1
|
Shi W, Jin E, Fang L, Sun Y, Fan Z, Zhu J, Liang C, Zhang YP, Zhang YQ, Wang GD, Zhao W. VDGE: a data repository of variation database for gene-edited animals across multiple species. Nucleic Acids Res 2025; 53:D1250-D1260. [PMID: 39470732 PMCID: PMC11701559 DOI: 10.1093/nar/gkae956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024] Open
Abstract
Gene-edited animals are crucial for addressing fundamental questions in biology and medicine and hold promise for practical applications. In light of the rapid advancement of gene editing technologies over the past decade, a dramatically increased number of gene-edited animals have been generated. Genome editing at off-target sites can, however, introduce genomic variations, potentially leading to unintended functional consequences in these animals. So, there is an urgent need to systematically collect and collate these variations in gene-edited animals to aid data mining and integrative in-depth analyses. However, existing databases are currently insufficient to meet this need. Here, we present the Variation Database of Gene-Edited animals (VDGE, https://ngdc.cncb.ac.cn/vdge), the first open-access repository to present genomic variations and annotations in gene-edited animals, with a particular focus on larger animals such as monkeys. At present, VDGE houses 151 on-target mutations from 210 samples, and 115,710 variations identified from 107 gene-edited and wild-type animal trios through unified and standardized analysis and concurrently provides comprehensive annotation details for each variation, thus facilitating the assessment of their functional consequences and promoting mechanistic studies and practical applications for gene-edited animals.
Collapse
Affiliation(s)
- Wenwen Shi
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Enhui Jin
- National Genomics Data Center, China National Center for Bioinformation, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Lu Fang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Yanling Sun
- National Genomics Data Center, China National Center for Bioinformation, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Cambridge Street, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Cambridge Street, Houston, TX 77030, USA
| | - Zhuojing Fan
- National Genomics Data Center, China National Center for Bioinformation, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Junwei Zhu
- National Genomics Data Center, China National Center for Bioinformation, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Chengzhi Liang
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Ya-Ping Zhang
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Panlong District, Kunming 650201, China
| | - Yong Q Zhang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
- School of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan 430062, China
| | - Guo-Dong Wang
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Panlong District, Kunming 650201, China
| | - Wenming Zhao
- National Genomics Data Center, China National Center for Bioinformation, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| |
Collapse
|
2
|
Domrazek K, Jurka P. Application of Next-Generation Sequencing (NGS) Techniques for Selected Companion Animals. Animals (Basel) 2024; 14:1578. [PMID: 38891625 PMCID: PMC11171117 DOI: 10.3390/ani14111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Next-Generation Sequencing (NGS) techniques have revolutionized veterinary medicine for cats and dogs, offering insights across various domains. In veterinary parasitology, NGS enables comprehensive profiling of parasite populations, aiding in understanding transmission dynamics and drug resistance mechanisms. In infectious diseases, NGS facilitates rapid pathogen identification, characterization of virulence factors, and tracking of outbreaks. Moreover, NGS sheds light on metabolic processes by elucidating gene expression patterns and metabolic pathways, essential for diagnosing metabolic disorders and designing tailored treatments. In autoimmune diseases, NGS helps identify genetic predispositions and molecular mechanisms underlying immune dysregulation. Veterinary oncology benefits from NGS through personalized tumor profiling, mutation analysis, and identification of therapeutic targets, fostering precision medicine approaches. Additionally, NGS plays a pivotal role in veterinary genetics, unraveling the genetic basis of inherited diseases and facilitating breeding programs for healthier animals. Physiological investigations leverage NGS to explore complex biological systems, unraveling gene-environment interactions and molecular pathways governing health and disease. Application of NGS in treatment planning enhances precision and efficacy by enabling personalized therapeutic strategies tailored to individual animals and their diseases, ultimately advancing veterinary care for companion animals.
Collapse
Affiliation(s)
- Kinga Domrazek
- Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | | |
Collapse
|
3
|
Lotfi M, Butler AE, Sukhorukov VN, Sahebkar A. Application of CRISPR-Cas9 technology in diabetes research. Diabet Med 2024; 41:e15240. [PMID: 37833064 DOI: 10.1111/dme.15240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Diabetes is a chronic disorder with rapidly increasing prevalence that is a major global issue of our current era. There are two major types of diabetes. Polygenic forms of diabetes include type 1 diabetes (T1D) and type 2 diabetes (T2D) and its monogenic forms are maturity-onset diabetes of the young (MODY) and neonatal diabetes mellitus (NDM). There are no permanent therapeutic approaches for diabetes and current therapies rely on regular administration of various drugs or insulin injection. Recently, gene editing strategies have offered new promise for treating genetic disorders. Targeted genome editing is a fast-growing technology, recruiting programmable nucleases to specifically modify target genomic sequences. These targeted nucleases generate double-strand breaks at target regions in the genome, which induce cellular repair pathways including non-homologous end joining (NHEJ) and homology-directed repair (HDR). Clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is a novel gene-editing system, permitting precise genome modification. CRISPR/Cas9 has great potential for various applications in diabetic research such as gene screening, generation of diabetic animal models and treatment. In this article, gene-editing strategies are summarized with a focus on the CRISPR/Cas9 approach in diabetes research.
