1
|
Huang X, Liu Y, Fu H, Rong X, Zhao Y. Silencing IFIT3 suppresses the EGFR/VEGF pathway and modulates SOCS1 to attenuate skin fibrosis in systemic sclerosis. Apoptosis 2025:10.1007/s10495-025-02115-y. [PMID: 40515878 DOI: 10.1007/s10495-025-02115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2025] [Indexed: 06/16/2025]
Abstract
Systemic sclerosis (SSc) is a life-threatening autoimmune disease characterized by progressive skin and organ fibrosis. Although interferon signaling is dysregulated in SSc, the role of interferon-induced proteins like IFIT3 in the skin fibrosis of SSC remains unclear. Here, we demonstrate that IFIT3 expression is significantly elevated (p < 0.01) in SSc fibroblasts and promotes fibrosis via SOCS1-dependent activation of the EGFR/VEGF axis. Silencing IFIT3 upregulated SOCS1 (p < 0.05), suppressed EGFR/VEGF (p < 0.01), and inhibited fibroblast proliferation/migration (p < 0.01). In a bleomycin-induced SSc model, IFIT3 knockdown ameliorated skin/lung collagen deposition and fibrosis (p < 0.05). Our findings reveal a novel mechanism whereby IFIT3 regulates EGFR and VEGF through down-regulating SOCS1 in SSc fibrosis, identifying IFIT3 as a novel therapeutic target for SSc.
Collapse
Affiliation(s)
- Xiangyang Huang
- Department of Rheumatology and Immunology. West China School of Public Health and West China Fourth Hospital, Sichuan University, No.17, Section 3, Renmin South Road, Wuhou District, Chengdu, 610041, Sichuan Province, China.
| | - Yi Liu
- Department of Communication Sciences & Disorders, MGH Institute of Health Professions, Boston, MA, USA
| | - Hangling Fu
- Department of Rheumatology and Immunology. West China School of Public Health and West China Fourth Hospital, Sichuan University, No.17, Section 3, Renmin South Road, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Xia Rong
- Department of Rheumatology and Immunology. West China School of Public Health and West China Fourth Hospital, Sichuan University, No.17, Section 3, Renmin South Road, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Yiheng Zhao
- Department of Rheumatology and Immunology. West China School of Public Health and West China Fourth Hospital, Sichuan University, No.17, Section 3, Renmin South Road, Wuhou District, Chengdu, 610041, Sichuan Province, China
| |
Collapse
|
2
|
Miao J, Jiang X, Wang S. YTHDF1-mediated m6A modification promotes cisplatin resistance in ovarian cancer via the FZD7/Wnt/β-catenin pathway. Apoptosis 2025; 30:1525-1546. [PMID: 40281310 DOI: 10.1007/s10495-025-02094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 04/29/2025]
Abstract
Cisplatin resistance significantly hinders the efficacy of ovarian cancer treatment, presenting a major challenge in improving patient outcomes. This study identifies the m6A reader protein YTHDF1 as a key regulator of cisplatin resistance in ovarian cancer through its modulation of the FZD7/Wnt/β-catenin signaling pathway. Using cisplatin-resistant ovarian cancer cell lines (A2780/DDP and SKOV3/DDP), we observed elevated YTHDF1 expression, which positively correlated with tumor cell proliferation and migration. Silencing YTHDF1 reduced FZD7 expression, inhibited Wnt/β-catenin signaling, and restored cisplatin sensitivity both in vitro and in vivo. Mechanistic investigations revealed that YTHDF1 binds to m6A-modified FZD7 mRNA, enhancing its stability and translation. Functional studies in xenograft mouse models demonstrated that targeting YTHDF1 suppressed tumor growth and enhanced apoptosis in cisplatin-resistant ovarian cancer cells. These findings highlight the YTHDF1-FZD7 axis as a novel therapeutic target for overcoming cisplatin resistance, paving the way for improved treatment strategies in ovarian cancer.
