1
|
Feng W, Zhou Q, Zheng C, Yang D, Wang MW. Structural basis for the constitutive activity of the melanocortin receptor family. Structure 2025:S0969-2126(25)00101-7. [PMID: 40157361 DOI: 10.1016/j.str.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/02/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
The constitutive activity of melanocortin receptors (MCRs) is integral to several physiological processes. The unliganded cryo-electron microscopy structures of MC1R, MC2R, MC3R, MC4R, and MC5R in complex with Gs proteins determined at global resolutions of 2.98 Å, 3.01 Å, 2.75 Å, 3.12 Å, and 2.86 Å, respectively, revealed that their binding poses and interactions with Gs are similar to those of agonist-bound MCRs. The extracellular regions of the transmembrane helices (TMs) exhibit distinct conformational rearrangements, characterized by varying shifts of TM3 and outward displacements of TM4. These variations represent unique structural features of constitutively activated MCRs. Unassigned electron densities were observed within the orthosteric pockets where extensive interactions with cognate ligands occur. In addition, zinc ions, but not calcium, positively regulated MC4R activity in a dose-dependent manner. Our findings provide valuable insights into the molecular mechanisms underlying MCR basal activity and highlight the role of divalent ions in receptor activation.
Collapse
Affiliation(s)
- Wenbo Feng
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qingtong Zhou
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chang Zheng
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ming-Wei Wang
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Research Center for Deepsea Bioresources, Sanya 572025, China; Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou 570228, China.
| |
Collapse
|
2
|
Ma Y, Patterson B, Zhu L. Biased signaling in GPCRs: Structural insights and implications for drug development. Pharmacol Ther 2025; 266:108786. [PMID: 39719175 DOI: 10.1016/j.pharmthera.2024.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans, playing a crucial role in regulating diverse cellular processes and serving as primary drug targets. Traditional drug design has primarily focused on ligands that uniformly activate or inhibit GPCRs. However, the concept of biased agonism-where ligands selectively stabilize distinct receptor conformations, leading to unique signaling outcomes-has introduced a paradigm shift in therapeutic development. Despite the promise of biased agonists to enhance drug efficacy and minimize side effects, a comprehensive understanding of the structural and biophysical mechanisms underlying biased signaling is essential. Recent advancements in GPCR structural biology have provided unprecedented insights into ligand binding, conformational dynamics, and the molecular basis of biased signaling. These insights, combined with improved techniques for characterizing ligand efficacy, have driven the development of biased ligands for several GPCRs, including opioid, angiotensin, and adrenergic receptors. This review synthesizes these developments, from mechanisms to drug discovery in biased signaling, emphasizing the role of structural insights in the rational design of next-generation biased agonists with superior therapeutic profiles. Ultimately, these advances hold the potential to revolutionize GPCR-targeted drug discovery, paving the way for more precise and effective treatments.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Brandon Patterson
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States.
| |
Collapse
|
3
|
Ojeda-Naharros I, Das T, Castro RA, Bazan JF, Vaisse C, Nachury MV. Tonic ubiquitination of the central body weight regulator melanocortin receptor 4 (MC4R) promotes its constitutive exit from cilia. PLoS Biol 2025; 23:e3003025. [PMID: 39899600 PMCID: PMC11825094 DOI: 10.1371/journal.pbio.3003025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/13/2025] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
The G protein-coupled receptor (GPCR) melanocortin receptor 4 (MC4R) is an essential regulator of body weight homeostasis. MC4R is unusual among GPCRs in that its activity is regulated by 2 opposing physiological ligands, the agonist ⍺-MSH and the antagonist/inverse agonist AgRP. Paradoxically, while MC4R localizes and functions at the cilium of hypothalamic neurons, the ciliary levels of MC4R are very low under unrestricted feeding conditions. Here, we find that the constitutive activity of MC4R is responsible for the continuous depletion of MC4R from cilia and that inhibition of MC4R's activity via AgRP leads to a robust accumulation of MC4R in cilia. Ciliary targeting of MC4R is mediated by its partner MRAP2 and the constitutive exit of MC4R from cilia relies on the sensor of activation β-arrestin, on ubiquitination, and on the BBSome ciliary trafficking complex. Thus, while MC4R exits cilia via conventional mechanisms, it only accumulates in cilia when its activity is suppressed by AgRP.