Collapse
Affiliation(s)
- Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Liang Y, Chen F, Wang K, Lai L. Base editors: development and applications in biomedicine. Front Med 2023; 17:359-387. [PMID: 37434066 DOI: 10.1007/s11684-023-1013-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/19/2023] [Indexed: 07/13/2023]
Abstract
Base editor (BE) is a gene-editing tool developed by combining the CRISPR/Cas system with an individual deaminase, enabling precise single-base substitution in DNA or RNA without generating a DNA double-strand break (DSB) or requiring donor DNA templates in living cells. Base editors offer more precise and secure genome-editing effects than other conventional artificial nuclease systems, such as CRISPR/Cas9, as the DSB induced by Cas9 will cause severe damage to the genome. Thus, base editors have important applications in the field of biomedicine, including gene function investigation, directed protein evolution, genetic lineage tracing, disease modeling, and gene therapy. Since the development of the two main base editors, cytosine base editors (CBEs) and adenine base editors (ABEs), scientists have developed more than 100 optimized base editors with improved editing efficiency, precision, specificity, targeting scope, and capacity to be delivered in vivo, greatly enhancing their application potential in biomedicine. Here, we review the recent development of base editors, summarize their applications in the biomedical field, and discuss future perspectives and challenges for therapeutic applications.
Collapse
Affiliation(s)
- Yanhui Liang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
| | - Fangbing Chen
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Kepin Wang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China.
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
5
|
Xu H, Hao H, Wang S, Liu X, Lyu W, Zuo Z, Zhuo Y, Mi J, Zhang YQ, Tian R, Zhu H. A dog carrying mutations in AVP-NPII exhibits key features of central diabetes insipidus. J Genet Genomics 2022; 50:280-283. [PMID: 36400367 DOI: 10.1016/j.jgg.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Huijuan Xu
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyang Hao
- Beijing Sinogene Biotechnology Co. Ltd, Beijing 100005, China
| | - Shirui Wang
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Xueru Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen Lyu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhentao Zuo
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei, Anhui 230088, China
| | - Yan Zhuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jidong Mi
- Beijing Sinogene Biotechnology Co. Ltd, Beijing 100005, China
| | - Yong Q Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Tian
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Huijuan Zhu
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing 100730, China.
| |
Collapse
|
6
|
Dog models of human atherosclerotic cardiovascular diseases. Mamm Genome 2022:10.1007/s00335-022-09965-w. [PMID: 36243810 DOI: 10.1007/s00335-022-09965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/06/2022] [Indexed: 10/17/2022]
Abstract
Cardiovascular diseases (CVD) are one of the leading causes of death worldwide. Eighty-five percent of CVD-associated deaths are due to heart attacks and stroke. Atherosclerosis leads to heart attack and stroke through a slow progression of lesion formation and luminal narrowing of arteries. Dogs are similar to humans in terms of their cardiovascular physiology, size, and anatomy. Dog models have been developed to recapitulate the complex phenotype of human patients and understand the underlying mechanism of CVD. Different methods, including high-fat, high-cholesterol diet and genetic modification, have been used to generate dog models of human CVD. Remarkably, the location and severity of atherosclerotic lesions in the coronary arteries and branches of the carotid arteries of dog models closely resemble those of human CVD patients. Overt clinical manifestations such as stroke caused by plaque rupture and thrombosis were observed in dog models. Thus, dog models can help define the pathophysiological mechanisms of atherosclerosis and develop potential strategy for preventing and treating CVD. In this review, we summarize the progress in generating and characterizing canine models to investigate CVD and discuss the advantages and limitations of canine CVD models.
Collapse
|
7
|
Wang X, Liang Y, Zhao J, Li Y, Gou S, Zheng M, Zhou J, Zhang Q, Mi J, Lai L. Author Correction: Generation of permanent neonatal diabetes mellitus dogs with glucokinase point mutations through base editing. Cell Discov 2021; 7:120. [PMID: 34887377 PMCID: PMC8660874 DOI: 10.1038/s41421-021-00348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Xiaomin Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.,School of Life Sciences, Westlake University, Shilongshan Road No. 18, Cloud Town, Xihu District, Hangzhou, Zhejiang, 310024, China
| | - Yanhui Liang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
| | - Jianping Zhao
- Beijing SINOGENE Biotechnology Co., Ltd, Beijing, 102200, China
| | - Yuan Li
- Beijing SINOGENE Biotechnology Co., Ltd, Beijing, 102200, China
| | - Shixue Gou
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
| | - Min Zheng
- Beijing SINOGENE Biotechnology Co., Ltd, Beijing, 102200, China
| | - Juanjuan Zhou
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
| | - Quanjun Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
| | - Jidong Mi
- Beijing SINOGENE Biotechnology Co., Ltd, Beijing, 102200, China.
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China. .,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
| |
Collapse
|