1
|
Yang Y, Yang C, Deng K, Xiao Y, Liu X, Du Z. Nucleic Acid Drugs in Radiotherapy. Chembiochem 2025; 26:e202400854. [PMID: 39903093 DOI: 10.1002/cbic.202400854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/06/2025]
Abstract
Radiotherapy remains a cornerstone of cancer treatment, using high-energy radiation to induce DNA damage in tumor cells, leading to cell death. However, its efficacy is often hindered by challenges such as radiation resistance and side effects. As a powerful class of functional molecules, nucleic acid drugs (NADs) present a promising solution to these limitations. Engineered to target key pathways like DNA repair and tumor hypoxia, NADs can enhance radiotherapy sensitivity. NADs can also serve as delivery vehicles for radiotherapy agents such as radionuclides, improving targeting accuracy and minimizing side effects. This review explores the role of NADs in optimizing radiotherapy, highlighting their mechanisms, clinical applications, and synergies with radiotherapy, ultimately offering a promising strategy for improving patient outcomes in cancer therapy.
Collapse
Affiliation(s)
- Yuying Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Cai Yang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Kai Deng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yating Xiao
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, Universities and Colleges Admissions Service (UCAS), Hangzhou, 310024, China
| | - Xiangsheng Liu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Zhen Du
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
2
|
Chen P, Li K, Chen J, Hei H, Geng J, Huang N, Lei M, Jia H, Ren J, Jin C. Enhanced effect of radiofrequency ablation on HCC by siRNA-PD-L1-endostatin Co-expression plasmid delivered. Transl Oncol 2025; 53:102319. [PMID: 39938403 PMCID: PMC11869540 DOI: 10.1016/j.tranon.2025.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/07/2025] [Accepted: 02/02/2025] [Indexed: 02/14/2025] Open
Abstract
Hepatocellular carcinoma (HCC) poses a significant clinical challenge due to high mortality and limited treatment options. Radiofrequency ablation (RFA) is commonly used but can be limited by tumor recurrence. This study explores the potential of combining RFA with an attenuated Salmonella strain carrying siRNA-PD-L1 and endostatin to enhance HCC treatment. In this study, an H22 subcutaneous tumor mouse model was used, with animals divided into five groups for treatment with a blank control, a blank Salmonella plasmid, RFA alone, siRNA-PD-L1-endostatin, or a combination of RFA and siRNA-PD-L1-endostatin. The combination therapy significantly reduced tumor growth, angiogenesis, and PD-L1/VEGF expression in tumor tissues post-RFA. Additionally, it induced tumor cell apoptosis, inhibited proliferation and migration, and increased the infiltration of T lymphocytes, granzyme B+T cells, and CD86+macrophages within tumors. There was also a notable rise in T and NK cell populations in the spleen. In conclusion, combining RFA with siRNA-PD-L1-endostatin delivered by attenuated Salmonella synergistically enhances anti-tumor effects, boosts the anti-tumor immune response, and improves RFA efficacy for HCC.
