1
|
Shakerian N, Tafazoli A, Razavinia A, Sadrzadeh Aghajani Z, Bana N, Mard-Soltani M, Khalesi B, Hashemi ZS, Khalili S. Current Understanding of Therapeutic and Diagnostic Applications of Exosomes in Pancreatic Cancer. Pancreas 2025; 54:e255-e267. [PMID: 39661050 DOI: 10.1097/mpa.0000000000002414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
ABSTRACT Unusual symptoms, rapid progression, lack of reliable early diagnostic biomarkers, and lack of efficient treatment choices are the ongoing challenges of pancreatic cancer. Numerous research studies have demonstrated the correlation between exosomes and various aspects of pancreatic cancer. In light of these facts, exosomes possess the potential to play functional roles in the treatment, prognosis, and diagnosis of the pancreatic cancer. In the present study, we reviewed the most recent developments in approaches for exosome separation, modification, monitoring, and communication. Moreover, we discussed the clinical uses of exosomes as less invasive liquid biopsies and drug carriers and their contribution to the control of angiogenic activity of pancreatic cancer. Better investigation of exosome biology would help to effectively engineer therapeutic exosomes with certain nucleic acids, proteins, and even exogenous drugs as their cargo. Circulating exosomes have shown promise as reliable candidates for pancreatic cancer early diagnosis and monitoring in high-risk people without clinical cancer manifestation. Although we have tried to reflect the status of exosome applications in the treatment and detection of pancreatic cancer, it is evident that further studies and clinical trials are required before exosomes may be employed as a routine therapeutic and diagnostic tools for pancreatic cancer.
Collapse
Affiliation(s)
- Neda Shakerian
- From the Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful
| | - Aida Tafazoli
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz
| | - Amir Razavinia
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, IR
| | | | - Nikoo Bana
- Kish International Campus, University of Teheran
| | - Maysam Mard-Soltani
- From the Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
2
|
Perkins CM, Mao Y, Jiang J, Wilkie DJ, Han B, Chen QY, Luesch H, Ali J, Schmittgen TD. Small molecular weight epigenetic inhibitors modulate the extracellular matrix during pancreatic acinar ductal metaplasia. Biochem Biophys Res Commun 2024; 736:150496. [PMID: 39128264 PMCID: PMC12037226 DOI: 10.1016/j.bbrc.2024.150496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
The pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment is distinguished by a high degree of fibrosis and inflammation, known as desmoplasia. Desmoplasia increases the stromal deposition and extracellular matrix (ECM) stiffness observed in the tumor microenvironment, contributing to the dampened penetration of pharmacological agents. The molecular and biophysical composition of the ECM during the earliest cellular changes in the development of PDAC, i.e. acinar ductal metaplasia (ADM), has not been extensively explored. We report that the mRNA expression of key protein components of the ECM increases during ADM in p48Cre/+;LSL-KrasG12D (KC) mouse acinar organoids cultured in Matrigel. Treatment of the organoids with small molecular weight epigenetic modulating compounds that inhibit or reverse ADM (largazole, FK228 and chaetocin) dramatically reduced the tissue mRNA expression of collagens, hyaluronan synthase, laminin and fibronectin. The storage moduli, determined by video tracking of fluorescent nanoparticles embedded into the Matrigel, increased during ADM and was reduced following treatment with the epigenetic modulating compounds. We report that the ECM of mouse organoids stiffens during ADM and is further enhanced by the presence of mutant Kras. Moreover, select HDAC and HMT inhibitors reduced the mRNA expression of ECM components and ECM stiffness during inhibition and reversal of ADM, suggesting that these compounds may be useful as adjuvants to enhance the tumor penetration of agents used to treat PDAC.
