1
|
Chopp LB, Zhu X, Gao Y, Nie J, Singh J, Kumar P, Young KZ, Patel S, Li C, Balmaceno-Criss M, Vacchio MS, Wang MM, Livak F, Merchant JL, Wang L, Kelly MC, Zhu J, Bosselut R. Zfp281 and Zfp148 control CD4 + T cell thymic development and T H2 functions. Sci Immunol 2023; 8:eadi9066. [PMID: 37948511 DOI: 10.1126/sciimmunol.adi9066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
How CD4+ lineage gene expression is initiated in differentiating thymocytes remains poorly understood. Here, we show that the paralog transcription factors Zfp281 and Zfp148 control both this process and cytokine expression by T helper cell type 2 (TH2) effector cells. Genetic, single-cell, and spatial transcriptomic analyses showed that these factors promote the intrathymic CD4+ T cell differentiation of class II major histocompatibility complex (MHC II)-restricted thymocytes, including expression of the CD4+ lineage-committing factor Thpok. In peripheral T cells, Zfp281 and Zfp148 promoted chromatin opening at and expression of TH2 cytokine genes but not of the TH2 lineage-determining transcription factor Gata3. We found that Zfp281 interacts with Gata3 and is recruited to Gata3 genomic binding sites at loci encoding Thpok and TH2 cytokines. Thus, Zfp148 and Zfp281 collaborate with Gata3 to promote CD4+ T cell development and TH2 cell responses.
Collapse
Affiliation(s)
- Laura B Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Immunology Graduate Group, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA
| | - Xiaoliang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yayi Gao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jia Nie
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jatinder Singh
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Parimal Kumar
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kelly Z Young
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shil Patel
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- University of Maryland Medical School, Baltimore, MD 21201, USA
| | - Caiyi Li
- Flow Cytometry Core, Laboratory of Genomic Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mariah Balmaceno-Criss
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melanie S Vacchio
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael M Wang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Ferenc Livak
- Flow Cytometry Core, Laboratory of Genomic Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juanita L Merchant
- Department of Gastroenterology and Hepatology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Lie Wang
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Michael C Kelly
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Liu J, Liu Y, Yang C, Liu J, Hao J. Comprehensive analysis for the immune related biomarkers of platinum-based chemotherapy in ovarian cancer. Transl Oncol 2023; 37:101762. [PMID: 37619523 PMCID: PMC10458992 DOI: 10.1016/j.tranon.2023.101762] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the most lethal gynecological malignancies. This study aimed to identify biomarkers that were sensitive to platinum-based chemotherapeutic agents and can be used in immunotherapy and explore the importance of their mechanisms of action. METHODS RNA-seq profiles and clinicopathological data for OC samples were obtained from The Cancer Genome Atlas (TCGA) and cBioPortal platform, respectively. Platinum-sensitive and platinum-resistant OC samples in the TCGA cohort were selected based on the clinical information. RNA-seq data for 70 OC samples withSingle-sample gene set enrichment analysis (ssGSEA) and unsupervised clustering were used to classify OC patients from the TCGA cohort into clusters with different proportions of infiltrating immune cells. ESTIMATE analysis was used to assess the immune landscape among clusters. Differential expression, univariate Cox regression, and LASSO regression analyses were performed to construct prognostic model. Spearman correlation analysis was conducted to investigate the correlations among immune checkpoint inhibitors (ICIs) and risk score, half-maximal drug inhibitory concentration (IC50) and risk score. RESULTS Using ssGSEA and unsupervised clustering, OC samples were divided into two clusters with different immune cell infiltration. Then, 1715 differentially expressed immune-related genes (DEIRGs) were identified between two clusters, 984 differentially expressed platinum-sensitive related genes (DEPSRGs) between 149 platinum-sensitive and 63 platinum-resistant OC samples were identified, and 5384 differentially expressed genes (DEGs) between 380 OC and 194 normal samples were detected from the TCGA cohort. Six biomarkers (GMPPB, SRPK1, STC1, PRSS16, HPDL, and SPTSSB) were detected to establish a prognostic model. The OC patients in the TCGA cohort were classified into high- and low-risk groups. The receive operating characteristic (ROC) curve was plotted and demonstrated that the prognostic model performed well with the area under ROC curve (AUC) greater than 0.6. The expressions of 5 ICIs, including CD200, TNFRSF18, CD160, CD200R1, and CD274 (PD-L1), were significantly different between two risk groups, and the risk score was significant negative associated with CTLA4, TNFRSF4, TNFRSF18, and CD274. Moreover, there were significant differences in IC50 of 10 chemo drugs between two risk groups, patients in the high-risk group could be more resistant to po0tinib, dasatinib, and neratinib. CONCLUSION In summary, this study constructed a novel prognostic model based on six prognostic biomarkers, including GMPPB, SRPK1, STC1, PRSS16, HPDL, and SPTSSB, which can be utilized for predicting the prognosis of OC patients. These biomarkers were the potential therapeutic targets.