Collapse
Affiliation(s)
- Irene Ojeda-Naharros
- Department of Ophthalmology, University of California San Francisco, California, United States of America
- Cardiovascular Research Institute, University of California San Francisco, California, United States of America
| | - Tirthasree Das
- Department of Ophthalmology, University of California San Francisco, California, United States of America
- Cardiovascular Research Institute, University of California San Francisco, California, United States of America
| | - Ralph A. Castro
- Department of Ophthalmology, University of California San Francisco, California, United States of America
- Cardiovascular Research Institute, University of California San Francisco, California, United States of America
| | - J. Fernando Bazan
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- ħ bioconsulting llc, Stillwater, Minnesota, United States of America
| | - Christian Vaisse
- Diabetes Center, University of California San Francisco; San Francisco, California, United States of America
| | - Maxence V. Nachury
- Department of Ophthalmology, University of California San Francisco, California, United States of America
- Cardiovascular Research Institute, University of California San Francisco, California, United States of America
| |
Collapse
|
4
|
P de Oliveira SH, Pedawi A, Kenyon V, van den Bedem H. NGT: Generative AI with Synthesizability Guarantees Discovers MC2R Inhibitors from a Tera-Scale Virtual Screen. J Med Chem 2024; 67:19417-19427. [PMID: 39471377 DOI: 10.1021/acs.jmedchem.4c01763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Commercially available, synthesis-on-demand virtual libraries contain upward of trillions of readily synthesizable compounds for drug discovery campaigns. These libraries are a critical resource for rapid cycles of in silico discovery, property optimization and in vitro validation. However, as these libraries continue to grow exponentially in size, traditional search strategies encounter significant limitations. Here we present NeuralGenThesis (NGT), an efficient reinforcement learning approach to generate compounds from ultralarge libraries that satisfy user-specified constraints. Our method first trains a generative model over a virtual library and subsequently trains a normalizing flow to learn a distribution over latent space that decodes constraint-satisfying compounds. NGT allows multiple constraints simultaneously without dictating how molecular properties are calculated. Using NGT, we generated potent and selective inhibitors for the melanocortin-2 receptor (MC2R) from a three trillion compound library. NGT offers a powerful and scalable solution for navigating ultralarge virtual libraries, accelerating drug discovery efforts.
Collapse
Affiliation(s)
| | - Aryan Pedawi
- Atomwise Inc, San Francisco, California 94108, United States
| | - Victor Kenyon
- Atomwise Inc, San Francisco, California 94108, United States
| | - Henry van den Bedem
- Atomwise Inc, San Francisco, California 94108, United States
- Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, California 94143, United States
| |
Collapse
|
5
|
Jamaluddin A, Wyatt RA, Lee J, Dowsett GK, Tadross JA, Broichhagen J, Yeo GS, Levitz J, Gorvin CM. The MRAP2 accessory protein directly interacts with melanocortin-3 receptor to enhance signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622243. [PMID: 39574659 PMCID: PMC11580913 DOI: 10.1101/2024.11.06.622243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The central melanocortin system links nutrition to energy expenditure, with melanocortin-4 receptor (MC4R) controlling appetite and food intake, and MC3R regulating timing of sexual maturation, rate of linear growth and lean mass accumulation. Melanocortin-2 receptor accessory protein-2 (MRAP2) is a single transmembrane protein that interacts with MC4R to potentiate it's signalling, and human mutations in MRAP2 cause obesity. Previous studies have been unable to consistently show whether MRAP2 affects MC3R activity. Here we used single-molecule pull-down (SiMPull) to confirm that MC3R and MRAP2 interact in HEK293 cells. Analysis of fluorescent photobleaching steps showed that MC3R and MRAP2 readily form heterodimers most commonly with a 1:1 stoichiometry. Human single-nucleus and spatial transcriptomics show MRAP2 is co-expressed with MC3R in hypothalamic neurons with important roles in energy homeostasis and appetite control. Functional analyses showed MRAP2 enhances MC3R cAMP signalling, impairs β-arrestin recruitment, and reduces internalization in HEK293 cells. Structural homology models revealed putative interactions between the two proteins and alanine mutagenesis of five MRAP2 and three MC3R transmembrane residues significantly reduced MRAP2 effects on MC3R signalling. Finally, we showed genetic variants in MRAP2 that have been identified in individuals that are overweight or obese prevent MRAP2's enhancement of MC3R-driven signalling. Thus, these studies reveal MRAP2 as an important regulator of MC3R function and provide further evidence for the crucial role of MRAP2 in energy homeostasis.
