCa, focusing on the most relevant molecules, aiming to enlighten the current state of targeted therapies in PCa. We suggest that selective drug targeting, either alone or in combination with standard treatment options, might improve therapeutic sensitivity of resistant PCa. Moreover, an individualized analysis of tumor biology in each PCa patient might improve treatment selection and therapeutic response, enabling better disease management.
Collapse
Affiliation(s)
- Filipa Moreira-Silva
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (He-alth Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (He-alth Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences of the University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (He-alth Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences of the University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|