Collapse
Affiliation(s)
- Jintian Miao
- Department of Gynecology, First Affiliated Hospital of Harbin Medical University, No. 2705, Seventh Avenue, Qunli, Daoli District, Harbin, Heilongjiang Province, 151000, China.
| | - Xinyan Jiang
- Department of Gynecology, First Affiliated Hospital of Harbin Medical University, No. 2705, Seventh Avenue, Qunli, Daoli District, Harbin, Heilongjiang Province, 151000, China
| | - Siyun Wang
- Department of Gynecology, First Affiliated Hospital of Harbin Medical University, No. 2705, Seventh Avenue, Qunli, Daoli District, Harbin, Heilongjiang Province, 151000, China
| |
Collapse
|
3
|
Guo J, Wang K, Sun Q, Liu J, Zheng J. Targeting B4GALT3 in BMSCs-EVs for Therapeutic Control of HCC via NF-κB pathway inhibition. Cell Biol Toxicol 2025; 41:67. [PMID: 40186771 PMCID: PMC11972216 DOI: 10.1007/s10565-025-10013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Examining the communications in the tumor microenvironment (TME) specific to hepatocellular carcinoma (HCC), this exploration looks into the role played by beta-1,4-Galactosyltransferase III (B4GALT3) in bone marrow mesenchymal stromal cell-derived extracellular vesicles (BMSCs-EVs) regarding the NF-κB pathway and the triggering of cancer-associated fibroblasts (CAF). Through a multidisciplinary approach combining transcriptome sequencing, bioinformatic analysis, and various experimental models, the involvement of B4GALT3 in regulating CAF activity by modulating NF-κB signaling was brought to light in our study. The outcomes suggest that targeting B4GALT3 could impede HCC cell migration and invasion, promote apoptosis, and dampen tumor progression and metastasis, offering novel insights into potential therapeutic strategies for combating HCC.
Collapse
Affiliation(s)
- Juncheng Guo
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Kaiqiong Wang
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Qigang Sun
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Jun Liu
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Jinfang Zheng
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China.
| |
Collapse
|
4
|
Ge Y, Janson V, Dong Z, Liu H. Role and mechanism of IL-33 in bacteria infection related gastric cancer continuum: From inflammation to tumor progression. Biochim Biophys Acta Rev Cancer 2025; 1880:189296. [PMID: 40058506 DOI: 10.1016/j.bbcan.2025.189296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Gastric cancer, a globally prevalent malignant tumor, is characterized by low early diagnosis rate, high metastasis rate, and poor prognosis, particularly in East Asia, Eastern Europe, and South America. Helicobacter pylori (H. pylori) is recognized as the primary risk factor for gastric cancer. However, the fact that fewer than 3 % of infected individuals develop cancer suggests that other bacteria may also influence gastric carcinogenesis. A diverse community of microorganisms may interact with H. pylori, thereby driving disease progression. Here, the role of the cytokine IL-33, a member of the IL-1 family, is scrutinized. Its production can be induced by H. pylori through the activation of specific signaling pathways, and it contributes to the inflammatory environment by promoting the release of pro-inflammatory cytokines. This article reviews the conflicting evidence regarding IL-33's role in the progression from gastritis to gastric cancer and discusses the potential therapeutic implications of targeting the IL-33/ST2 axis, with various antibodies and inhibitors in development or undergoing clinical trials for inflammatory diseases. However, the role of IL-33 in gastric cancer treatment remains to be fully elucidated, with its effects potentially dependent on the cellular context and stage of cancer progression. In summary, this review provides a comprehensive overview of the intricate relationship between gastric microbiota, IL-33, and gastritis - gastric cancer transition, offering insights into potential therapeutic targets and the development of novel treatment strategies.
Collapse
Affiliation(s)
- Yunxiao Ge
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Victor Janson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China
| | - Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China.
| |
Collapse
|
5
|
Wu Y, Zhang K, Zheng Y, Jin H. A review of potential mechanisms and treatments of gastric intestinal metaplasia. Eur J Gastroenterol Hepatol 2025; 37:383-394. [PMID: 39975991 DOI: 10.1097/meg.0000000000002903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Gastric intestinal metaplasia (GIM) is a pathological process where gastric mucosal epithelial cells are replaced by intestinal-type cells, serving as a precursor lesion for gastric cancer. This transformation involves various genetic and environmental factors, affecting key genes and signaling pathways. Recent research has revealed complex mechanisms, including changes in gene expression, abnormal signaling pathway activation, and altered cell behavior. This review summarizes the latest research on GIM, discussing its pathogenesis, current treatment strategies, and potential efficacy of emerging approaches like gene editing, microbiome interventions, and integrative medicine. By exploring these strategies, we aim to provide more effective treatments for GIM and reduce gastric cancer incidence. The review also highlights the importance of interdisciplinary studies in understanding GIM mechanisms and improving treatment strategies.
