1
|
Liu L, Liu Y, Tian Y, Cao Y, Wang T, Mi S, Yang R, Liu S, Ma X, Wang J. Identification of Differentially Expressed mRNAs and lncRNAs Contributes to Elucidation of Underlying Pathogenesis and Therapeutic Strategy of Recurrent Implantation Failure. Reprod Sci 2025; 32:1477-1490. [PMID: 38955937 DOI: 10.1007/s43032-024-01630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Recurrent implantation failure (RIF) is a complex and poorly understood clinical disorder characterized by failure to conceive after repeated embryo transfers. Endometrial receptivity (ER) is a prerequisite for implantation, and ER disorders are associated with RIF. However, little is known regarding the molecular mechanisms underlying ER in RIF. In the present study, RNA sequencing data from the mid-secretory endometrium of patients with and without RIF were analyzed to explore the potential long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) involved in RIF. The analysis revealed 213 and 1485 differentially expressed mRNAs and lncRNAs, respectively (fold change ≥ 2 and p < 0.05). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that these genes were mostly involved in processes related to immunity or inflammation. 5 key genes (TTR, ALB, TF, AFP, and CFTR) and a key module including 14 hub genes (AFP, ALB, APOA1, APOA2, APOB, APOH, FABP1, FGA, FGG, GC, ITIH2, SERPIND1, TF and TTR) were identified in the protein-protein interaction (PPI) network. The 5 key genes were used to further explore the lncRNA-miRNA-mRNA regulatory network. Finally, the drug ML-193 based on the 14 hub genes was identifed through the CMap. After ML-193 treatment, endometrial cell proliferation was increased, the hub genes were mostly down-regulated, and the ER marker HOXA10 was up-regulated. These results offer insights into the regulatory mechanisms of lncRNAs and mRNAs and suggest ML-193 as a therapeutic agent for RIF by enhancing ER.
Collapse
Affiliation(s)
- Lin Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China.
- The Basic Medical Sciences College of Lanzhou University, Lanzhou, Gansu, China.
- The reproductive center, the First Hospital of Lanzhou University, Lanzhou, Gansu, China.
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China.
| | - Yidan Liu
- The Basic Medical Sciences College of Lanzhou University, Lanzhou, Gansu, China
| | - Yu Tian
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Ying Cao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ting Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Shengyan Mi
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Run Yang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Simin Liu
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaoling Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China.
- The Basic Medical Sciences College of Lanzhou University, Lanzhou, Gansu, China.
- The reproductive center, the First Hospital of Lanzhou University, Lanzhou, Gansu, China.
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China.
| | - Jing Wang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, China.
| |
Collapse
|
2
|
Mishra A, Modi D. Role of HOXA10 in pathologies of the endometrium. Rev Endocr Metab Disord 2025; 26:81-96. [PMID: 39499452 DOI: 10.1007/s11154-024-09923-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/07/2024]
Abstract
HOXA10 belongs to the homeobox gene family and is essential for uterine biogenesis, endometrial receptivity, embryo implantation, and stromal cell decidualization. Available evidence suggests that the expression of HOXA10 is dysregulated in different endometrial disorders like endometrial hyperplasia, endometrial cancer, adenomyosis, endometriosis, recurrent implantation failure, and unexplained infertility. The downregulation of HOXA10 occurs by genetic changes in the HOXA10 gene, methylation of the HOXA10 locus, or selected miRNAs. Endocrine disruptors and organic pollutants also cause the reduced expression of HOXA10 in these conditions. In vivo experiments in mouse models and in vitro studies in human cell lines demonstrate that downregulation of HOXA10 leads to endometrial epithelial cell proliferation, failure of stromal cell decidualization, altered expression of genes involved in cell cycle regulation, immunomodulation, and various signaling pathways. These disruptions are speculated to cause infertility associated with the disorders of the endometrium.
Collapse
Affiliation(s)
- Anuradha Mishra
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive and Child Health, J.M. Street, Parel, Mumbai, 400 012, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive and Child Health, J.M. Street, Parel, Mumbai, 400 012, India.