Collapse
Affiliation(s)
- Corey M Perkins
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Florida-California Cancer Research Education and Engagement (CaRE (2)) Health Equity Center, USA
| | - Yating Mao
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA; National High Magnetic Field Laboratory, Tallahassee, FL, USA; Florida-California Cancer Research Education and Engagement (CaRE (2)) Health Equity Center, USA
| | - Jinmai Jiang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Florida-California Cancer Research Education and Engagement (CaRE (2)) Health Equity Center, USA
| | - Diana J Wilkie
- Department of Behavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL, USA; Florida-California Cancer Research Education and Engagement (CaRE (2)) Health Equity Center, USA
| | - Bo Han
- Department of Surgery, University of Southern California, Los Angeles, CA, USA; Florida-California Cancer Research Education and Engagement (CaRE (2)) Health Equity Center, USA
| | - Qi-Yin Chen
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA; National High Magnetic Field Laboratory, Tallahassee, FL, USA; Florida-California Cancer Research Education and Engagement (CaRE (2)) Health Equity Center, USA.
| | - Thomas D Schmittgen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Florida-California Cancer Research Education and Engagement (CaRE (2)) Health Equity Center, USA.
| |
Collapse
|
3
|
Tang Q, Ratnayake R, Seabra G, Jiang Z, Fang R, Cui L, Ding Y, Kahveci T, Bian J, Li C, Luesch H, Li Y. Morphological profiling for drug discovery in the era of deep learning. Brief Bioinform 2024; 25:bbae284. [PMID: 38886164 PMCID: PMC11182685 DOI: 10.1093/bib/bbae284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Morphological profiling is a valuable tool in phenotypic drug discovery. The advent of high-throughput automated imaging has enabled the capturing of a wide range of morphological features of cells or organisms in response to perturbations at the single-cell resolution. Concurrently, significant advances in machine learning and deep learning, especially in computer vision, have led to substantial improvements in analyzing large-scale high-content images at high throughput. These efforts have facilitated understanding of compound mechanism of action, drug repurposing, characterization of cell morphodynamics under perturbation, and ultimately contributing to the development of novel therapeutics. In this review, we provide a comprehensive overview of the recent advances in the field of morphological profiling. We summarize the image profiling analysis workflow, survey a broad spectrum of analysis strategies encompassing feature engineering- and deep learning-based approaches, and introduce publicly available benchmark datasets. We place a particular emphasis on the application of deep learning in this pipeline, covering cell segmentation, image representation learning, and multimodal learning. Additionally, we illuminate the application of morphological profiling in phenotypic drug discovery and highlight potential challenges and opportunities in this field.
Collapse
Affiliation(s)
- Qiaosi Tang
- Calico Life Sciences, South San Francisco, CA 94080, United States
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610, United States
| | - Gustavo Seabra
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610, United States
| | - Zhe Jiang
- Department of Computer & Information Science & Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Ruogu Fang
- Department of Computer & Information Science & Engineering, University of Florida, Gainesville, FL 32611, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Lina Cui
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610, United States
| | - Tamer Kahveci
- Department of Computer & Information Science & Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610, United States
| | - Yanjun Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610, United States
- Department of Computer & Information Science & Engineering, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
4
|
