1
|
Kowalski S, Wityk P, Raczak-Gutknecht J, Olszewska A, Żmijewski M, Kocić I. The imidazoline I 2 receptor agonist 2-BFI enhances cytotoxic activity of hydroxychloroquine by modulating oxidative stress, energy-related metabolism and autophagic influx in human colorectal adenocarcinoma cell lines. Eur J Pharmacol 2025; 996:177590. [PMID: 40185322 DOI: 10.1016/j.ejphar.2025.177590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Recently, interest in imidazoline receptors (IRs) has been increasing. Over the years, a growing number of studies have highlighted the therapeutic potential of ligands targeting these receptors, however, the potential role of imidazoline I2 receptor agonists in cancer treatment has not been thoroughly investigated. Colorectal cancer (CRC) is among the most prevalent and lethal forms of cancer worldwide. The complexity of CRC necessitates individualized approaches. One promising area of research within CRC therapy is the regulation of autophagy. Recent studies have explored the relationship between autophagy and cancer progression, revealing that autophagy modulation could be a potential strategy for CRC treatment. However, the mechanisms underlying autophagy regulation remain poorly understood. This study aimed to evaluate the effect of the imidazoline I2 receptor agonist, namely 2-(2-benzofuranyl)-2-imidazoline hydrochloride (2-BFI), on colorectal cancer cells, HT-29 and HCT-116 cell lines, particularly its impact when co-incubated with the autophagy inhibitor, hydroxychloroquine (HCQ). The results showed that 2-BFI synergistically increased the cytotoxic effect of HCQ by inducing oxidative stress and apoptosis. Furthermore, our investigation indicated impairment autophagic influx in colon cancer cells treated by 2-BFI. The comprehensive metabolomic analysis revealed significant alterations in key metabolic pathways including MAO activity, oxidative stress responses, energy-related metabolites and amino acids metabolism. Altogether, these findings demonstrate potential a new therapeutic strategy based on autophagy regulation and the selective induction of oxidative stress in colorectal cancer cells. Moreover, this study provides a foundation for further investigation into the therapeutic potential of imidazoline receptor agonists in cancer therapy.
Collapse
Affiliation(s)
- Szymon Kowalski
- Department of Pharmacology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland.
| | - Paweł Wityk
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland; Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdańsk, Gdansk, Poland; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joanna Raczak-Gutknecht
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdańsk, Gdansk, Poland
| | - Anna Olszewska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Żmijewski
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Ivan Kocić
- Department of Pharmacology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
2
|
Siangcham T, Vivithanaporn P, Jantakee K, Ruangtong J, Thongsepee N, Martviset P, Chantree P, Sornchuer P, Sangpairoj K. Impact of Benzo(a)pyrene and Pyrene Exposure on Activating Autophagy and Correlation with Endoplasmic Reticulum Stress in Human Astrocytes. Int J Mol Sci 2025; 26:1748. [PMID: 40004212 PMCID: PMC11855727 DOI: 10.3390/ijms26041748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Benzo(a)pyrene (B(a)P) and pyrene, the most prominent subtypes of polycyclic aromatic hydrocarbons (PAHs), contaminate environments as organic pollutants. They adversely affect body systems, including degeneration of the central nervous system. This study investigated the in vitro toxic effects of B(a)P and pyrene on proliferation, endoplasmic reticulum (ER) stress induction, and autophagy in human astrocytes using U-87 MG human astrocytoma cells as a model. Both B(a)P and pyrene were toxic to U-87 MG cells in a concentration-dependent manner. Astrocytic proliferation was interfered with, enhancing S-phase cell cycle arrest. B(a)P promoted the presence of autophagic vesicles and the expression of autophagic markers LC3, beclin-1, and p62, suggesting activated autophagy. B(a)P enhanced the expression of ER stress markers BiP, PERK, and IRE1. ER stress appeared to be correlated with autophagy induction, as demonstrated by experiments using chloroquine, an autophagy inhibitor. Pyrene enhanced the expression of autophagic markers and ER stress primarily via PERK activation, although autophagic vesicles were not observed. The study demonstrates that B(a)P enhances ER stress-mediated autophagy more evidently than pyrene and affected toxicity to astrocytes. These results provide a basis for understanding the toxic effects of the main PAH substances affecting astrocytes.