Collapse
Affiliation(s)
- Jiao Liu
- Department of Gynecology, Benxi Central Hospital, Benxi 117000, Liaoning Province, China
| | - Yaoyao Liu
- Department of Gynecology, Benxi Central Hospital, Benxi 117000, Liaoning Province, China
| | - Chunjiao Yang
- Department of Radiotheropy, Benxi Central Hospital, Benxi 117000, Liaoning Province, China
| | - Jingjing Liu
- Department of Gynecology, Benxi Central Hospital, Benxi 117000, Liaoning Province, China
| | - Jiaxin Hao
- Department of Orthopedics, Benxi Central Hospital, Benxi 117000, Liaoning Province, China.
| |
Collapse
|
3
|
Darmadi D, Lindarto D, Siregar J, Widyawati T, Rusda M, Amin MM, Yusuf F, Eyanoer PC, Lubis M, Rey I. Factors affecting HBV DNA suppression in chronic hepatitis B patients treated with tenofovir disoproxil fumarate. F1000Res 2023; 11:1521. [PMID: 37767077 PMCID: PMC10521109 DOI: 10.12688/f1000research.128116.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Background: This study aims to determine the factors affecting HBV DNA suppression in chronic hepatitis B patients with tenofovir disoproxil fumarate (TDF). Methods: A case-control was carried out from October 2021 to August 2022 on 182 chronic hepatitis B patients who had TDF therapy regularly for 24 weeks at H. Adam Malik and USU Hospitals in Medan, Indonesia. The history of the samples was obtained, followed by physical examination, and blood collection. CTLA-4 polymorphism examination was carried out using real-time PCR, while the serum CTLA-4 levels were assessed with ELISA. Results: The CTLA-4 -1661G>A polymorphism, genotype GG+AG, increased 1.52 times risk of not achieving HBV DNA suppression to TDF compared to genotype AA (p=0.041). High CTLA-4 levels increased 2.28 times risk, high HBV DNA levels increased 2.09 times risk, low ALT levels increased 1.95 times risk of not achieving HBV DNA suppression (p= 0.009, 0.026, 0.036, respectively). There was no relationship between gender, age, ethnicity, obesity, baseline AST, HBeAg, genotype, liver fibrosis and HBV DNA suppression after 24 weeks of treatment (p>0.05). Conclusions: The levels of CTLA-4, HBV DNA, ALT, and CTLA-4 -1661G>A polymorphism have a potential relationship with the suppression of HBV DNA in chronic hepatitis B patients with TDF.