Parte S, Kaur AB, Nimmakayala RK, Ogunleye AO, Chirravuri R, Vengoji R, Leon F, Nallasamy P, Rauth S, Alsafwani ZW, Lele S, Cox JL, Bhat I, Singh S, Batra SK, Ponnusamy MP. Cancer-Associated Fibroblast Induces Acinar-to-Ductal Cell Transdifferentiation and Pancreatic Cancer Initiation Via LAMA5/ITGA4 Axis. Gastroenterology 2024; 166:842-858.e5. [PMID: 38154529 PMCID: PMC11694316 DOI: 10.1053/j.gastro.2023.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is characterized by desmoplastic stroma surrounding most tumors. Activated stromal fibroblasts, namely cancer-associated fibroblasts (CAFs), play a major role in PDAC progression. We analyzed whether CAFs influence acinar cells and impact PDAC initiation, that is, acinar-to-ductal metaplasia (ADM). ADM connection with PDAC pathophysiology is indicated, but not yet established. We hypothesized that CAF secretome might play a significant role in ADM in PDAC initiation. METHODS Mouse and human acinar cell organoids, acinar cells cocultured with CAFs and exposed to CAF-conditioned media, acinar cell explants, and CAF cocultures were examined by means of quantitative reverse transcription polymerase chain reaction, RNA sequencing, immunoblotting, and confocal microscopy. Data from liquid chromatography with tandem mass spectrometry analysis of CAF-conditioned medium and RNA sequencing data of acinar cells post-conditioned medium exposure were integrated using bioinformatics tools to identify the molecular mechanism for CAF-induced ADM. Using confocal microscopy, immunoblotting, and quantitative reverse transcription polymerase chain reaction analysis, we validated the depletion of a key signaling axis in the cell line, acinar explant coculture, and mouse cancer-associated fibroblasts (mCAFs). RESULTS A close association of acino-ductal markers (Ulex europaeus agglutinin 1, amylase, cytokeratin-19) and mCAFs (α-smooth muscle actin) in LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1Cre (KPC) and LSL-KrasG12D/+; Pdx1Cre (KC) autochthonous progression tumor tissue was observed. Caerulein treatment-induced mCAFs increased cytokeratin-19 and decreased amylase in wild-type and KC pancreas. Likewise, acinar-mCAF cocultures revealed the induction of ductal transdifferentiation in cell line, acinar-organoid, and explant coculture formats in WT and KC mice pancreas. Proteomic and transcriptomic data integration revealed a novel laminin α5/integrinα4/stat3 axis responsible for CAF-mediated acinar-to-ductal cell transdifferentiation. CONCLUSIONS Results collectively suggest the first evidence for CAF-influenced acino-ductal phenotypic switchover, thus highlighting the tumor microenvironment role in pancreatic carcinogenesis inception.
Collapse
Affiliation(s)
- Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Annant B Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Ayoola O Ogunleye
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Ramakanth Chirravuri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Frank Leon
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Zahraa Wajih Alsafwani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Subodh Lele
- Department of Pathology and Microbiology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Ishfaq Bhat
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Nebraska Medical Center at Omaha, Omaha, Nebraksa
| | - Shailender Singh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Nebraska Medical Center at Omaha, Omaha, Nebraksa
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, Nebraska.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, Nebraska.
| |
Collapse
|
5
|
Wang TG, Tian L, Zhang XL, Zhang L, Zhao XL, Kong DS. Gradient inflammation in the pancreatic stump after pancreaticoduodenectomy: Two case reports and review of literature. World J Clin Cases 2024; 12:1649-1659. [PMID: 38576729 PMCID: PMC10989426 DOI: 10.12998/wjcc.v12.i9.1649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/26/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Postoperative pancreatic fistula (POPF) contributes significantly to morbidity and mortality after pancreaticoduodenectomy (PD). However, the underlying mechanisms remain unclear. This study explored this pathology in the pancreatic stumps and elucidated the mechanisms of POPF following PD. CASE SUMMARY Pathological analysis and 16S rRNA gene sequencing were performed on specimens obtained from two patients who underwent complete pancreatectomy for grade C POPF after PD. Gradient inflammation is present in the pancreatic stump. The apoptosis was lower than that in the normal pancreas. Moreover, neutrophil-dominated inflammatory cells are concentrated in the ductal system. Notably, neutrophils migrated through the ductal wall in acinar duct metaplasia-formed ducts. Additionally, evidence indicates that gut microbes migrate from the digestive tract. Gradient inflammation occurs in pancreatic stumps after PD. CONCLUSION The mechanisms underlying POPF include high biochemical activity in the pancreas, mechanical injury, and digestive reflux. To prevent POPF and address pancreatic inflammation and reflux, breaking the link with anastomotic dehiscence is practical.