Collapse
Affiliation(s)
- Tanapan Siangcham
- Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand;
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand;
| | - Kanyaluck Jantakee
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (K.J.); (J.R.); (N.T.); (P.M.); (P.C.); (P.S.)
| | - Jittiporn Ruangtong
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (K.J.); (J.R.); (N.T.); (P.M.); (P.C.); (P.S.)
| | - Nattaya Thongsepee
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (K.J.); (J.R.); (N.T.); (P.M.); (P.C.); (P.S.)
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pongsakorn Martviset
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (K.J.); (J.R.); (N.T.); (P.M.); (P.C.); (P.S.)
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pathanin Chantree
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (K.J.); (J.R.); (N.T.); (P.M.); (P.C.); (P.S.)
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Phornphan Sornchuer
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (K.J.); (J.R.); (N.T.); (P.M.); (P.C.); (P.S.)
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Kant Sangpairoj
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (K.J.); (J.R.); (N.T.); (P.M.); (P.C.); (P.S.)
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
3
|
Bisoi A, Majumdar T, Sarkar S, Singh PC. Flanking Effect on the Folding of Telomeric DNA Sequences into G-Quadruplex Induced by Antimalarial Drugs. J Phys Chem B 2025; 129:835-843. [PMID: 39807525 DOI: 10.1021/acs.jpcb.4c05133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The folding of the guanine repetitive region in the telomere unit into G-quadruplex (G4) by drugs has been suggested as an alternative approach for cancer therapy. Hydroxychloroquine (HCQ) and chloroquine (CQ) are two important drugs in the trial stage for cancer. Both drugs can induce the folding of telomere-guanine-rich sequences into G4 even in the absence of salt. However, the guanine repetitive telomeric sequences are always flanked by other nucleobases at both the terminal (5' or 3') that can affect the drug-induced folding pathways and stability of the G4 significantly. Hence, in this study, the HCQ and CQ drug-induced folding of the guanine repetitive telomeric sequences into G4 and its stability by varying the chemical nature, number, and positions of the flanking nucleobases has been explored using several biophysical techniques and docking studies. It has been found that the drug-induced folding of telomere with single flanking nucleobases is similar to that without flanking nucleobases irrespective of the chemical nature and position of the flanking nucleobase. However, the propensity of the folding and the stability of the telomeric G4 induced by drugs decrease significantly with the increase of the flanking nucleobases more than one of any chemical nature and position. The data suggest that the number of flanking nucleobases rather than their chemical nature and location is a critical factor in the folding of the telomere into G4 induced by both drugs. Further, it has been observed that both drugs mainly interact with the G-tract and thymine of the loop region rather than the flanking nucleobases of the telomeric sequences without or with one flanking nucleobase. In contrast, the flanking nucleobases also participate in the interaction with the HCQ and CQ along with the core guanine repeat telomeric unit in the case of the telomeric sequences with more than one flanking nucleobases. The participation of the flanking nucleobases in the interaction with the HCQ and CQ affects the hydrogen bonding of the positively charged side chain of drugs with G quartet and loop nucleobases of telomere along with the with π···π and C-H···π weak interactions between the quinoline part of the drugs with the core telomeric guanine repeat unit which affects the folding pattern of the telomere sequences with more than one flanking nucleobases into G4.