Collapse
Affiliation(s)
- Darmadi Darmadi
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, 20155, Indonesia
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, 20155, Indonesia
| | - Dharma Lindarto
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, 20155, Indonesia
| | - Jelita Siregar
- Department of Clinical Pathology, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, 20155, Indonesia
| | - Tri Widyawati
- Department of Pharmacology and Therapeutic, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, 20155, Indonesia
- Master Program in Tropical Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, 20155, Indonesia
| | - Muhammad Rusda
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, 20155, Indonesia
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, 20155, Indonesia
| | - Mustafa Mahmud Amin
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, 20155, Indonesia
- Department of Psychiatry, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, 20155, Indonesia
| | - Fauzi Yusuf
- Department of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Putri Chairani Eyanoer
- Department of Public Health, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, 20155, Indonesia
| | - Masrul Lubis
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, 20155, Indonesia
| | - Imelda Rey
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, 20155, Indonesia
| |
Collapse
|
4
|
Fan X, Huang Y, Zhong Y, Yan Y, Li J, Fan Y, Xie F, Luo Q, Zhang Z. A new marker constructed from immune-related lncRNA pairs can be used to predict clinical treatment effects and prognosis: in-depth exploration of underlying mechanisms in HNSCC. World J Surg Oncol 2023; 21:250. [PMID: 37592311 PMCID: PMC10433616 DOI: 10.1186/s12957-023-03066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/04/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) plays a vital role in tumor proliferation, migration, and treatment. Since it is challenging to standardize the gene expression levels detected by different platforms, the signatures composed of many immune-related single lncRNAs are still inaccurate. Utilizing a gene pair formed of two immune-related lncRNAs and strategically assigning values can effectively meet the demand for a higher-accuracy dual biomarker combination. METHODS Co-expression and differential expression analyses were performed on immune genes and lncRNAs data from The Cancer Genome Atlas and the ImmPort database to obtain differentially expressed immune-related lncRNAs for pairwise pairing. The prognostic-related differentially expressed immune-related lncRNAs (PR-DE-irlncRNAs) pairs were then identified by univariate Cox regression and used for lasso regression to construct a prognostic model. Various methods were used to validate the predictive prognostic performance of the model. Additionally, we explored the potential guiding value of the model in immunotherapy and chemotherapy and constructed a nomogram suitable for efficient prognosis prediction. Mechanistic exploration of anti-tumor immunity and mutational perspectives are also included. We also analyzed the correlation between the model and immune checkpoint inhibitors (ICIs)-related, N6-methyadenosine (m6A)-related, and multidrug resistance genes. RESULTS We used a total of 20 pairs of PR-DE-irlncRNAs to create a prognosis model. Quantitative real-time polymerase chain reaction experiments further verified the abnormal expression of 11 lncRNAs in HNSCC cells. Various methods have confirmed the excellent performance of the model in predicting patient prognosis. We reasoned that lncRNAs/TP53 mutation might play a positive/negative anti-tumor role through the immune system by multi-perspective analyses. Finally, it was found that the prognostic model was closely related to immunotherapy and chemotherapy as well as the expression of ICIs/m6A/multidrug resistance-related genes. CONCLUSION The prognostic model performs excellently in predicting the prognosis of patients and provides the potential value of practical guidance for treatment.
Collapse
Affiliation(s)
- Xin Fan
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yuhan Huang
- Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Yun Zhong
- The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yujie Yan
- School of Stomatology, Nanchang University, Nanchang, Jiangxi Province, China
| | - Jiaqi Li
- School of Stomatology, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yanting Fan
- The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Fei Xie
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Qing Luo
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhiyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
5
|
Hu L, Han M, Deng Y, Gong J, Hou Z, Zeng Y, Zhang Y, He J, Zhong C. Genetic distinction between functional tissue-resident and conventional natural killer cells. iScience 2023; 26:107187. [PMID: 37404378 PMCID: PMC10316664 DOI: 10.1016/j.isci.2023.107187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023] Open
Abstract
Tissue-residential natural killer (trNK) cells act as pioneering responders during infectious challenges. However, their discrimination with conventional NK (cNK) cells is still an issue. Through an integrative transcriptome comparison of the two NK subgroups from different tissues, we have defined two genesets capable of efficiently distinguishing them. Based on the two genesets, a fundamental difference between the activation of trNK and cNK is identified and further confirmed. Mechanistically, we have discovered a particular role of chromatin landscape in regulating the trNK activation. In addition, IL-21R and IL-18R are respectively highly expressed by trNK and cNK, indicating a role of cytokine milieu in determining their differential activation. Indeed, IL-21 is particularly critical in accessorily promoting trNK activation using a bunch of bifunctional transcription factors. Together, this study sheds light on the bona fide difference between trNK and cNK, which will further expand our knowledge about their distinct functionalities during immune responses.