Collapse
Affiliation(s)
- Tie-Gong Wang
- Department of Surgery, Cangzhou Central Hospital, Cangzhou 061000, Hebei Province, China
| | - Liang Tian
- Department of Pathology, Cangzhou Central Hospital, Cangzhou 061000, Hebei Province, China
| | - Xiao-Ling Zhang
- Department of Pathology, Cangzhou Central Hospital, Cangzhou 061000, Hebei Province, China
| | - Lei Zhang
- Department of Surgery, Cangzhou Central Hospital, Cangzhou 061000, Hebei Province, China
| | - Xiu-Lei Zhao
- Department of Surgery, Cangzhou Central Hospital, Cangzhou 061000, Hebei Province, China
| | - De-Shuai Kong
- Department of Surgery, Cangzhou Central Hospital, Cangzhou 061000, Hebei Province, China
| |
Collapse
|
6
|
Atanasova KR, Perkins CM, Ratnayake R, Jiang J, Chen QY, Schmittgen TD, Luesch H. Epigenetic small-molecule screen for inhibition and reversal of acinar ductal metaplasia in mouse pancreatic organoids. Front Pharmacol 2024; 15:1335246. [PMID: 38510657 PMCID: PMC10953826 DOI: 10.3389/fphar.2024.1335246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 03/22/2024] Open
Abstract
Background: Acinar ductal metaplasia (ADM) is among the earliest initiating events in pancreatic ductal adenocarcinoma (PDAC) development. Methods: We developed a novel morphology-based screen using organoids from wildtype and p48Cre/+ (Cre) mice to discover epigenetic modulators that inhibit or reverse pancreatic ADM more effectively than the broad-spectrum HDAC inhibitor trichostatin A (TSA). Results: Of the 144 compounds screened, nine hits and two additional natural product HDAC inhibitors were validated by dose-response analysis. The class I HDAC inhibitors apicidin and FK228, and the histone methyltransferase inhibitor chaetocin demonstrated pronounced ADM inhibition and reversal without inducing significant cytotoxicity at 1 µM. Thioester prodrug class I HDAC inhibitor largazole attenuated ADM while its disulfide homodimer was effective in both ADM inhibition and reversal. Prioritized compounds were validated for ADM reversal in p48Cre/+; LSL-KrasG12D/+ (KC) mouse organoids using both morphological and molecular endpoints. Molecular index analysis of ADM reversal in KC mouse organoids demonstrated improved activity compared to TSA. Improved prodrug stability translated into a stronger phenotypic and molecular response. RNA-sequencing indicated that angiotensinogen was the top inhibited pathway during ADM reversal. Conclusion: Our findings demonstrate a unique epigenetic mechanism and suggest that the phenotypic screen developed here may be applied to discover potential treatments for PDAC.
Collapse
Affiliation(s)
- Kalina R. Atanasova
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States
- Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Corey M. Perkins
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States
- Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Jinmai Jiang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Qi-Yin Chen
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States
- Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Thomas D. Schmittgen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States
- Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Jing T, Xu X, Wu C, Wei D, Yuan L, Huang Y, Liu Y, Wang B. POH1 facilitates pancreatic carcinogenesis through MYC-driven acinar-to-ductal metaplasia and is a potential therapeutic target. Cancer Lett 2023; 577:216444. [PMID: 37844756 DOI: 10.1016/j.canlet.2023.216444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Pancreatic acinar cells undergo acinar-to-ductal metaplasia (ADM), a necessary process for pancreatic ductal adenocarcinoma (PDAC) initiation. However, the regulatory role of POH1, a deubiquitinase linked to several types of cancer, in ADM and PDAC is unclear. In this study, we investigated the role of POH1 in ADM and PDAC using murine models. Our findings suggest that pancreatic-specific deletion of Poh1 alleles attenuates ADM and impairs pancreatic carcinogenesis, improving murine survival. Mechanistically, POH1 deubiquitinates and stabilizes the MYC protein, which potentiates ADM and PDAC. Furthermore, POH1 is highly expressed in PDAC samples, and clinical evidence establishes a positive correlation between aberrantly expressed POH1 and poor prognosis in PDAC patients. Targeting POH1 with a specific small-molecule inhibitor significantly reduces pancreatic tumor formation, highlighting POH1 as a promising therapeutic target for PDAC treatment. Overall, POH1-mediated MYC deubiquitination is crucial for ADM and PDAC onset, and targeting POH1 could be an effective strategy for PDAC treatment, offering new avenues for PDAC targeted therapy.
