1
|
Verma SK, Kuyumcu-Martinez MN. RNA binding proteins in cardiovascular development and disease. Curr Top Dev Biol 2024; 156:51-119. [PMID: 38556427 PMCID: PMC11896630 DOI: 10.1016/bs.ctdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect affecting>1.35 million newborn babies worldwide. CHD can lead to prenatal, neonatal, postnatal lethality or life-long cardiac complications. RNA binding protein (RBP) mutations or variants are emerging as contributors to CHDs. RBPs are wizards of gene regulation and are major contributors to mRNA and protein landscape. However, not much is known about RBPs in the developing heart and their contributions to CHD. In this chapter, we will discuss our current knowledge about specific RBPs implicated in CHDs. We are in an exciting era to study RBPs using the currently available and highly successful RNA-based therapies and methodologies. Understanding how RBPs shape the developing heart will unveil their contributions to CHD. Identifying their target RNAs in the embryonic heart will ultimately lead to RNA-based treatments for congenital heart disease.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States.
| | - Muge N Kuyumcu-Martinez
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States; University of Virginia Cancer Center, Charlottesville, VA, United States.
| |
Collapse
|
2
|
Zhao Y, Li J, Lian Y, Zhou Q, Wu Y, Kang J. METTL3-Dependent N6-Methyladenosine Modification Programs Human Neural Progenitor Cell Proliferation. Int J Mol Sci 2023; 24:15535. [PMID: 37958523 PMCID: PMC10647291 DOI: 10.3390/ijms242115535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
METTL3, a methyltransferase responsible for N6-methyladenosine (m6A) modification, plays key regulatory roles in mammal central neural system (CNS) development. However, the specific epigenetic mechanisms governing human CNS development remain poorly elucidated. Here, we generated small-molecule-assisted shut-off (SMASh)-tagged hESC lines to reduce METTL3 protein levels, and found that METTL3 is not required for human neural progenitor cell (hNPC) formation and neuron differentiation. However, METTL3 deficiency inhibited hNPC proliferation by reducing SLIT2 expression. Mechanistic studies revealed that METTL3 degradation in hNPCs significantly decreased the enrichment of m6A in SLIT2 mRNA, consequently reducing its expression. Our findings reveal a novel functional target (SLIT2) for METTL3 in hNPCs and contribute to a better understanding of m6A-dependent mechanisms in hNPC proliferation.
Collapse
Affiliation(s)
- Yuan Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jianguo Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yilin Lian
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qian Zhou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|