1
|
Yang X, Ma Z, Lian P, Wu Y, Liu K, Zhang Z, Tang Z, Xu Y, Cao X. Disruption of axonal transport in Parkinson's disease: the role of pathological α-Syn and AMPK/p38 MAPK signaling. NPJ Parkinsons Dis 2025; 11:114. [PMID: 40328804 PMCID: PMC12055991 DOI: 10.1038/s41531-025-00926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/27/2025] [Indexed: 05/08/2025] Open
Abstract
The accumulation of α-synuclein within Lewy bodies is a critical factor in the pathogenesis of Parkinson's disease, with potential implications for axonal transport deficits. Activated asparagine endopeptidase enzymatically cleaves α-synuclein and tau, resulting in the formation of α-SynN103 and tauN368, which are markedly elevated in the brains with Parkinson's disease. In this study, rats received intrastriatal injections of 15 µg of preformed α-SynN103 and tauN368 fibrils, and their behaviors were evaluated after a 2-month period. Subsequent analyses investigated alterations in axonal transport and the underlying molecular mechanisms. Our findings indicated that preformed fibrils reduced kinesin levels and excessively activated the AMPK and p38 MAPK, thereby compromising the function of kinesin and dynein in axonal transport. Pharmacological inhibition of AMPK and p38 MAPK ameliorated these dysfunctions in rat models, which identified Compound C and SB203580 as potent inhibitors, offering evidence for early interventions of Parkinson's disease. Mechanisms by which PFFs caused axonal transport defects of dopamine neurons in PD-like models. (A) Shows normal axonal transport. (B) Demonstrates how PFFs increase ?-Syn accumulation, reducing PIKE expression and triggering AMPK/p38 MAPK over-activation, which lowers kinesin levels and motor-cargo interaction. (C) AMPK activity inhibition with C.C significantly improves these deficits. (D) The p38 inhibitor enhances kinesin transport by preventing p38 MAPK over-activation, reducing its inhibition of kinesin-cargo binding.
Collapse
Affiliation(s)
- Xiaoman Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuoran Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Piaopiao Lian
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ke Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhaoyuan Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhicheng Tang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Fu Y, Zhai Q. High-gamma frequency flash stimulation as a possible cognitive facilitator in rat pups. Brain Res 2025; 1848:149314. [PMID: 39549826 DOI: 10.1016/j.brainres.2024.149314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
High-gamma frequency flashes can enhance cognition by synchronizing neural oscillations in mammals. Early flash treatment promotes the development of improved cognitive functions in young children. However, it is unclear whether exposure to high-gamma frequency flashes in preschool-aged individuals affects cognition in preadolescents by regulating neural oscillations in the brain. Here, we aimed to investigate the effects of gamma-frequency flashes on cognitive ability. In this study, the effect of high-frequency flicker on cognitive performance was verified by behavioural experiments such as the open-field test and the water maze, but also proteomics. We found that external 40 Hz and 70 Hz frequency flashes synchronized neural oscillations at the corresponding frequencies in the primary visual cortex (V1) of rats. Rats that underwent 70 Hz flash intervention had better cognitive behavioural performance in the early stages of training. The 70 Hz flash frequency upregulated proteins associated with neuronal growth and differentiation, such as Snapin, FoxO3, Hspa12a, and Penk, and activated the MAPK signalling pathway, signalling pathway regulating stem cell pluripotency, and the neuroactive ligand-receptor interaction pathway. These proteins and pathways play important roles in cognitive functions. Our study revealed that 70 Hz flashes received by young children early in their development substantially promote the growth of cognitive capabilities in the brain. Exposure to 70 Hz flashes may be a new intervention method and a new strategy for improving cognition.