Collapse
Affiliation(s)
- Tiantian Jing
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Xiaoli Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Chengsi Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Dianhui Wei
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Lili Yuan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yiwen Huang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yizhen Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Boshi Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| |
Collapse
|
8
|
Atanasova KR, Perkins CM, Ratnayake R, Jiang J, Chen QY, Schmittgen TD, Luesch H. Epigenetic Small-Molecule Screen for Inhibition and Reversal of Acinar Ductal Metaplasia in Mouse Pancreatic Organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.567685. [PMID: 38077007 PMCID: PMC10705242 DOI: 10.1101/2023.11.27.567685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Acinar ductal metaplasia (ADM) is among the earliest initiating events in pancreatic ductal adenocarcinoma (PDAC) development. Methods We developed a novel morphology-based screen using organoids from wildtype and p48 Cre/+ (Cre) mice to discover epigenetic modulators that inhibit or reverse pancreatic ADM more effectively than the broad-spectrum HDAC inhibitor trichostatin A (TSA). Results Of the 144 compounds screened, nine hits and two additional natural product HDAC inhibitors were validated by dose-response analysis. The class I HDAC inhibitors apicidin and FK228, and the histone methyltransferase inhibitor chaetocin demonstrated pronounced ADM inhibition and reversal without inducing significant cytotoxicity at 1 µM. Thioester prodrug class I HDAC inhibitor largazole attenuated ADM while its disulfide homodimer was effective in both ADM inhibition and reversal. Prioritized compounds were validated for ADM reversal in p48 Cre/+ ;LSL-Kras G12D/+ (KC) mouse organoids using both morphological and molecular endpoints. Molecular index analysis of ADM reversal in KC mouse organoids demonstrated improved activity compared to TSA. Improved prodrug stability translated into a stronger phenotypic and molecular response. RNA-sequencing indicated that angiotensinogen was the top inhibited pathway during ADM reversal. Conclusion Our findings demonstrate a unique epigenetic mechanism and suggest that the phenotypic screen developed here may be applied to discover potential treatments for PDAC.
Collapse
|
9
|
Ekeuku SO, Etim EP, Pang KL, Chin KY, Mai CW. Vitamin E in the management of pancreatic cancer: A scoping review. World J Gastrointest Oncol 2023; 15:943-958. [PMID: 37389119 PMCID: PMC10302993 DOI: 10.4251/wjgo.v15.i6.943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/03/2023] [Accepted: 04/07/2023] [Indexed: 06/14/2023] Open
Abstract
Pancreatic cancer is the leading cause of cancer mortality worldwide. Research investigating effective management strategies for pancreatic cancer is ongoing. Vitamin E, consisting of both tocopherol and tocotrienol, has demonstrated debatable effects on pancreatic cancer cells. Therefore, this scoping review aims to summarize the effects of vitamin E on pancreatic cancer. In October 2022, a literature search was conducted using PubMed and Scopus since their inception. Original studies on the effects of vitamin E on pancreatic cancer, including cell cultures, animal models and human clinical trials, were considered for this review. The literature search found 75 articles on this topic, but only 24 articles met the inclusion criteria. The available evidence showed that vitamin E modulated proliferation, cell death, angiogenesis, metastasis and inflammation in pancreatic cancer cells. However, the safety and bioavailability concerns remain to be answered with more extensive preclinical and clinical studies. More in-depth analysis is necessary to investigate further the role of vitamin E in the management of pancreatic cancers.