Collapse
Affiliation(s)
- Asim Bisoi
- School of the Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Trideep Majumdar
- School of the Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sunipa Sarkar
- School of the Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prashant Chandra Singh
- School of the Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
4
|
Orobator ON, Mertens RT, Obisesan OA, Awuah SG. Energy and endoplasmic reticulum stress induction by gold(III) dithiocarbamate and 2-deoxyglucose synergistically trigger cell death in breast cancer. J Biol Chem 2024:107949. [PMID: 39481597 DOI: 10.1016/j.jbc.2024.107949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
The elusiveness of triple-negative breast cancer from targeted therapy has redirected focus towards exploiting the metabolic shortcomings of these highly metastatic subtypes of breast cancer. Cueing from the metabolic heterogeneity of TNBC and the exposition of the dual dependence of some TNBCs on OXPHOS and glycolysis for ATP, we herein report the efficacy of cotreatment of TNBCs with an OXPHOS inhibitor, 2a and 2DG, a potent glycolysis inhibitor. 2a-2DG cotreatment inhibited TNBC cell proliferation with IC50 of ∼5 to 36 times lower than that of 2a alone and over 5000 times lower than IC50 of 2DG alone. 2a-2DG cotreatment suppressed mitochondrial ATP production and significantly induced AMPK activation. Mechanistic studies revealed the distinct yet synergistic contributions of 2a and 2DG to the antiproliferative effect of the cotreatment. While 2a induced apoptotic cell death, 2DG sensitized TNBCs to the antiproliferative effects of 2a via endoplasmic reticulum stress induction. Strikingly, the combination of 2a-2DG ablated SUM159 tumors in an orthotopic xenograft mouse model. This study highlights the synergistic effect of a gold-based complex with 2DG and the potential benefit of multi-metabolic pathways targeting as an effective therapeutic strategy against TNBCs.
Collapse
Affiliation(s)
- Owamagbe N Orobator
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - R Tyler Mertens
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Oluwatosin A Obisesan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States; Center for Pharmaceutical Research and Innovation, Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA; Center for Bioelectronics and Nanomedicine, University of Kentucky, Lexington KY, 40506, USA.
| |
Collapse
|
5
|
Luo P, An Y, He J, Xing X, Zhang Q, Liu X, Chen Y, Yuan H, Chen J, Wong YK, Huang J, Gong Z, Du Q, Xiao W, Wang J. Icaritin with autophagy/mitophagy inhibitors synergistically enhances anticancer efficacy and apoptotic effects through PINK1/Parkin-mediated mitophagy in hepatocellular carcinoma. Cancer Lett 2024; 587:216621. [PMID: 38242198 DOI: 10.1016/j.canlet.2024.216621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Hepatocellular carcinoma (HCC) is among the deadliest malignancies worldwide and still a pressing clinical problem. Icaritin, a natural compound obtained from the Epimedium genus plant, has garnered significant attention as a potential therapeutic drug for HCC therapies. Mitophagy plays a crucial role in mitochondrial quality control through efficiently eliminating damaged mitochondria. However, the specific mechanisms of the interplay between mitophagy and apoptosis in HCC is still unclear. We aimed to explore the cross-talk between icaritin-induced mitophagy and apoptosis in HCC cells and investigate its potential mechanisms. Firstly, we confirmed that icaritin inhibits proliferation and migration while inducing mitochondrial damage and reactive oxygen species (ROS) production in HCC cells. Secondly, based on proteomics analysis, we discovered that icaritin inhibits the growth of tumor cells and disrupts their mitochondrial homeostasis through the regulation of both mitophagy and apoptosis. Thirdly, icaritin causes mitophagy mediated by PINK1-Parkin signaling via regulating feedforward loop. Furthermore, knockdown of PINK1/Parkin leads to inhibition of mitophagy, which promotes cell death induced by icaritin in HCC cells. Finally, autophagy/mitophagy inhibitors remarkably enhance icaritin-induced cell death and anticancer efficacy. Collectively, our findings reveal that icaritin suppresses growth, proliferation and migration of HCC cell through induction of mitophagy and apoptosis, while inhibition of mitophagy significantly increased the anti-cancer and pro-apoptotic effects of icaritin, indicating that targeting autophagy or mitophagy is a novel approach to overcome drug resistance and enhance anticancer therapies.