Collapse
Affiliation(s)
- Yueyao Wu
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | | | | | | |
Collapse
|
6
|
Duan Y, Xu Y, Dou Y, Xu D. Helicobacter pylori and gastric cancer: mechanisms and new perspectives. J Hematol Oncol 2025; 18:10. [PMID: 39849657 PMCID: PMC11756206 DOI: 10.1186/s13045-024-01654-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Gastric cancer remains a significant global health challenge, with Helicobacter pylori (H. pylori) recognized as a major etiological agent, affecting an estimated 50% of the world's population. There has been a rapidly expanding knowledge of the molecular and pathogenetic mechanisms of H. pylori over the decades. This review summarizes the latest research advances to elucidate the molecular mechanisms underlying the H. pylori infection in gastric carcinogenesis. Our investigation of the molecular mechanisms reveals a complex network involving STAT3, NF-κB, Hippo, and Wnt/β-catenin pathways, which are dysregulated in gastric cancer caused by H. pylori. Furthermore, we highlight the role of H. pylori in inducing oxidative stress, DNA damage, chronic inflammation, and cell apoptosis-key cellular events that pave the way for carcinogenesis. Emerging evidence also suggests the effect of H. pylori on the tumor microenvironment and its possible implications for cancer immunotherapy. This review synthesizes the current knowledge and identifies gaps that warrant further investigation. Despite the progress in our previous knowledge of the development in H. pylori-induced gastric cancer, a comprehensive investigation of H. pylori's role in gastric cancer is crucial for the advancement of prevention and treatment strategies. By elucidating these mechanisms, we aim to provide a more in-depth insights for the study and prevention of H. pylori-related gastric cancer.
Collapse
Affiliation(s)
- Yantao Duan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yonghu Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Dou
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dazhi Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Kuang W, Xu J, Xu F, Huang W, Majid M, Shi H, Yuan X, Ruan Y, Hu X. Current study of pathogenetic mechanisms and therapeutics of chronic atrophic gastritis: a comprehensive review. Front Cell Dev Biol 2024; 12:1513426. [PMID: 39720008 PMCID: PMC11666564 DOI: 10.3389/fcell.2024.1513426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
Chronic atrophic gastritis (CAG) is a prevalent digestive system disease characterized by atrophy of the gastric mucosa and the disappearance of inherent gastric glands. According to the theory of Correa's cascade, CAG is an important pathological stage in the transformation from normal condition to gastric carcinoma. In recent years, the global incidence of CAG has been increasing due to pathogenic factors, including Helicobacter pylori infection, bile reflux, and the consumption of processed meats. In this review, we comprehensively described the etiology and clinical diagnosis of CAG. We focused on elucidating the regulatory mechanisms and promising therapeutic targets in CAG, with the expectation of providing insights and theoretical support for future research on CAG.
Collapse
Affiliation(s)
- Weihong Kuang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jialin Xu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
| | - Fenting Xu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
| | - Weizhen Huang
- Cancer Center, The First Huizhou Affiliated Hospital, Guangdong Medical University, Huizhou, China
| | - Muhammad Majid
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
| | - Hui Shi
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
| | - Xia Yuan
- Cancer Center, The First Huizhou Affiliated Hospital, Guangdong Medical University, Huizhou, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
- Cancer Center, The First Huizhou Affiliated Hospital, Guangdong Medical University, Huizhou, China
| | - Xianjing Hu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Traditional Chinese Medicines for Prevention and Treatment of Digestive Diseases, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Department of Acupuncture, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
8
|
Banisefid E, Nasiri E, Pourebrahimian Leilabadi S, Hamzehzadeh S, Akbarzadeh MA, Hosseini MS. The paradox of Helicobacter pylori: how does H. pylori infection protect against esophageal cancer? Ann Med Surg (Lond) 2024; 86:7221-7226. [PMID: 39649904 PMCID: PMC11623814 DOI: 10.1097/ms9.0000000000002674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/10/2024] [Indexed: 12/11/2024] Open
Abstract
Helicobacter pylori is a microaerophilic gram-negative bacterium infecting around half of the world's population. Despite its well-known role in gastric malignancies, its impact on esophageal cancer comes with a complex paradox. Several mechanisms have been proposed to explain its observed lack of carcinogenic activity in the esophagus, including the trigger of anti-inflammatory pathways, promoting atrophic gastritis, and esophageal microbiome modulation. However, recent studies have highlighted a significantly more complicated interplay, where H. pylori, typically considered a pathogen, may even deliver a protective effect against esophageal carcinogenesis. This paper aims to evaluate the prevalence of H. pylori infection among patients with esophageal carcinoma, discussing the underlying mechanisms of the paradoxical effects of H. pylori on esophageal cancer.