Collapse
Affiliation(s)
- Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Effiong Paul Etim
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri 79200, Johor, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chun-Wai Mai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
10
|
Marstrand-Daucé L, Lorenzo D, Chassac A, Nicole P, Couvelard A, Haumaitre C. Acinar-to-Ductal Metaplasia (ADM): On the Road to Pancreatic Intraepithelial Neoplasia (PanIN) and Pancreatic Cancer. Int J Mol Sci 2023; 24:9946. [PMID: 37373094 PMCID: PMC10298625 DOI: 10.3390/ijms24129946] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Adult pancreatic acinar cells show high plasticity allowing them to change in their differentiation commitment. Pancreatic acinar-to-ductal metaplasia (ADM) is a cellular process in which the differentiated pancreatic acinar cells transform into duct-like cells. This process can occur as a result of cellular injury or inflammation in the pancreas. While ADM is a reversible process allowing pancreatic acinar regeneration, persistent inflammation or injury can lead to the development of pancreatic intraepithelial neoplasia (PanIN), which is a common precancerous lesion that precedes pancreatic ductal adenocarcinoma (PDAC). Several factors can contribute to the development of ADM and PanIN, including environmental factors such as obesity, chronic inflammation and genetic mutations. ADM is driven by extrinsic and intrinsic signaling. Here, we review the current knowledge on the cellular and molecular biology of ADM. Understanding the cellular and molecular mechanisms underlying ADM is critical for the development of new therapeutic strategies for pancreatitis and PDAC. Identifying the intermediate states and key molecules that regulate ADM initiation, maintenance and progression may help the development of novel preventive strategies for PDAC.
Collapse
Affiliation(s)
- Louis Marstrand-Daucé
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Diane Lorenzo
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Anaïs Chassac
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
- Department of Pathology, Bichat Hospital, Université Paris Cité, 75018 Paris, France
| | - Pascal Nicole
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Anne Couvelard
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
- Department of Pathology, Bichat Hospital, Université Paris Cité, 75018 Paris, France
| | - Cécile Haumaitre
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| |
Collapse
|
11
|
Warrier NM, Kelkar N, Johnson CT, Govindarajan T, Prabhu V, Kumar P. Understanding cancer stem cells and plasticity: Towards better therapeutics. Eur J Cell Biol 2023; 102:151321. [PMID: 37137199 DOI: 10.1016/j.ejcb.2023.151321] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023] Open
Abstract
The ability of cancer cells to finally overcome various lines of treatment in due course has always baffled the scientific community. Even with the most promising therapies, relapse is ultimately seen, and this resilience has proved to be a major hurdle in the management of cancer. Accumulating evidence now attributes this resilience to plasticity. Plasticity is the ability of cells to change their properties and is substantial as it helps in normal tissue regeneration or post-injury repair processes. It also helps in the overall maintenance of homeostasis. Unfortunately, this critical ability of cells, when activated incorrectly, can lead to numerous diseases, including cancer. Therefore, in this review, we focus on the plasticity aspect with an emphasis on cancer stem cells (CSCs). We discuss the various forms of plasticity that provide survival advantages to CSCs. Moreover, we explore various factors that affect plasticity. Furthermore, we provide the therapeutic implications of plasticity. Finally, we provide an insight into the future targeted therapies involving plasticity for better clinical outcomes.
Collapse
Affiliation(s)
- Neerada Meenakshi Warrier
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Nachiket Kelkar
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Carol Tresa Johnson
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | | | - Vijendra Prabhu
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Praveen Kumar
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
12
|
Jiang J, Hakimjavadi H, Bray JK, Perkins C, Gosling A, daSilva L, Bulut G, Ali J, Setiawan VW, Campbell-Thompson M, Chamala S, Schmittgen TD. Transcriptional Profile of Human Pancreatic Acinar Ductal Metaplasia. GASTRO HEP ADVANCES 2023; 2:532-543. [PMID: 37425649 PMCID: PMC10328139 DOI: 10.1016/j.gastha.2023.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND AND AIMS Aberrant acinar to ductal metaplasia (ADM), one of the earliest events involved in exocrine pancreatic cancer development, is typically studied using pancreata from genetically engineered mouse models. METHODS We used primary, human pancreatic acinar cells from organ donors to evaluate the transcriptional and pathway profiles during the course of ADM. RESULTS Following 6 days of three-dimensional culture on Matrigel, acinar cells underwent morphological and molecular changes indicative of ADM. mRNA from 14 donors' paired cells (day 0, acinar phenotype and day 6, ductal phenotype) was subjected to whole transcriptome sequencing. Acinar cell specific genes were significantly downregulated in the samples from the day 6 cultures while ductal cell-specific genes were upregulated. Several regulons of ADM were identified including transcription factors with reduced activity (PTF1A, RBPJL, and BHLHA15) and those ductal and progenitor transcription factors with increased activity (HNF1B, SOX11, and SOX4). Cells with the ductal phenotype contained higher expression of genes increased in pancreatic cancer while cells with an acinar phenotype had lower expression of cancer-associated genes. CONCLUSION Our findings support the relevancy of human in vitro models to study pancreas cancer pathogenesis and exocrine cell plasticity.