Collapse
Affiliation(s)
- Piao Luo
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yehai An
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, China
| | - Jingqian He
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xuefeng Xing
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qian Zhang
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xueying Liu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China
| | - Yu Chen
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Haitao Yuan
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China
| | - Junhui Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China
| | - Yin-Kwan Wong
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China
| | - Jingnan Huang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, China.
| | - Qingfeng Du
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Wei Xiao
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jigang Wang
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China; State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China; Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
6
|
Liang X, Tang S, Song Y, Li D, Zhang L, Wang S, Duan Y, Du H. Effect of 2-deoxyglucose-mediated inhibition of glycolysis on migration and invasion of HTR-8/SVneo trophoblast cells. J Reprod Immunol 2023; 159:104123. [PMID: 37487312 DOI: 10.1016/j.jri.2023.104123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
The proper invasion of trophoblasts is crucial for embryo implantation and placental development, which is helpful to establish a correct maternal-fetal relationship. Trophoblasts can produce a large amount of lactate through aerobic glycolysis during early pregnancy. Lactate creates a low pH microenvironment around the embryo to help uterine tissue decompose and promote the invasion of trophoblasts. The purpose of this study is to reveal the the potential mechanism of aerobic glycolysis regulating the invasiveness of trophoblasts by investigating the effect of 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor, on the biological function of HTR-8/SVneo trophoblast cells, the expressions of epithelial mesenchymal transformation (EMT) markers and invasion-related factors. 2-DG could inhibit the aerobic glycolysis of trophoblasts and decrease the activity of trophoblasts in a dose-dependent manner. Moreover, 2-DG inhibited the EMT of HTR-8/SVneo cells, down-regulated the expression of invasion-related factors matrix metalloproteinase 2/9 (MMP2/9) and up-regulated the expression of tissue inhibitor of matrix metalloproteinases 1/2 (TIMP1/2), thus inhibiting cell migration and invasion. This paper provides a foundation in the significance of aerobic glycolysis of trophoblasts in the process of invasion, and also provides ideas and insights for the promotion of embryo implantation.
Collapse
Affiliation(s)
- Xiao Liang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Siling Tang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yajing Song
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li Zhang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shuhui Wang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yancang Duan
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China; Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive Disease, Shijiazhuang, China; Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, Shijiazhuang, China
| | - Huilan Du
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China; Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive Disease, Shijiazhuang, China; Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, Shijiazhuang, China.
| |
Collapse
|
7
|
Miceli C, Leri M, Stefani M, Bucciantini M. Autophagy-related proteins: Potential diagnostic and prognostic biomarkers of aging-related diseases. Ageing Res Rev 2023; 89:101967. [PMID: 37270146 DOI: 10.1016/j.arr.2023.101967] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Autophagy plays a key role in cellular, tissue and organismal homeostasis and in the production of the energy load needed at critical times during development and in response to nutrient shortage. Autophagy is generally considered as a pro-survival mechanism, although its deregulation has been linked to non-apoptotic cell death. Autophagy efficiency declines with age, thus contributing to many different pathophysiological conditions, such as cancer, cardiomyopathy, diabetes, liver disease, autoimmune diseases, infections, and neurodegeneration. Accordingly, it has been proposed that the maintenance of a proper autophagic activity contributes to the extension of the lifespan in different organisms. A better understanding of the interplay between autophagy and risk of age-related pathologies is important to propose nutritional and life-style habits favouring disease prevention as well as possible clinical applications aimed at promoting long-term health.