Collapse
Affiliation(s)
- Erfan Banisefid
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Nasiri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sina Hamzehzadeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amin Akbarzadeh
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Salar Hosseini
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Emmanuel BN, Peter DA, Peter MO, Adedayo IS, Olaifa K. Helicobacter pylori infection in Africa: comprehensive insight into its pathogenesis, management, and future perspectives. JOURNAL OF UMM AL-QURA UNIVERSITY FOR APPLIED SCIENCES 2024. [DOI: 10.1007/s43994-024-00166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/22/2024] [Indexed: 01/04/2025]
Abstract
AbstractHelicobacter pylori is a widespread bacterium that has effectively colonized half of the global population, with Africa having over 70% of the total burden of H. pylori infections (HPI). Considering its acknowledged classification of as bacterial carcinogens and their significant contribution to the development of gastrointestinal disorders such as gastritis, peptic ulcers, and gastric neoplasia, together with their growing resistance to antibiotics. Gaining insight into the etiology of this organism is crucial in order to investigate and develop appropriate treatment strategies. Furthermore, the rise of bacteria that are resistant to antibiotics presents an extra danger in managing this detrimental bacterium. Our review focuses on investigating the presence of H. pylori in Africa and analyzing the various factors that contribute to its extensive prevalence. We simplified the complex mechanisms that H. pylori utilizes to flourish in the human body, with a specific emphasis on its virulence factors and antibiotic resistance. These variables pose significant challenges to conventional treatment strategies. In addition, we analyze both conventional and developing diagnostic methods, as well as the current treatment approaches implemented in various African nations. In addition, we tackle the distinct healthcare obstacles of the region and put-up practical remedies. The main goal of this review is to improve the formulation of more efficient methods for the management and treatment of HPI in Africa.
Collapse
|
10
|
Wang JL, Jing DD. Gastric microbiome and gastric cancer: Relationship, mechanism, and clinical significance. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:327-332. [DOI: 10.11569/wcjd.v32.i5.327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
|
11
|
Wang Z, Wang Q, Chen C, Zhao X, Wang H, Xu L, Fu Y, Huang G, Li M, Xu J, Zhang Q, Wang B, Xu G, Wang L, Zou X, Wang S. NNMT enriches for AQP5 + cancer stem cells to drive malignant progression in early gastric cardia adenocarcinoma. Gut 2023; 73:63-77. [PMID: 36977555 DOI: 10.1136/gutjnl-2022-328408] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE Early gastric cardia adenocarcinoma (EGCA) is a highly heterogeneous cancer, and the understanding of its classification and malignant progression is limited. This study explored the cellular and molecular heterogeneity in EGCA using single-cell RNA sequencing (scRNA-seq). DESIGN scRNA-seq was conducted on 95 551 cells from endoscopic biopsies of low-grade intraepithelial neoplasia, well/moderately/poorly differentiated EGCA and their paired adjacent nonmalignant biopsy samples. Large-scale clinical samples and functional experiments were employed. RESULTS Integrative analysis of epithelial cells revealed that chief cells, parietal cells and enteroendocrine cells were rarely detected in the malignant epithelial subpopulation, whereas gland and pit mucous cells and AQP5+ stem cells were predominant during malignant progression. Pseudotime and functional enrichment analyses showed that the WNT and NF-κB signalling pathways were activated during the transition. Cluster analysis of heterogeneous malignant cells revealed that NNMT-mediated nicotinamide metabolism was enriched in gastric mucin phenotype cell population, which was associated with tumour initiation and inflammation-induced angiogenesis. Furthermore, the expression level of NNMT was gradually increased during the malignant progression and associated with poor prognosis in cardia adenocarcinoma. Mechanistically, NNMT catalysed the conversion of nicotinamide to 1-methyl nicotinamide via depleting S-adenosyl methionine, which led to a reduction in H3K27 trimethylation (H3K27me3) and then activated the WNT signalling pathway to maintain the stemness of AQP5+ stem cells during EGCA malignant progression. CONCLUSION Our study extends the understanding of the heterogeneity of EGCA and identifies a functional NNMT+/AQP5+ population that may drive malignant progression in EGCA and could be used for early diagnosis and therapy.