Collapse
Affiliation(s)
- Jinmai Jiang
- Department of Pharmaceutics, College of Pharmacy University of Florida, Gainesville, Florida
| | - Hesamedin Hakimjavadi
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center, Gainesville, Florida
| | - Julie K. Bray
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Corey Perkins
- Department of Pharmaceutics, College of Pharmacy University of Florida, Gainesville, Florida
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center, Gainesville, Florida
| | - Alyssa Gosling
- Department of Pharmaceutics, College of Pharmacy University of Florida, Gainesville, Florida
| | - Lais daSilva
- Department of Pharmaceutics, College of Pharmacy University of Florida, Gainesville, Florida
| | - Gamze Bulut
- Department of Pharmaceutics, College of Pharmacy University of Florida, Gainesville, Florida
| | - Jamel Ali
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center, Gainesville, Florida
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida
| | - V. Wendy Setiawan
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center, Gainesville, Florida
- Department of Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center, Gainesville, Florida
| | - Srikar Chamala
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center, Gainesville, Florida
| | - Thomas D. Schmittgen
- Department of Pharmaceutics, College of Pharmacy University of Florida, Gainesville, Florida
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center, Gainesville, Florida
| |
Collapse
|
13
|
Reams RR, Odedina FT, Carpten JD, Redda K, Stern MC, Krieger JL, Aparicio J, Hensel B, Askins N, Abreu A, Adams A, Agyare E, Ali J, Allen JM, Aló R, Baezconde-Garbanati L, Brant J, Brown CP, Buxbaum SG, Cohen P, Cozen W, Ezenwa MO, Falzarano S, Fillingim RB, Flores-Rozas H, Fredenburg KM, George T, Han B, Huang Y, Hughes Halbert C, Kiros GE, Lamango NS, Lee JH, Lyon DE, Mitchell DA, Mochona B, Nieva JJ, Offringa IA, Okunieff P, Parker A, Rhie SK, Richey JM, Rogers SC, Salhia B, Schmittgen TD, Segal R, Setiawan VW, Smith U, Su LM, Suther S, Trevino J, Velazquez-Villarreal EI, Webb FJ, Wu AH, Yao Y, Wilkie DJ. Florida-California Cancer Research, Education and Engagement (CaRE 2) Health Equity Center: Structure, Innovations, and Initial Outcomes. Cancer Control 2023; 30:10732748231197878. [PMID: 37703814 PMCID: PMC10501072 DOI: 10.1177/10732748231197878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023] Open
Abstract
INTRODUCTION The Florida-California Cancer Research, Education, and Engagement (CaRE2) Health Equity Center is a triad partnership committed to increasing institutional capacity for cancer disparity research, the diversity of the cancer workforce, and community empowerment. This article provides an overview of the structure, process innovations, and initial outcomes from the first 4 years of the CaRE2 triad partnership. METHODS CaRE2 serves diverse populations in Florida and California using a "molecule to the community and back" model. We prioritize research on the complex intersection of biological, environmental, and social determinants health, working together with scientific and health disparities communities, sharing expertise across institutions, bidirectional training, and community outreach. Partnership progress and outcomes were assessed using mixed methods and four Program Steering Committee meetings. RESULTS Research capacity was increased through development of a Living Repository of 81 cancer model systems from minority patients for novel cancer drug development. CaRE2 funded 15 scientific projects resulting in 38 publications. Workforce diversity entailed supporting 94 cancer trainees (92 URM) and 34 ESIs (32 URM) who coauthored 313 CaRE2-related publications and received 48 grants. Community empowerment was promoted via outreaching to more than 3000 individuals, training 145 community cancer advocates (including 28 Community Scientist Advocates), and publishing 10 community reports. CaRE2 members and trainees together have published 639 articles, received 61 grants, and 57 awards. CONCLUSION The CaRE2 partnership has achieved its initial aims. Infrastructure for translational cancer research was expanded at one partner institution, and cancer disparities research was expanded at the two cancer centers.