Collapse
Affiliation(s)
- Caterina Miceli
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
8
|
Jin W, Zhang J, Chen X, Yin S, Yu H, Gao F, Yao D. Unraveling the complexity of histone-arginine methyltransferase CARM1 in cancer: From underlying mechanisms to targeted therapeutics. Biochim Biophys Acta Rev Cancer 2023; 1878:188916. [PMID: 37196782 DOI: 10.1016/j.bbcan.2023.188916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1), a type I protein arginine methyltransferase (PRMT), has been widely reported to catalyze arginine methylation of histone and non-histone substrates, which is closely associated with the occurrence and progression of cancer. Recently, accumulating studies have demonstrated the oncogenic role of CARM1 in many types of human cancers. More importantly, CARM1 has been emerging as an attractive therapeutic target for discovery of new candidate anti-tumor drugs. Therefore, in this review, we summarize the molecular structure of CARM1 and its key regulatory pathways, as well as further discuss the rapid progress in better understanding of the oncogenic functions of CARM1. Moreover, we further demonstrate several representative targeted CARM1 inhibitors, especially focusing on demonstrating their designing strategies and potential therapeutic applications. Together, these inspiring findings would shed new light on elucidating the underlying mechanisms of CARM1 and provide a clue on discovery of more potent and selective CARM1 inhibitors for the future targeted cancer therapy.
Collapse
Affiliation(s)
- Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Siwen Yin
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
9
|
Li X, Duan Z, Chen X, Pan D, Luo Q, Gu L, Xu G, Li Y, Zhang H, Gong Q, Chen R, Gu Z, Luo K. Impairing Tumor Metabolic Plasticity via a Stable Metal-Phenolic-Based Polymeric Nanomedicine to Suppress Colorectal Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300548. [PMID: 36917817 DOI: 10.1002/adma.202300548] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2023] [Indexed: 06/09/2023]
Abstract
Targeting metabolic vulnerability of tumor cells is a promising anticancer strategy. However, the therapeutic efficacy of existing metabolism-regulating agents is often compromised due to tolerance resulting from tumor metabolic plasticity, as well as their poor bioavailability and tumor-targetability. Inspired by the inhibitive effect of N-ethylmaleimide on the mitochondrial function, a dendronized-polymer-functionalized metal-phenolic nanomedicine (pOEG-b-D-SH@NP) encapsulating maleimide-modified doxorubicin (Mal-DOX) is developed to enable improvement in the overall delivery efficiency and inhibition of the tumor metabolism via multiple pathways. It is observed that Mal-DOX and its derived nanomedicine induces energy depletion of CT26 colorectal cancer cells more efficiently than doxorubicin, and shifts the balance of programmed cell death from apoptosis toward necroptosis. Notably, pOEG-b-D-SH@NP simultaneously inhibits cellular oxidative phosphorylation and glycolysis, thus potently suppressing cancer growth and peritoneal intestinal metastasis in mouse models. Overall, the study provides a promising dendronized-polymer-derived nanoplatform for the treatment of cancers through impairing metabolic plasticity.
Collapse
Affiliation(s)
- Xiaoling Li
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoting Chen
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Gu
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Xu
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Yinggang Li
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
10
|
Hashemi M, Paskeh MDA, Orouei S, Abbasi P, Khorrami R, Dehghanpour A, Esmaeili N, Ghahremanzade A, Zandieh MA, Peymani M, Salimimoghadam S, Rashidi M, Taheriazam A, Entezari M, Hushmandi K. Towards dual function of autophagy in breast cancer: A potent regulator of tumor progression and therapy response. Biomed Pharmacother 2023; 161:114546. [PMID: 36958191 DOI: 10.1016/j.biopha.2023.114546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
As a devastating disease, breast cancer has been responsible for decrease in life expectancy of females and its morbidity and mortality are high. Breast cancer is the most common tumor in females and its treatment has been based on employment of surgical resection, chemotherapy and radiotherapy. The changes in biological behavior of breast tumor relies on genomic and epigenetic mutations and depletions as well as dysregulation of molecular mechanisms that autophagy is among them. Autophagy function can be oncogenic in increasing tumorigenesis, and when it has pro-death function, it causes reduction in viability of tumor cells. The carcinogenic function of autophagy in breast tumor is an impediment towards effective therapy of patients, as it can cause drug resistance and radio-resistance. The important hallmarks of breast tumor such as glucose metabolism, proliferation, apoptosis and metastasis can be regulated by autophagy. Oncogenic autophagy can inhibit apoptosis, while it promotes stemness of breast tumor. Moreover, autophagy demonstrates interaction with tumor microenvironment components such as macrophages and its level can be regulated by anti-tumor compounds in breast tumor therapy. The reasons of considering autophagy in breast cancer therapy is its pleiotropic function, dual role (pro-survival and pro-death) and crosstalk with important molecular mechanisms such as apoptosis. Moreover, current review provides a pre-clinical and clinical evaluation of autophagy in breast tumor.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pegah Abbasi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari 4815733971, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