Collapse
Affiliation(s)
- Aqfan Jamaluddin
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Rachael A. Wyatt
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Joon Lee
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Georgina K.C. Dowsett
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - John A. Tadross
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
- East Genomics Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Giles S.H. Yeo
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Caroline M. Gorvin
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| |
Collapse
|
6
|
Weirath NA, Haskell-Luevano C. Recommended Tool Compounds for the Melanocortin Receptor (MCR) G Protein-Coupled Receptors (GPCRs). ACS Pharmacol Transl Sci 2024; 7:2706-2724. [PMID: 39296259 PMCID: PMC11406693 DOI: 10.1021/acsptsci.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024]
Abstract
The melanocortin receptors are a centrally and peripherally expressed family of Class A GPCRs with physiological roles, including pigmentation, steroidogenesis, energy homeostasis, and others yet to be fully characterized. There are five melanocortin receptor subtypes that, apart from the melanocortin-2 receptor (MC2R), are stimulated by a shared set of endogenous agonists. Until 2020, X-ray crystallographic and cryo-electron microscopic (cryo-EM) structures of these receptors were unavailable, and the investigation of their mechanisms of action and putative ligand-receptor interactions was driven by site-directed mutagenesis studies of the receptors and targeted structure-activity relationship (SAR) studies of the endogenous and derivative synthetic ligands. Synthetic derivatives of the endogenous agonist ligand α-MSH have evolved into a suite of powerful ligands such as NDP-MSH (melanotan I), melanotan II (MTII), and SHU9119. This suite of tool compounds now enables the study of the melanocortin receptors and serves as scaffolds for FDA-approved drugs, means of validating stably expressing melanocortin receptor cell lines, core ligands in assessing cryo-EM structures of active and inactive receptor complexes, and essential references for high-throughput discovery and mechanism of action studies. Herein, we review the history and significance of a finite set of these essential tool compounds and discuss how they are being utilized to further the field's understanding of melanocortin receptor physiology and greater druggability.
Collapse
Affiliation(s)
- Nicholas A Weirath
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Wang M, Lyu J, Zhang C. Single transmembrane GPCR modulating proteins: neither single nor simple. Protein Cell 2024; 15:395-402. [PMID: 37314044 PMCID: PMC11131010 DOI: 10.1093/procel/pwad035] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023] Open
Affiliation(s)
- Meng Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jianjun Lyu
- Hubei Topgene Research Institute of Hubei Topgene Biotechnology Co., Ltd, East Lake High-Tech Development Zone, Wuhan 430205, China
| | - Chao Zhang
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University, Shanghai 200092, China
| |
Collapse
|
8
|
Pirona L, Ballabio F, Alfonso-Prieto M, Capelli R. Calcium-Driven In Silico Inactivation of a Human Olfactory Receptor. J Chem Inf Model 2024; 64:2971-2978. [PMID: 38523266 DOI: 10.1021/acs.jcim.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Conformational changes as well as molecular determinants related to the activation and inactivation of olfactory receptors are still poorly understood due to the intrinsic difficulties in the structural determination of this GPCR family. Here, we perform, for the first time, the in silico inactivation of human olfactory receptor OR51E2, highlighting the possible role of calcium in this receptor state transition. Using molecular dynamics simulations, we show that a divalent ion in the ion binding site, coordinated by two acidic residues at positions 2.50 and 3.39 conserved across most ORs, stabilizes the receptor in its inactive state. In contrast, protonation of the same two acidic residues is not sufficient to drive inactivation within the microsecond timescale of our simulations. Our findings suggest a novel molecular mechanism for OR inactivation, potentially guiding experimental validation and offering insights into the possible broader role of divalent ions in GPCR signaling.