Collapse
Affiliation(s)
- Zhangding Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Chen Chen
- Medical School of Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Xiaoya Zhao
- Medical School of Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Honggang Wang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, People's Republic of China
| | - Lei Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Yao Fu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Guang Huang
- Center for Global Health, Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Mengmeng Li
- Medical School of Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Jiawen Xu
- Medical School of Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Qianyi Zhang
- Medical School of Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Bo Wang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
- Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
12
|
Li H, Lin J, Cheng S, Chi J, Luo J, Tang Y, Zhao W, Shu Y, Liu X, Xu C. Comprehensive analysis of differences in N6-methyladenosine RNA methylomes in Helicobacter pylori infection. Front Cell Dev Biol 2023; 11:1136096. [PMID: 37363723 PMCID: PMC10289286 DOI: 10.3389/fcell.2023.1136096] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/13/2023] [Indexed: 06/28/2023] Open
Abstract
Background: Helicobacter pylori (H.pylori) infection is an important factor in the occurrence of human gastric diseases, but its pathogenic mechanism is not clear. N6-methyladenosine (m6A) is the most prevalent reversible methylation modification in mammalian RNA and it plays a crucial role in controlling many biological processes. However, there are no studies reported that whether H. pylori infection impacts the m6A methylation of stomach. In this study, we measured the overall level changes of m6A methylation of RNA under H. pylori infection through in vitro and in vivo experiment. Methods: The total quantity of m6A was quantified in gastric tissues of clinical patients and C57 mice with H. pylori infection, as well as acute infection model [H. pylori and GES-1 cells were cocultured for 48 h at a multiplicity of infection (MOI) from of 10:1 to 50:1]. Furthermore, we performed m6A methylation sequencing and RNA-sequencing on the cell model and RNA-sequencing on animal model. Results: Quantitative detection of RNA methylation showed that H. pylori infection group had higher m6A modification level. M6A methylation sequencing identified 2,107 significantly changed m6A methylation peaks, including 1,565 upregulated peaks and 542 downregulated peaks. A total of 2,487 mRNA was upregulated and 1,029 mRNA was downregulated. According to the comprehensive analysis of MeRIP-seq and RNA-seq, we identified 200 hypermethylation and upregulation, 129 hypermethylation but downregulation, 19 hypomethylation and downregulation and 106 hypomethylation but upregulation genes. The GO and KEGG pathway analysis of these differential methylation and regulatory genes revealed a wide range of biological functions. Moreover, combining with mice RNA-seq results, qRT- PCR showed that m6A regulators, METTL3, WTAP, FTO and ALKBH5, has significant difference; Two key genes, PTPN14 and ADAMTS1, had significant difference by qRT- PCR. Conclusion: These findings provide a basis for further investigation of the role of m6A methylation modification in H. pylori-associated gastritis.
Collapse
Affiliation(s)
- Huan Li
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiahui Lin
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Sha Cheng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jingshu Chi
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ju Luo
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu Tang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenfang Zhao
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yufeng Shu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoming Liu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Central South University, Changsha, Hunan, China
| | - Canxia Xu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Choi EL, Taheri N, Chandra A, Hayashi Y. Cellular Senescence, Inflammation, and Cancer in the Gastrointestinal Tract. Int J Mol Sci 2023; 24:9810. [PMID: 37372958 PMCID: PMC10298598 DOI: 10.3390/ijms24129810] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Due to modern medical advancements, greater proportions of the population will continue to age with longer life spans. Increased life span, however, does not always correlate with improved health span, and may result in an increase in aging-related diseases and disorders. These diseases are often attributed to cellular senescence, in which cells become disengaged from the cell cycle and inert to cell death. These cells are characterized by a proinflammatory secretome. The proinflammatory senescence-associated secretory phenotype, although part of a natural function intended to prevent further DNA damage, creates a microenvironment suited to tumor progression. This microenvironment is most evident in the gastrointestinal tract (GI), where a combination of bacterial infections, senescent cells, and inflammatory proteins can lead to oncogenesis. Thus, it is important to find potential senescence biomarkers as targets of novel therapies for GI diseases and disorders including cancers. However, finding therapeutic targets in the GI microenvironment to reduce the risk of GI tumor onset may also be of value. This review summarizes the effects of cellular senescence on GI aging, inflammation, and cancers, and aims to improve our understanding of these processes with a goal of enhancing future therapy.