Collapse
Affiliation(s)
- R. Renee Reams
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | | | - John D. Carpten
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - Kinfe Redda
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Mariana C. Stern
- Departments of Population and Public Health Sciences, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Janice L. Krieger
- Department of Advertising, University of Florida, Gainesville, FL, USA
| | - Jose Aparicio
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Brooke Hensel
- Department of Behavioral Nursing Science, University of Florida, Gainesville, FL, USA
| | - Nissa Askins
- Florida State University College of Medicine, Tallahassee, FL, USA
| | - Andre Abreu
- Department of Urology, University of Southern California, Los Angeles, CA, USA
| | - Angela Adams
- Department of Pharmaceutics, University of Florida, Gainesville, FL, USA
| | - Edward Agyare
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Jamel Ali
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, USA
| | - John M. Allen
- Department of Pharmacotherapy & Translational Research, University of Florida, Orlando, FL, USA
| | - Richard Aló
- College of Science and Technology, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Lourdes Baezconde-Garbanati
- Departments of Population and Public Health Sciences, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Jason Brant
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Clyde P. Brown
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Sarah G. Buxbaum
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Pinchas Cohen
- University of Southern California Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Wendy Cozen
- Division of Hematology/Oncology, School of Medicine, University of California, Irvine, CA, USA
| | - Miriam O. Ezenwa
- Department of Behavioral Nursing Science, University of Florida, Gainesville, FL, USA
| | - Sara Falzarano
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Roger B. Fillingim
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, USA
| | - Hernan Flores-Rozas
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Kristianna M. Fredenburg
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Thomas George
- Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL, USA
| | - Bo Han
- Departments of Surgery, University of Southern California, Los Angeles, CA, USA
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Chanita Hughes Halbert
- Departments of Population and Public Health Sciences, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Gebre-Egziabher Kiros
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Nazarius S. Lamango
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Ji-Hyun Lee
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Debra E. Lyon
- Department of Behavioral Nursing Science, University of Florida, Gainesville, FL, USA
| | - Duane A. Mitchell
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Bereket Mochona
- Department of Chemistry, Florida Agricultural and Mechanical University, Tallahassee, FL USA
| | - Jorge J. Nieva
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ite A. Offringa
- Departments of Surgery, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paul Okunieff
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Alexander Parker
- College of Medicine, University of Florida, Jacksonville, FL, USA
| | - Suhn K. Rhie
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joyce M. Richey
- Department of Clinical Physiology and Neuroscience, University of Southern California, Los Angeles, CA, USA
| | - Sherise C. Rogers
- Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL, USA
| | - Bodour Salhia
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | | | - Richard Segal
- Department of Pharmaceutical Outcome and Policy, University of Florida, Gainesville, FL, USA
| | | | - Ukamaka Smith
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Li-Ming Su
- Department of Urology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sandra Suther
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Jose Trevino
- Department of Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Fern J. Webb
- Department of Surgery, University of Florida, Jacksonville, FL, USA
| | - Anna H. Wu
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - Yingwei Yao
- Department of Behavioral Nursing Science, University of Florida, Gainesville, FL, USA
| | - Diana J. Wilkie
- Department of Behavioral Nursing Science, University of Florida, Gainesville, FL, USA
| |
Collapse
|