Collapse
Affiliation(s)
- Lorenza Pirona
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, I-20133 Milano, Italy
| | - Federico Ballabio
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, I-20133 Milano, Italy
| | - Mercedes Alfonso-Prieto
- Computational Biomedicine, Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, D-54248 Jülich, Germany
| | - Riccardo Capelli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, I-20133 Milano, Italy
| |
Collapse
|
9
|
Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct Target Ther 2024; 9:88. [PMID: 38594257 PMCID: PMC11004190 DOI: 10.1038/s41392-024-01803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of human membrane proteins and an important class of drug targets, play a role in maintaining numerous physiological processes. Agonist or antagonist, orthosteric effects or allosteric effects, and biased signaling or balanced signaling, characterize the complexity of GPCR dynamic features. In this study, we first review the structural advancements, activation mechanisms, and functional diversity of GPCRs. We then focus on GPCR drug discovery by revealing the detailed drug-target interactions and the underlying mechanisms of orthosteric drugs approved by the US Food and Drug Administration in the past five years. Particularly, an up-to-date analysis is performed on available GPCR structures complexed with synthetic small-molecule allosteric modulators to elucidate key receptor-ligand interactions and allosteric mechanisms. Finally, we highlight how the widespread GPCR-druggable allosteric sites can guide structure- or mechanism-based drug design and propose prospects of designing bitopic ligands for the future therapeutic potential of targeting this receptor family.
Collapse
Affiliation(s)
- Mingyang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xun Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Affiliated to Naval Medical University, Shanghai, 200433, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
10
|
Ye C, Zhou Q, Lin S, Yang W, Cai X, Mai Y, Chen Y, Yang D, Wang MW. High expression of GPR160 in prostate cancer is unrelated to CARTp-mediated signaling pathways. Acta Pharm Sin B 2024; 14:1467-1471. [PMID: 38487007 PMCID: PMC10935005 DOI: 10.1016/j.apsb.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 03/17/2024] Open
Affiliation(s)
- Chenyu Ye
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Research Center for Deepsea Bioresources, Sanya 572025, China
| | - Shi Lin
- Research Center for Deepsea Bioresources, Sanya 572025, China
| | - Wensheng Yang
- Department of Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Xiaoqing Cai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiting Mai
- Research Center for Deepsea Bioresources, Sanya 572025, China
| | - Yanyan Chen
- Research Center for Deepsea Bioresources, Sanya 572025, China
| | - Dehua Yang
- Research Center for Deepsea Bioresources, Sanya 572025, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Research Center for Deepsea Bioresources, Sanya 572025, China
- Department of Chemistry, School of Science, the University of Tokyo, Tokyo 113-0033, Japan
- School of Pharmacy, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
11
|