Collapse
Affiliation(s)
- Yu Fu
- Kundulun Center for Disease Control and Prevention, Inner Mongolia 014010, China
| | - Qingfeng Zhai
- School of Public Health, Shandong Second Medical University, Shandong 261021, China.
| |
Collapse
|
3
|
Li J, Huang X, An Y, Chen X, Chen Y, Xu M, Shan H, Zhang M. The role of snapin in regulation of brain homeostasis. Neural Regen Res 2024; 19:1696-1701. [PMID: 38103234 PMCID: PMC10960280 DOI: 10.4103/1673-5374.389364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/15/2023] [Accepted: 10/08/2023] [Indexed: 12/18/2023] Open
Abstract
Brain homeostasis refers to the normal working state of the brain in a certain period, which is important for overall health and normal life activities. Currently, there is a lack of effective treatment methods for the adverse consequences caused by brain homeostasis imbalance. Snapin is a protein that assists in the formation of neuronal synapses and plays a crucial role in the normal growth and development of synapses. Recently, many researchers have reported the association between snapin and neurologic and psychiatric disorders, demonstrating that snapin can improve brain homeostasis. Clinical manifestations of brain disease often involve imbalances in brain homeostasis and may lead to neurological and behavioral sequelae. This article aims to explore the role of snapin in restoring brain homeostasis after injury or diseases, highlighting its significance in maintaining brain homeostasis and treating brain diseases. Additionally, it comprehensively discusses the implications of snapin in other extracerebral diseases such as diabetes and viral infections, with the objective of determining the clinical potential of snapin in maintaining brain homeostasis.
Collapse
Affiliation(s)
- Jiawen Li
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China (Academy of Forensic Science), Shanghai, China
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Xinqi Huang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Yumei An
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Xueshi Chen
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Yiyang Chen
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Mingyuan Xu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Mingyang Zhang
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China (Academy of Forensic Science), Shanghai, China
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
4
|
Sun J, Zhang Y, Li A, Yu H. Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 3 Expression and Its Correlation with Prognosis and Growth of Serous Ovarian Cancer: Correlation of DYRK3 with Ovarian Cancer Survival. Int J Genomics 2024; 2024:6683202. [PMID: 38529261 PMCID: PMC10963101 DOI: 10.1155/2024/6683202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/26/2023] [Accepted: 01/19/2024] [Indexed: 03/27/2024] Open
Abstract
Background Epithelial ovarian cancer, primarily serous ovarian cancer (SOC), stands as a predominant cause of cancer-related mortality among women globally, emphasizing the urgent need for comprehensive research into its molecular underpinnings. Within this context, the dual-specificity tyrosine phosphorylation-regulated kinase 3 (DYRK3) has emerged as a potential key player with implications for prognosis and tumor progression. Methods This study conducted a meticulous retrospective analysis of 254 SOC cases from our medical center to unravel the prognostic significance of DYRK3. Survival analyses underscored DYRK3 as an independent adverse prognostic factor in SOC, with a hazard ratio of 2.60 (95% CI 1.67-4.07, P < 0.001). Experimental investigations involved DYRK3 knockdown in serous ovarian cancer cell lines (CAOV3 and OVCAR-3) through a shRNA strategy, revealing substantial decreases in cell growth and invasion capabilities. Bioinformatics analyses further hinted at DYRK3's involvement in modulating the tumor immune microenvironment. In vivo experiments with DYRK3-knockdown cell lines validated these findings, demonstrating a notable restriction in the growth of ovarian cancer xenografts. Results Our findings collectively illuminate DYRK3 as a pivotal tumor-promoting oncogene in SOC. Beyond its adverse prognostic implications, DYRK3 knockdown exhibited promising therapeutic potential by impeding cancer progression and potentially influencing the tumor immune microenvironment. Conclusions This study establishes a compelling foundation for further research into DYRK3's intricate role and therapeutic potential in ovarian cancer treatment. As we unravel the complexities surrounding DYRK3, our work not only contributes to the understanding of SOC pathogenesis but also unveils new prospects for targeted therapeutic interventions, holding promise for improved outcomes in ovarian cancer management.
Collapse
Affiliation(s)
- Jia Sun
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, China
| | - Yingzi Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, China
| | - Aijie Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, China
| | - Hao Yu
- Department of Hepatobiliary Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong 271000, China
| |
Collapse
|