| |
Collapse
|
3
|
Cao Z, Jiang J, Wang Y, Lu Y, Wu M, Zhen X, Cai X, Sun H, Yan G. Role of PRMT5 mediated HOXA10 arginine 337 methylation in endometrial epithelial cell receptivity. Biochem Biophys Res Commun 2024; 739:151004. [PMID: 39550865 DOI: 10.1016/j.bbrc.2024.151004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
A successful embryo implantation relies heavily on the receptivity of the endometrial epithelium, a process regulated by various molecular mechanisms. Evaluating endometrial receptivity in infertility patients undergoing assisted reproductive treatment, particularly those with adenomyosis related infertility, poses significant challenges due to limitations associated with conventional assessment methods. In this study, we collected residual endometrial epithelial cells from the tips of embryo transfer catheters in patients with adenomyosis related infertility. High throughput sequencing revealed a marked downregulation of protein arginine methyltransferase 5 (PRMT5) in these cells. Functional assays demonstrated that PRMT5 interacts with and methylates homeobox A10 (HOXA10), a crucial transcription factor for endometrial receptivity and implantation. The methylation of HOXA10 at arginine 337 by PRMT5 enhances its stability and promotes the transcriptional activation of genes essential for endometrial differentiation and adhesion. The downregulation of PRMT5 led to decreased HOXA10 activity, resulting in impaired endometrial receptivity and subsequent implantation failure. These findings elucidate a critical pathway where PRMT5 downregulation negatively impacts HOXA10 function, providing new insights into the molecular mechanisms underlying implantation failure in adenomyosis related infertility. This study not only advances our understanding of the regulatory mechanisms governing endometrial receptivity but also identifies potential therapeutic targets for enhancing endometrial function in affected patients.
Collapse
Affiliation(s)
- Zhiwen Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jinwen Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yiting Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yuhang Lu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Min Wu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xin Zhen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xinyu Cai
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Haixiang Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210032, Nanjing, China.
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210032, Nanjing, China.
| |
Collapse
|
4
|
Huang Y, Wang G, Zhang N, Zeng X. MAP3K4 kinase action and dual role in cancer. Discov Oncol 2024; 15:99. [PMID: 38568424 PMCID: PMC10992237 DOI: 10.1007/s12672-024-00961-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
It is commonly known that the MAPK pathway is involved in translating environmental inputs, regulating downstream reactions, and maintaining the intrinsic dynamic balance. Numerous essential elements and regulatory processes are included in this pathway, which are essential to its functionality. Among these, MAP3K4, a member of the serine/threonine kinases family, plays vital roles throughout the organism's life cycle, including the regulation of apoptosis and autophagy. Moreover, MAP3K4 can interact with key partners like GADD45, which affects organism's growth and development. Notably, MAP3K4 functions as both a tumor promotor and suppressor, being activated by a variety of factors and triggering diverse downstream pathways that differently influence cancer progression. The aim of this study is to provide a brief overview of physiological functions of MAP3K4 and shed light on its contradictory roles in tumorigenesis.
Collapse
Affiliation(s)
- Yuxin Huang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Guanwen Wang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Ningning Zhang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China.
| | - Xiaohua Zeng
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
5
|
Jia B, Xiang D, Yang H, Liang J, Lv C, Yang Q, Huang X, Quan G, Wu G. Transcriptome analysis of porcine embryos derived from oocytes vitrified at the germinal vesicle stage. Theriogenology 2024; 218:99-110. [PMID: 38316086 DOI: 10.1016/j.theriogenology.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Vitrification of porcine immature oocytes at the germinal vesicle (GV) stage reduces subsequent embryo yield and changes at the molecular level may occur during embryonic development. Therefore, the present study used porcine parthenogenetic embryos as a model to investigate the effect of GV oocyte vitrification on the transcriptional profiles of the resultant embryos at the 4-cell and blastocyst stages using the Smart-seq2 RNA-seq technique. We identified 743 (420 up-regulated and 323 down-regulated) and 994 (554 up-regulated and 440 down-regulated) differentially expressed genes (DEGs) from 4-cell embryos and blastocysts derived from vitrified GV oocytes, respectively. Functional enrichment analysis of DEGs in 4-cell embryos showed that vitrification of GV oocytes influenced regulatory mechanisms related to transcription regulation, apoptotic process, metabolism and key pathways such as the MAPK signaling pathway. Moreover, DEGs in blastocysts produced from vitrified GV oocytes were enriched in critical biological functions including cell adhesion, cell migration, AMPK signaling pathway, GnRH signaling pathway and so on. In addition, the transcriptomic analysis and quantitative real-time PCR results were consistent. In summary, the present study revealed that the vitrification of porcine GV oocytes could alter gene expression patterns during subsequent embryonic developmental stages, potentially affecting their developmental competence.
Collapse
Affiliation(s)
- Baoyu Jia
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Decai Xiang
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China
| | - Han Yang
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Jiachong Liang
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China
| | - Chunrong Lv
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China
| | - Qige Yang
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xinyu Huang
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Guobo Quan
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China.
| | - Guoquan Wu
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China.
| |
Collapse
|