Collapse
Affiliation(s)
- Luni Hu
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Mengwei Han
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yichen Deng
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jingjing Gong
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China
| | - Zhiyuan Hou
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China
| | - Yanyu Zeng
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yime Zhang
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jing He
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Chao Zhong
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
6
|
Hussain S, Sadouni N, van Essen D, Dao LTM, Ferré Q, Charbonnier G, Torres M, Gallardo F, Lecellier CH, Sexton T, Saccani S, Spicuglia S. Short tandem repeats are important contributors to silencer elements in T cells. Nucleic Acids Res 2023; 51:4845-4866. [PMID: 36929452 PMCID: PMC10250210 DOI: 10.1093/nar/gkad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 02/26/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
The action of cis-regulatory elements with either activation or repression functions underpins the precise regulation of gene expression during normal development and cell differentiation. Gene activation by the combined activities of promoters and distal enhancers has been extensively studied in normal and pathological contexts. In sharp contrast, gene repression by cis-acting silencers, defined as genetic elements that negatively regulate gene transcription in a position-independent fashion, is less well understood. Here, we repurpose the STARR-seq approach as a novel high-throughput reporter strategy to quantitatively assess silencer activity in mammals. We assessed silencer activity from DNase hypersensitive I sites in a mouse T cell line. Identified silencers were associated with either repressive or active chromatin marks and enriched for binding motifs of known transcriptional repressors. CRISPR-mediated genomic deletions validated the repressive function of distinct silencers involved in the repression of non-T cell genes and genes regulated during T cell differentiation. Finally, we unravel an association of silencer activity with short tandem repeats, highlighting the role of repetitive elements in silencer activity. Our results provide a general strategy for genome-wide identification and characterization of silencer elements.
Collapse
Affiliation(s)
- Saadat Hussain
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Nori Sadouni
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Dominic van Essen
- Institute for Research on Cancer and Ageing, IRCAN, 06107 Nice, France
| | - Lan T M Dao
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Quentin Ferré
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Guillaume Charbonnier
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Magali Torres
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Frederic Gallardo
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Charles-Henri Lecellier
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- LIRMM, University of Montpellier, CNRS, Montpellier, France
| | - Tom Sexton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire – IGBMC (CNRS UMR 7104, INSERM U1258, Université de Strasbourg), 67404 Illkirch, France
| | - Simona Saccani
- Institute for Research on Cancer and Ageing, IRCAN, 06107 Nice, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| |
Collapse
|
7
|
Engineering micro oxygen factories to slow tumour progression via hyperoxic microenvironments. Nat Commun 2022; 13:4495. [PMID: 35918337 PMCID: PMC9345862 DOI: 10.1038/s41467-022-32066-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/18/2022] [Indexed: 12/11/2022] Open
Abstract
While hypoxia promotes carcinogenesis, tumour aggressiveness, metastasis, and resistance to oncological treatments, the impacts of hyperoxia on tumours are rarely explored because providing a long-lasting oxygen supply in vivo is a major challenge. Herein, we construct micro oxygen factories, namely, photosynthesis microcapsules (PMCs), by encapsulation of acquired cyanobacteria and upconversion nanoparticles in alginate microcapsules. This system enables a long-lasting oxygen supply through the conversion of external radiation into red-wavelength emissions for photosynthesis in cyanobacteria. PMC treatment suppresses the NF-kB pathway, HIF-1α production and cancer cell proliferation. Hyperoxic microenvironment created by an in vivo PMC implant inhibits hepatocarcinoma growth and metastasis and has synergistic effects together with anti-PD-1 in breast cancer. The engineering oxygen factories offer potential for tumour biology studies in hyperoxic microenvironments and inspire the exploration of oncological treatments.