11
|
Sodium New Houttuyfonate Induces Apoptosis of Breast Cancer Cells via ROS/PDK1/AKT/GSK3β Axis. Cancers (Basel) 2023; 15:cancers15051614. [PMID: 36900408 PMCID: PMC10000396 DOI: 10.3390/cancers15051614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Sodium new houttuyfonate (SNH) has been reported to have anti-inflammatory, anti-fungal, and anti-cancer effects. However, few studies have investigated the effect of SNH on breast cancer. The aim of this study was to investigate whether SNH has therapeutic potential for targeting breast cancer. METHODS Immunohistochemistry and Western blot analysis were used to examine the expression of proteins, flow cytometry was used to detect cell apoptosis and ROS levels, and transmission electron microscopy was used to observe mitochondria. RESULTS Differentially expressed genes (DEGs) between breast cancer-related gene expression profiles (GSE139038 and GSE109169) from GEO DataSets were mainly involved in the immune signaling pathway and the apoptotic signaling pathway. According to in vitro experiments, SNH significantly inhibited the proliferation, migration, and invasiveness of MCF-7 (human cells) and CMT-1211 (canine cells) and promoted apoptosis. To explore the reason for the above cellular changes, it was found that SNH induced the excessive production of ROS, resulting in mitochondrial impairment, and then promoted apoptosis by inhibiting the activation of the PDK1-AKT-GSK3β pathway. Tumor growth, as well as lung and liver metastases, were suppressed under SNH treatment in a mouse breast tumor model. CONCLUSIONS SNH significantly inhibited the proliferation and invasiveness of breast cancer cells and may have significant therapeutic potential in breast cancer.
Collapse
|
12
|
The Role of Autophagy in Breast Cancer Metastasis. Biomedicines 2023; 11:biomedicines11020618. [PMID: 36831154 PMCID: PMC9953203 DOI: 10.3390/biomedicines11020618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Patient morbidity and mortality is significantly increased in metastatic breast cancer. The metastasis process of breast cancer is very complicated and is delicately controlled by various factors. Autophagy is one of the important regulatory factors affecting metastasis in breast cancer by engaging in cell mobility, metabolic adaptation, tumor dormancy, and cancer stem cells. Here, we discuss the effects of autophagy on metastasis in breast cancer and assess the potential use of autophagy modulators for metastasis treatment.
Collapse
|
13
|
Bouchmaa N, Ben Mrid R, Bouargalne Y, Ajouaoi S, Cacciola F, El Fatimy R, Nhiri M, Zyad A. In vitro evaluation of dioscin and protodioscin against ER-positive and triple-negative breast cancer. PLoS One 2023; 18:e0272781. [PMID: 36757991 PMCID: PMC9910703 DOI: 10.1371/journal.pone.0272781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/26/2022] [Indexed: 02/10/2023] Open
Abstract
Women's breast cancer is one of the most significant healthcare issues for the human race that demands a proactive strategy for a cure. In this study, the cytotoxic activity (MTT assay) of two natural steroidal compounds, protodioscin and dioscin, against two major subtypes of human breast cancer estrogen receptor-positive (ER-positive)/MCF-7 and triple-negative breast cancer (TNBC)/MDA-MB-468), was assessed. The clonogenic capacity was evaluated using the clonogenic assay. Oxidative stress was determined by measuring the formation of malondialdehyde and H2O2 and the assessment of total antioxidant enzyme activities (SOD, GPx, GR, and TrxR). Protodioscin and dioscin were highly cytotoxic against the tested cell lines (1.53 μM <IC50< 6 μM) with low cytotoxicity on normal cells (PBMC; IC50 ≥ 50 μM). Interestingly, these compounds were responsible for a substantial decrease in the clonogenic capacity of both cell lines. Moreover, dioscin was able to reduce the cell motility of the invasive breast cancer cells (MDA-MB-468). At the molecular level, the two treatments resulted in an increase of reactive oxygen species. Notably, both compounds were responsible for decreasing the enzymatic activities of glutathione reductase and thioredoxin reductase. On the basis of such considerations, protodioscin and dioscin may serve as promising natural compounds to treat TNBC and ER-positive breast cancer through the induction of oxidative stress.
