1
|
Obewhere OA, Acurio-Cerda K, Sutradhar S, Dike M, Keloth R, Dishari SK. Unravel-engineer-design: a three-pronged approach to advance ionomer performance at interfaces in proton exchange membrane fuel cells. Chem Commun (Camb) 2024; 60:13114-13142. [PMID: 39356467 PMCID: PMC11560688 DOI: 10.1039/d4cc03221g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Proton exchange membrane fuel cells (PEMFCs), which use hydrogen as fuel, present an eco-friendly alternative to internal combustion engines (ICEs) for powering low-to-heavy-duty vehicles and various devices. Despite their promise, PEMFCs must meet strict cost, performance, and durability standards to reach their full potential. A key challenge lies in optimizing the electrode, where a thin ionomer layer is responsible for proton conduction and binding catalyst particles to the electrode. Enhancing ion transport within these sub-μm thick films is critical to improving the oxygen reduction reaction (ORR) at the cathodes of PEMFCs. For the past 15 years, our research has targeted this limitation through a comprehensive "Unravel - Engineer - Design" approach. We first unraveled the behavior of ionomers, gaining deeper insights into both the average and distributed proton conduction properties within sub-μm thick films and at interfaces that mimic catalyst binder layers. Next, we engineered ionomer-substrate interfaces to gain control over interfacial makeup and boost proton conductivity, essential for PEMFC efficiency. Finally, we designed novel nature-derived or nature-inspired, fluorine-free ionomers to tackle the ion transport limitations seen in state-of-the-art ionomers under thin-film confinement. Some of these ionomers even pave the way to address cost and sustainability challenges in PEMFC materials. This feature article highlights our contributions and their importance in advancing PEMFCs and other sustainable energy conversion and storage technologies.
Collapse
Affiliation(s)
| | - Karen Acurio-Cerda
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Sourav Sutradhar
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Moses Dike
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Rajesh Keloth
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Shudipto Konika Dishari
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| |
Collapse
|
2
|
Yao Y, Watanabe H, Hara M, Nagano S, Nagao Y. Lyotropic Liquid Crystalline Property and Organized Structure in High Proton-Conductive Sulfonated Semialicyclic Oligoimide Thin Films. ACS OMEGA 2023; 8:7470-7478. [PMID: 36872982 PMCID: PMC9979332 DOI: 10.1021/acsomega.2c06398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Fully aromatic sulfonated polyimides with a rigid backbone can form lamellar structures under humidified conditions, thereby facilitating the transmission of protons in ionomers. Herein, we synthesized a new sulfonated semialicyclic oligoimide composed of 1,2,3,4-cyclopentanetetracarboxylic dianhydride (CPDA) and 3,3'-bis-(sulfopropoxy)-4,4'-diaminobiphenyl to investigate the influence of molecular organized structure and proton conductivity with lower molecular weight. The weight-average molecular weight (M w) determined by gel permeation chromatography was 9300. Humidity-controlled grazing incidence X-ray scattering revealed that one scattering was observed in the out-of-plane direction and showed that the scattering position shifted to a lower angle as the humidity increased. A loosely packed lamellar structure was formed by lyotropic liquid crystalline properties. Although the ch-pack aggregation of the present oligomer was reduced by substitution to the semialicyclic CPDA from the aromatic backbone, the formation of a distinct organized structure in the oligomeric form was observed because of the linear conformational backbone. This report is the first-time observation of the lamellar structure in such a low-molecular-weight oligoimide thin film. The thin film exhibited a high conductivity of 0.2 (±0.01) S cm-1 under 298 K and 95% relative humidity, which is the highest value compared to the other reported sulfonated polyimide thin films with comparable molecular weight.