Collapse
|
8
|
Transcriptional regulation of the immune checkpoints PD-1 and CTLA-4. Cell Mol Immunol 2022; 19:861-862. [DOI: 10.1038/s41423-022-00877-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/08/2022] Open
|
9
|
Wei Z, Shen Y, Zhou C, Cao Y, Deng H, Shen Z. CD3D: a prognostic biomarker associated with immune infiltration and immunotherapeutic response in head and neck squamous cell carcinoma. Bioengineered 2022; 13:13784-13800. [PMID: 35712757 PMCID: PMC9276048 DOI: 10.1080/21655979.2022.2084254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Recent studies have demonstrated that CD3D activates T-cell-related signal transduction and is associated with the antitumor immune response in several cancers. This study explored the role of CD3D in head and neck squamous cell carcinoma (HNSCC). A total of 499 HNSCC tissues and 44 normal controls were acquired from The Cancer Genome Atlas as the training cohort. GSE65858 included 270 HNSCC patients and was obtained from the Gene Expression Omnibus database as the test cohort. Overall, 172 HNSCC patients were collected as the validation cohort. CD3D expression in the validation cohort was measured by quantitative real-time polymerase chain reaction. The Kaplan-Meier plot revealed that high CD3D expression was associated with longer overall survival in HNSCC patients. Univariate and multivariate analyses showed that CD3D expression was an independent prognostic factor for HNSCC patients, which was confirmed in the test cohort and validation cohort. Furthermore, GO, KEGG, and GSEA analyses revealed the association of CD3D with immune-related pathways. Subsequently, ESTIMATE analysis showed the association between CD3D and the tumor microenvironment, while ssGSEA showed a remarkable positive link between CD3D and immune-related functions. Multiple algorithms demonstrated that high CD3D expression was associated with more immune effector cell infiltration. Finally, the tumor immune dysfunction and exclusion (TIDE) score and immunophenoscore (IPS) showed that patients with high CD3D could benefit from immunotherapy. In summary, CD3D was an independent favorable prognostic biomarker and correlated with immune cell infiltration and immune-related function, as well as an efficient indicator of immunotherapy response for HNSCC patients.
Collapse
Affiliation(s)
- Zhengyu Wei
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang, China.,School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yiming Shen
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang, China.,School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang, China
| | - Yujie Cao
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang, China.,School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang, China.,School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
10
|
Optineurin modulates the maturation of dendritic cells to regulate autoimmunity through JAK2-STAT3 signaling. Nat Commun 2021; 12:6198. [PMID: 34707127 PMCID: PMC8551263 DOI: 10.1038/s41467-021-26477-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/30/2021] [Indexed: 02/01/2023] Open
Abstract
Optineurin (OPTN) has important functions in diverse biological processes and diseases, but its effect on dendritic cell (DC) differentiation and functionality remains elusive. Here we show that OPTN is upregulated in human and mouse DC maturation, and that deletion of Optn in mice via CD11c-Cre attenuates DC maturation and impairs the priming of CD4+ T cells, thus ameliorating autoimmune symptoms such as experimental autoimmune encephalomyelitis (EAE). Mechanistically, OPTN binds to the JH1 domain of JAK2 and inhibits JAK2 dimerization and phosphorylation, thereby preventing JAK2-STAT3 interaction and inhibiting STAT3 phosphorylation to suppress downstream transcription of IL-10. Without such a negative regulation, Optn-deficient DCs eventually induce an IL-10/JAK2/STAT3/IL-10 positive feedback loop to suppress DC maturation. Finally, the natural product, Saikosaponin D, is identified as an OPTN inhibitor, effectively inhibiting the immune-stimulatory function of DCs and the disease progression of EAE in mice. Our findings thus highlight a pivotal function of OPTN for the regulation of DC functions and autoimmune disorders.