Collapse
Affiliation(s)
- Egan L. Choi
- Graduate Research Education Program (Choi), Mayo Clinic, Rochester, MN 55905, USA;
| | - Negar Taheri
- Department of Physiology and Biomedical Engineering (Taheri, Chandra and Hayashi), Mayo Clinic, Rochester, MN 55905, USA; (N.T.); (A.C.)
- Division of Gastroenterology and Hepatology (Taheri and Hayashi), Mayo Clinic, Rochester, MN 55905, USA
| | - Abhishek Chandra
- Department of Physiology and Biomedical Engineering (Taheri, Chandra and Hayashi), Mayo Clinic, Rochester, MN 55905, USA; (N.T.); (A.C.)
- Robert and Arlene Kogod Center on Aging (Chandra), Mayo Clinic, Rochester, MN 55905, USA
| | - Yujiro Hayashi
- Department of Physiology and Biomedical Engineering (Taheri, Chandra and Hayashi), Mayo Clinic, Rochester, MN 55905, USA; (N.T.); (A.C.)
- Division of Gastroenterology and Hepatology (Taheri and Hayashi), Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Lim MCC, Jantaree P, Naumann M. The conundrum of Helicobacter pylori-associated apoptosis in gastric cancer. Trends Cancer 2023:S2405-8033(23)00080-8. [PMID: 37230895 DOI: 10.1016/j.trecan.2023.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Helicobacter pylori is a human microbial pathogen that colonizes the gastric epithelium and causes type B gastritis with varying degrees of active inflammatory infiltrates. The underlying chronic inflammation induced by H. pylori and other environmental factors may promote the development of neoplasms and adenocarcinoma of the stomach. Dysregulation of various cellular processes in the gastric epithelium and in different cells of the microenvironment is a hallmark of H. pylori infection. We address the conundrum of H. pylori-associated apoptosis and review distinct mechanisms induced in host cells that either promote or suppress apoptosis in gastric epithelial cells, often simultaneously. We highlight key processes in the microenvironment that contribute to apoptosis and gastric carcinogenesis.
Collapse
Affiliation(s)
- Michelle C C Lim
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Phatcharida Jantaree
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
15
|
Park WJ, Kim MJ. A New Wave of Targeting 'Undruggable' Wnt Signaling for Cancer Therapy: Challenges and Opportunities. Cells 2023; 12:cells12081110. [PMID: 37190019 DOI: 10.3390/cells12081110] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Aberrant Wnt signaling activation is frequently observed in many cancers. The mutation acquisition of Wnt signaling leads to tumorigenesis, whereas the inhibition of Wnt signaling robustly suppresses tumor development in various in vivo models. Based on the excellent preclinical effect of targeting Wnt signaling, over the past 40 years, numerous Wnt-targeted therapies have been investigated for cancer treatment. However, Wnt signaling-targeting drugs are still not clinically available. A major obstacle to Wnt targeting is the concomitant side effects during treatment due to the pleiotropic role of Wnt signaling in development, tissue homeostasis, and stem cells. Additionally, the complexity of the Wnt signaling cascades across different cancer contexts hinders the development of optimized targeted therapies. Although the therapeutic targeting of Wnt signaling remains challenging, alternative strategies have been continuously developed alongside technological advances. In this review, we give an overview of current Wnt targeting strategies and discuss recent promising trials that have the potential to be clinically realized based on their mechanism of action. Furthermore, we highlight new waves of Wnt targeting that combine recently developed technologies such as PROTAC/molecular glue, antibody-drug conjugates (ADC), and anti-sense oligonucleotides (ASO), which may provide us with new opportunities to target 'undruggable' Wnt signaling.