Gimenez LE, Martin C, Yu J, Hollanders C, Hernandez CC, Wu Y, Yao D, Han GW, Dahir NS, Wu L, Van der Poorten O, Lamouroux A, Mannes M, Zhao S, Tourwé D, Stevens RC, Cone RD, Ballet S. Novel Cocrystal Structures of Peptide Antagonists Bound to the Human Melanocortin Receptor 4 Unveil Unexplored Grounds for Structure-Based Drug Design. J Med Chem 2024; 67:2690-2711. [PMID: 38345933 DOI: 10.1021/acs.jmedchem.3c01822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Melanocortin 4 receptor (MC4-R) antagonists are actively sought for treating cancer cachexia. We determined the structures of complexes with PG-934 and SBL-MC-31. These peptides differ from SHU9119 by substituting His6 with Pro6 and inserting Gly10 or Arg10. The structures revealed two subpockets at the TM7-TM1-TM2 domains, separated by N2857.36. Two peptide series based on the complexed peptides led to an antagonist activity and selectivity SAR study. Most ligands retained the SHU9119 potency, but several SBL-MC-31-derived peptides significantly enhanced MC4-R selectivity over MC1-R by 60- to 132-fold. We also investigated MC4-R coupling to the K+ channel, Kir7.1. Some peptides activated the channel, whereas others induced channel closure independently of G protein coupling. In cell culture studies, channel activation correlated with increased feeding, while a peptide with Kir7.1 inhibitory activity reduced eating. These results highlight the potential for targeting the MC4-R:Kir7.1 complex for treating positive and restrictive eating disorders.
Collapse
Affiliation(s)
- Luis E Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Jing Yu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Charlie Hollanders
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Deqiang Yao
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Gye Won Han
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Naima S Dahir
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Olivier Van der Poorten
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Arthur Lamouroux
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Morgane Mannes
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| |
Collapse
|
12
|
Kardas Yildiz A, Bulbul A, Ozer Bekmez B, Turkyilmaz A, Terali K, Dagdeviren Cakir A, Ucar A. A Rare Presentation of Homozygous Pathogenic Variant in MC2R Gene with Salt-Wasting Crisis in a Neonate. Mol Syndromol 2024; 15:77-82. [PMID: 38357256 PMCID: PMC10862318 DOI: 10.1159/000533986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/02/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction Familial glucocorticoid deficiency (FGD) is a rare autosomal recessive disease resulting from isolated glucocorticoid deficiency or unresponsiveness to adrenocorticotropic hormone. Patients with FGD usually present in infancy or early childhood with hyperpigmentation, recurrent infections, and hypoglycemia. The salt-wasting crisis is rare. Case Presentation A term female neonate was admitted to the neonatal intensive care unit due to respiratory distress. On physical examination, she had generalized hyperpigmentation. Initial laboratory work-up yielded normal serum electrolytes and glucose. Hyponatremia and hyperkalemia emerged on follow-up. The patient was diagnosed as having primary adrenal insufficiency (PAI) with elevated plasma adrenocorticotropin hormone and reduced cortisol levels and hydrocortisone. We started on oral sodium (5 mEq/kg/day) and fludrocortisone (FC) (0.2 mg/day) treatment to the patient. Ultrasonography revealed hypoplastic adrenal glands. Molecular genetic analysis revealed a previously reported homozygous pathogenic variant NM_000529.2: c.560delT (p.V187fs*29) in the MC2R gene. FC dose was tapered to 0.05 mg/day on the third month of life and was stopped at tenth months of age with maintenance of normal serum electrolytes and clinical findings. Conclusion FGD due to MC2R gene mutation may rarely present with a salt-wasting crisis in the neonatal period. Identifying the causative gene with the pathogenic variant in PAI may serve to individualize a treatment plan.