Collapse
|
11
|
Xia Y, He F, Wu X, Tan B, Chen S, Liao Y, Qi M, Chen S, Peng Y, Yin Y, Ren W. GABA transporter sustains IL-1β production in macrophages. SCIENCE ADVANCES 2021; 7:7/15/eabe9274. [PMID: 33827820 PMCID: PMC8026138 DOI: 10.1126/sciadv.abe9274] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/18/2021] [Indexed: 05/03/2023]
Abstract
Accumulating evidence shows that nervous system governs host immune responses; however, how γ-aminobutyric acid (GABA)ergic system shapes the function of innate immune cells is poorly defined. Here, we demonstrate that GABA transporter (GAT2) modulates the macrophage function. GAT2 deficiency lowers the production of interleukin-1β (IL-1β) in proinflammatory macrophages. Mechanistically, GAT2 deficiency boosts the betaine/S-adenosylmethionine (SAM)/hypoxanthine metabolic pathway to inhibit transcription factor KID3 expression through the increased DNA methylation in its promoter region. KID3 regulates oxidative phosphorylation (OXPHOS) via targeting the expression of OXPHOS-related genes and is also critical for NLRP3-ASC-caspase-1 complex formation. Likewise, GAT2 deficiency attenuates macrophage-mediated inflammatory responses in vivo, including lipopolysaccharide-induced sepsis, infection-induced pneumonia, and high-fat diet-induced obesity. Together, we propose that targeting GABAergic system (e.g., GABA transporter) could provide previously unidentified therapeutic opportunities for the macrophage-associated diseases.
Collapse
Affiliation(s)
- Yaoyao Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fang He
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xiaoyan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Siyuan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yuexia Liao
- College of Nursing, Yangzhou University, Yangzhou 225009, China
| | - Ming Qi
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Shuai Chen
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yuanyi Peng
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
12
|
Wagner M, Jasek M, Karabon L. Immune Checkpoint Molecules-Inherited Variations as Markers for Cancer Risk. Front Immunol 2021; 11:606721. [PMID: 33519815 PMCID: PMC7840570 DOI: 10.3389/fimmu.2020.606721] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, immunotherapy has been revolutionized by a new approach that works by blocking receptors called immune checkpoints (IC). These molecules play a key role in maintaining immune homeostasis, mainly by suppressing the immune response and by preventing its overactivation. Since inhibition of the immune response by IC can be used by cancer to avoid recognition and destruction by immune system, blocking them enhances the anti-tumor response. This therapeutic approach has brought spectacular clinical effects. The ICs present heterogeneous expression patterns on immune cells, which may affect the effectiveness of immunotherapy. The inherited genetic variants in regulatory regions of ICs genes can be considered as potential factors responsible for observed inter-individual differences in ICs expression levels on immune cells. Additionally, polymorphism located in exons may introduce changes to ICs amino acid sequences with potential impact on functional properties of these molecules. Since genetic variants may affect both expression and structure of ICs, they are considered as risk factors of cancer development. Inherited genetic markers such as SNPs may also be useful in stratification patients into groups which will benefit from particular immunotherapy. In this review, we have comprehensively summarized the current understanding of the relationship between inherited variations of CTLA-4, PDCD1, PD-L1, BTLA, TIM-3, and LAG-3 genes in order to select SNPs which can be used as predictive biomarkers in personalized evaluation of cancer risk development and outcomes as well as possible response to immunotherapy.
Collapse
Affiliation(s)
| | - Monika Jasek
- Laboratory of Genetics and Epigenetics of Human Diseases, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | |
Collapse
|