Collapse
Affiliation(s)
- Woo-Jung Park
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea
| | - Moon Jong Kim
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| |
Collapse
|
16
|
Wang Y, Di G, Zhang K, Bai Y, Cao X, Zhao H, Wang D, Chen P. Loss of aquaporin 5 contributes to the corneal epithelial pathogenesis via Wnt/β-catenin pathway. FASEB J 2023; 37:e22776. [PMID: 36688817 DOI: 10.1096/fj.202201503r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/08/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023]
Abstract
AQP5 plays a crucial role in maintaining corneal transparency and the barrier function of the cornea. Here, we found that in the corneas of Aqp5-/- mice at older than 6 months, loss of AQP5 significantly increased corneal neovascularization, inflammatory cell infiltration, and corneal haze. The results of immunofluorescence staining showed that upregulation of K1, K10, and K14, and downregulation of K12 and Pax6 were detected in Aqp5-/- cornea and primary corneal epithelial cells. Loss of AQP5 aggravated wound-induced corneal neovascularization, inflammation, and haze. mRNA sequencing, western blotting, and qRT-PCR showed that Wnt2 and Wnt6 were significantly decreased in Aqp5-/- corneas and primary corneal epithelial cells, accompanied by decreased aggregation in the cytoplasm and nucleus of β-catenin. IIIC3 significantly suppressed corneal neovascularization, inflammation, haze, and maintained corneal transparent epithelial in Aqp5-/- corneas. We also found that pre-stimulated Aqp5-/- primary corneal epithelial cells with IIIC3 caused the decreased expression of K1, K10, and K14, the increased expression of K12, Pax6, and increased aggregation in the cytoplasm and nucleus of β-catenin. These findings revealed that AQP5 may regulate corneal epithelial homeostasis and function through the Wnt/β-catenin signaling pathway. Together, we uncovered a possible role of AQP5 in determining corneal epithelial cell fate and providing a potential therapeutic target for corneal epithelial dysfunction.
Collapse
Affiliation(s)
- Yihui Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guohu Di
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kaier Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ying Bai
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xin Cao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hui Zhao
- The 971 Hospital of the Chinese People's Liberation Army Navy, Qingdao, China
| | - Dianqiang Wang
- Department of Ophthalmology, Qingdao Aier Eye Hospital, Qingdao, China
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
17
|
D’Agostino C, Parisis D, Chivasso C, Hajiabbas M, Soyfoo MS, Delporte C. Aquaporin-5 Dynamic Regulation. Int J Mol Sci 2023; 24:ijms24031889. [PMID: 36768212 PMCID: PMC9915196 DOI: 10.3390/ijms24031889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
Aquaporin-5 (AQP5), belonging to the aquaporins (AQPs) family of transmembrane water channels, facilitates osmotically driven water flux across biological membranes and the movement of hydrogen peroxide and CO2. Various mechanisms have been shown to dynamically regulate AQP5 expression, trafficking, and function. Besides fulfilling its primary water permeability function, AQP5 has been shown to regulate downstream effectors playing roles in various cellular processes. This review provides a comprehensive overview of the current knowledge of the upstream and downstream effectors of AQP5 to gain an in-depth understanding of the physiological and pathophysiological processes involving AQP5.
Collapse
Affiliation(s)
- Claudia D’Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Dorian Parisis
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Rheumatology Department, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Maryam Hajiabbas
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Muhammad Shahnawaz Soyfoo
- Rheumatology Department, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Correspondence:
| |
Collapse
|
18
|
Mechanisms of Banxia Xiexin Decoction Underlying Chronic Atrophic Gastritis via Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulations. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4237040. [PMID: 36158124 PMCID: PMC9499768 DOI: 10.1155/2022/4237040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
Chronic atrophic gastritis (CAG) is a common chronically digestive disease which is notoriously characterized by atrophy of the epithelium and glands of the gastric mucosa, reduced number, thinning of the gastric mucosa, thickening of the mucosal base, or pyloric glandular hyperplasia and intestinal glandular hyperplasia, or with atypical hyperplasia. Banxia Xiexin decoction (BXD) has been applied for two thousand years and is considered an effective therapy for functional dyspepsia, gastroesophageal reflux disease and colon cancer. In this current study, to probe into the underlying mechanism of BXD on CAG, network pharmacology was conducted to collect druggable ingredients and predicted targets of BXD and the CAG-associated targets were harvested to take intersection with druggable ingredients from BXD predicted targets to obtain potential critical action targets. Subsequently, GO enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were conducted to elucidate the underlying mechanisms and roles from the perspective of overall pathways and cellular functions. Eventually, molecular docking integrated with molecular dynamics simulations was conducted to further investigate the mechanism of action of BXD active ingredients on CAG from drug molecule-target interactions and to provide a theoretical basis for BXD drug development.
Collapse
|