Collapse
Affiliation(s)
- Pengfei Chen
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, PR China; Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Kun Li
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jinwei Chen
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - He Hei
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - Jiaxin Geng
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Nannan Huang
- Department of Orthopedics, Zhengyang county traditional Chinese medicine hospital, Zhumadian, Henan, PR China
| | - Mengyu Lei
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Huijie Jia
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Jianzhuang Ren
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Chenwang Jin
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, PR China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, 277 West Yanta Road, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
3
|
He X, Guo J, Bai Y, Sun H, Yang J. Salmonella-based therapeutic strategies: improving tumor microenvironment and bringing new hope for cancer immunotherapy. Med Oncol 2024; 42:27. [PMID: 39666238 DOI: 10.1007/s12032-024-02578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
Immunotherapy has revolutionized cancer treatment, yet its effectiveness is limited by immunosuppressive tumor microenvironment (TME). To overcome this challenge, innovative strategies to effectively modulate the TME are urgently needed. Over the past decades, bacteria-mediated cancer immunotherapy has recaptured increasing attention, driven by advances in synthetic biology, genetic engineering and our knowledge of host-pathogen interactions. Among various bacterial species, Salmonella has emerged as a leading candidate with significant therapeutic potential due to its broad-spectrum anti-tumor activity, tumor-targeting ability, immunomodulatory effects, oncolytic properties, genetic programmability, and engineering flexibility. These characteristics enable Salmonella to reshape the immunosuppressive TME, thereby enhancing anti-tumor efficacy. This review elaborates the regulatory effects of Salmonella on key components of the TME, the versatile engineering strategies for optimizing Salmonella's ability to modulate the TME, and recent advancements in combination cancer therapies. We also summarize current clinical applications and discuss challenges of developing safer and more effective Salmonella-based cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaoe He
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, 730030, Gansu, China
| | - Jiayin Guo
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, 730030, Gansu, China
| | - Yanrui Bai
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, 730030, Gansu, China
| | - Hui Sun
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, 730030, Gansu, China
| | - Jing Yang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
4
|
Mikołajczyk M, Złotkowska D, Mikołajczyk A. Impact on Human Health of Salmonella spp. and Their Lipopolysaccharides: Possible Therapeutic Role and Asymptomatic Presence Consequences. Int J Mol Sci 2024; 25:11868. [PMID: 39595937 PMCID: PMC11593640 DOI: 10.3390/ijms252211868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/13/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Epidemiologically, one of the most important concerns associated with introducing Salmonella spp. into the environment and food chain is the presence of asymptomatic carriers. The oncogenic and oncolytic activity of Salmonella and their lipopolysaccharides (LPSs) is important and research on this topic is needed. Even a single asymptomatic dose of the S. Enteritidis LPS (a dose that has not caused any symptoms of illness) in in vivo studies induces the dysregulation of selected cells and bioactive substances of the nervous, immune, and endocrine systems. LPSs from different species, and even LPSs derived from different serotypes of one species, can define different biological activities. The activity of low doses of LPSs derived from three different Salmonella serotypes (S. Enteritidis, S. Typhimurium, and S. Minnesota) affects the neurochemistry of neurons differently in in vitro studies. Studies on lipopolysaccharides from different Salmonella serotypes do not consider the diversity of their activity. The presence of an LPS from S. Enteritidis in the body, even in amounts that do not induce any symptoms of illness, may lead to unknown long-term consequences associated with its action on the cells and biologically active substances of the human body. These conclusions should be important for both research strategies and the pharmaceutical industry &.
Collapse
Affiliation(s)
- Mateusz Mikołajczyk
- Division of Medicine and Dentistry, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Dagmara Złotkowska
- Department of Food Immunology and Microbiology, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Anita Mikołajczyk
- Department of Psychology and Sociology of Health and Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
5
|
Tojjari A, Yu J, Saeed A. Immunotherapy and Radiation Therapy Combinatorial Approaches in Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1058. [PMID: 38473415 DOI: 10.3390/cancers16051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a prevalent and often fatal liver cancer, presents significant treatment challenges, especially in its advanced stages. This article delves into the promising approach of combining immunotherapy, particularly immune checkpoint inhibitors, with radiation therapy, a cornerstone of HCC management. Our review synthesizes current preclinical and clinical research, highlighting the potential synergistic effects of this combinational treatment. Emerging evidence suggests that this synergy enhances tumor control and improves patient survival rates. The combination leverages the localized, tumor-targeting ability of radiation therapy and the systemic, immune-boosting effects of immunotherapy, potentially overcoming the limitations inherent in each treatment modality when used separately. This integrative approach is especially promising in addressing the complex tumor microenvironment of HCC. However, the treatment landscape is nuanced, with challenges such as patient-specific response variability and potential resistance to therapies. Future research directions should focus on refining these combination strategies, tailoring them to individual patient profiles, and understanding the underlying mechanisms that govern the interaction between immunotherapy and radiation therapy. Such advancements could significantly improve HCC management, setting new standards for patient care and treatment efficacy.
Collapse
Affiliation(s)
- Alireza Tojjari
- Division of Hematology & Oncology, Department of Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA
| | - James Yu
- Division of Hematology and Medical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Anwaar Saeed
- Division of Hematology & Oncology, Department of Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA
| |
Collapse
|