Collapse
Affiliation(s)
- Najat Bouchmaa
- Faculty of Science and Technology, Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immuno-Pharmacology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
- Institute of Medical and Biological Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
- * E-mail: (NB); (AZ)
| | - Reda Ben Mrid
- Institute of Medical and Biological Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
- Faculty of Science and Technology, Laboratory of Biochemistry and Molecular Genetics, Abdelmalek Essaadi University, Tangier, Morocco
| | - Youssef Bouargalne
- Faculty of Science and Technology, Laboratory of Biochemistry and Molecular Genetics, Abdelmalek Essaadi University, Tangier, Morocco
| | - Sana Ajouaoi
- Faculty of Science and Technology, Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immuno-Pharmacology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Rachid El Fatimy
- Institute of Medical and Biological Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
| | - Mohamed Nhiri
- Faculty of Science and Technology, Laboratory of Biochemistry and Molecular Genetics, Abdelmalek Essaadi University, Tangier, Morocco
| | - Abdelmajid Zyad
- Faculty of Science and Technology, Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immuno-Pharmacology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
- * E-mail: (NB); (AZ)
| |
Collapse
|
14
|
Chelakkot C, Chelakkot VS, Shin Y, Song K. Modulating Glycolysis to Improve Cancer Therapy. Int J Mol Sci 2023; 24:2606. [PMID: 36768924 PMCID: PMC9916680 DOI: 10.3390/ijms24032606] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer cells undergo metabolic reprogramming and switch to a 'glycolysis-dominant' metabolic profile to promote their survival and meet their requirements for energy and macromolecules. This phenomenon, also known as the 'Warburg effect,' provides a survival advantage to the cancer cells and make the tumor environment more pro-cancerous. Additionally, the increased glycolytic dependence also promotes chemo/radio resistance. A similar switch to a glycolytic metabolic profile is also shown by the immune cells in the tumor microenvironment, inducing a competition between the cancer cells and the tumor-infiltrating cells over nutrients. Several recent studies have shown that targeting the enhanced glycolysis in cancer cells is a promising strategy to make them more susceptible to treatment with other conventional treatment modalities, including chemotherapy, radiotherapy, hormonal therapy, immunotherapy, and photodynamic therapy. Although several targeting strategies have been developed and several of them are in different stages of pre-clinical and clinical evaluation, there is still a lack of effective strategies to specifically target cancer cell glycolysis to improve treatment efficacy. Herein, we have reviewed our current understanding of the role of metabolic reprogramming in cancer cells and how targeting this phenomenon could be a potential strategy to improve the efficacy of conventional cancer therapy.
Collapse
Affiliation(s)
| | - Vipin Shankar Chelakkot
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youngkee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Song
- College of Pharmacy, Duksung Women’s University, Seoul 01366, Republic of Korea
| |
Collapse
|
15
|
Dey S, Murmu N, Mondal T, Saha I, Chatterjee S, Manna R, Haldar S, Dash SK, Sarkar TR, Giri B. Multifaceted entrancing role of glucose and its analogue, 2-deoxy-D-glucose in cancer cell proliferation, inflammation, and virus infection. Biomed Pharmacother 2022; 156:113801. [DOI: 10.1016/j.biopha.2022.113801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
|