Collapse
Affiliation(s)
- Aysenur Kardas Yildiz
- Department of Pediatrics, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Ali Bulbul
- Department of Neonatology, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Buse Ozer Bekmez
- Department of Neonatology, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Ayberk Turkyilmaz
- Department of Medical Genetics, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Kerem Terali
- Department of Medical Biochemistry, Cyprus International University Faculty of Medicine, Nicosia, Cyprus
| | - Aydilek Dagdeviren Cakir
- Department of Pediatric Endocrinology, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Ahmet Ucar
- Department of Pediatric Endocrinology, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
13
|
Guo Y, Zhou Q, Wei B, Wang MW, Zhao S. GPCRana: A web server for quantitative analysis of GPCR structures. Structure 2023; 31:1132-1142.e2. [PMID: 37392740 DOI: 10.1016/j.str.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023]
Abstract
G protein-coupled receptors (GPCRs) attract tremendous attention from both industrial and academic researchers with currently over 900 released structures. Structural analysis is widely used to understand receptor functionality and pharmacology, but more user-friendly tools are needed. Residue-residue contact score (RRCS) is an atomic distance-based method that allows a quantitative description of GPCR structures. Here, we present GPCRana, a web server that provides a user-friendly interface to analyze GPCR structures. After uploading selected structures, GPCRana immediately generates a comprehensive report covering four aspects: (i) RRCS for all residue pairs incorporated with real-time 3D visualization; (ii) ligand-receptor interactions; (iii) activation pathway analysis; and (iv) RRCS_TMs that indicates the global movements of transmembrane helices. Moreover, conformational changes between two structures can be analyzed. Applying GPCRana on AlphaFold2-predicted models reveals differentiated inter-helical packing forms in a receptor-dependent manner. Our web server offers a fast and precise way to study GPCR structures and is freely available at http://gpcranalysis.com/#/.
Collapse
Affiliation(s)
- Yu Guo
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China.
| | - Bin Wei
- Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China; Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
14
|
Feng W, Zhou Q, Chen X, Dai A, Cai X, Liu X, Zhao F, Chen Y, Ye C, Xu Y, Cong Z, Li H, Lin S, Yang D, Wang MW. Structural insights into ligand recognition and subtype selectivity of the human melanocortin-3 and melanocortin-5 receptors. Cell Discov 2023; 9:81. [PMID: 37524700 PMCID: PMC10390531 DOI: 10.1038/s41421-023-00586-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023] Open
Abstract
Members of the melanocortin receptor (MCR) family that recognize different melanocortin peptides mediate a broad spectrum of cellular processes including energy homeostasis, inflammation and skin pigmentation through five MCR subtypes (MC1R-MC5R). The structural basis of subtype selectivity of the endogenous agonist γ-MSH and non-selectivity of agonist α-MSH remains elusive, as the two agonists are highly similar with a conserved HFRW motif. Here, we report three cryo-electron microscopy structures of MC3R-Gs in complex with γ-MSH and MC5R-Gs in the presence of α-MSH or a potent synthetic agonist PG-901. The structures reveal that α-MSH and γ-MSH adopt a "U-shape" conformation, penetrate into the wide-open orthosteric pocket and form massive common contacts with MCRs via the HFRW motif. The C-terminus of γ-MSH occupies an MC3R-specific complementary binding groove likely conferring subtype selectivity, whereas that of α-MSH distances itself from the receptor with neglectable contacts. PG-901 achieves the same potency as α-MSH with a shorter length by rebalancing the recognition site and mimicking the intra-peptide salt bridge in α-MSH by cyclization. Solid density confirmed the calcium ion binding in MC3R and MC5R, and the distinct modulation effects of divalent ions were demonstrated. Our results provide insights into ligand recognition and subtype selectivity among MCRs, and expand the knowledge of signal transduction among MCR family members.
Collapse
Affiliation(s)
- Wenbo Feng
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xianyue Chen
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Antao Dai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoqing Cai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fenghui Zhao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chenyu Ye
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yingna Xu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaotong Cong
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hao Li
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Shi Lin
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Dehua Yang
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan.
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
15
|
Hilger D. Buckle up! How the nano-seatbelt MRAP1 fastens ACTH in its orthosteric seat. Cell Res 2023; 33:191-192. [PMID: 36646762 PMCID: PMC9977889 DOI: 10.1038/s41422-022-00767-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Daniel Hilger
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|