Collapse
Affiliation(s)
- Yuze Yao
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Hayato Watanabe
- Graduate
School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Mitsuo Hara
- Graduate
School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shusaku Nagano
- Department
of Chemistry, College of Science, Rikkyo
University, 3-34-1 Nishi-ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Yuki Nagao
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
3
|
Marin San Roman P, Nijmeijer K, Sijbesma RP. Sulfonated polymerized liquid crystal nanoporous membranes for water purification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
4
|
Synthesis of pH-responsive polyimide hydrogel from bioderived amino acid. Polym J 2021. [DOI: 10.1038/s41428-021-00509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Zhang X, Xia Y, Gong X, Geng P, Gao Z, Wang Y. Preparation of sulfonated polysulfone/sulfonated titanium dioxide hybrid membranes for DMFC applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.48938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xinxin Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and EngineeringSichuan University Chengdu 610065 People's Republic of China
| | - Yifan Xia
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and EngineeringSichuan University Chengdu 610065 People's Republic of China
| | - Xinjian Gong
- Weifang Hengcai Digital Photo Materials Co., Ltd. Weifang People's Republic of China
| | - Pengfei Geng
- Weifang Hengcai Digital Photo Materials Co., Ltd. Weifang People's Republic of China
| | - Zhenwei Gao
- Weifang Hengcai Digital Photo Materials Co., Ltd. Weifang People's Republic of China
| | - Yinghan Wang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and EngineeringSichuan University Chengdu 610065 People's Republic of China
| |
Collapse
|
6
|
Kuwabara A, Enomoto M, Hosono E, Hamaguchi K, Onuma T, Kajiyama S, Kato T. Nanostructured liquid-crystalline Li-ion conductors with high oxidation resistance: molecular design strategy towards safe and high-voltage-operation Li-ion batteries. Chem Sci 2020; 11:10631-10637. [PMID: 34094318 PMCID: PMC8162368 DOI: 10.1039/d0sc01646b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/23/2020] [Indexed: 01/13/2023] Open
Abstract
Nanostructured, uncharged liquid-crystalline (LC) electrolyte molecules having bicyclohexyl and cyclic carbonate moieties have been developed for application in Li-ion batteries as quasi-solid electrolytes, which suppress leakage and combustion. Towards the development of safe and high performance Li-ion batteries, we have designed Li-ion conductive LC materials with high oxidation resistance using density functional theory (DFT) calculation. The DFT calculation suggests that a mesogen with a bicyclohexyl moiety is suitable for the high-oxidation-resistance LC electrolytes compared to a mesogen containing phenylene moieties. A tri(oxyethylene) chain introduced between the cyclic carbonate and the bicyclohexyl moiety in the core part tunes the viscosity and the miscibility with Li salts. The designed Li-ion conductive LC molecules exhibit smectic LC phases over a wide temperature range, and they are miscible with added lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt up to 5 : 5 in molar ratio in their smectic phases. The resulting LC mixtures with LiTFSI show oxidation resistance above 4.0 V vs. Li/Li+ in cyclic voltammetry measurements. The enhanced oxidation resistance improves the performance of Li half-cells containing LC electrolytes.
Collapse
Affiliation(s)
- Atsushi Kuwabara
- Department Chemistry and Biotechnology, School of Engineering, The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Mayu Enomoto
- Department Chemistry and Biotechnology, School of Engineering, The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Eiji Hosono
- National Institute of Advanced Science and Technology (AIST) Umezono Tsukuba Ibaraki 305-8568 Japan
| | - Kazuma Hamaguchi
- Department Chemistry and Biotechnology, School of Engineering, The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Taira Onuma
- Department Chemistry and Biotechnology, School of Engineering, The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Satoshi Kajiyama
- Department Chemistry and Biotechnology, School of Engineering, The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Takashi Kato
- Department Chemistry and Biotechnology, School of Engineering, The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
7
|
Nagao Y. Progress on highly proton-conductive polymer thin films with organized structure and molecularly oriented structure. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:79-91. [PMID: 32158509 PMCID: PMC7033726 DOI: 10.1080/14686996.2020.1722740] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 05/08/2023]
Abstract
Several current topics are introduced in this review, with particular attention to highly proton-conductive polymer thin films with organized structure and molecularly oriented structure. Organized structure and molecularly oriented structure are anticipated as more promising approaches than conventional less-molecular-ordered structure to elucidate mechanisms of high proton conduction and control proton conduction. This review introduces related polymer materials and molecular design using lyotropic liquid crystals and hydrogen bond networks for high proton conduction. It also outlines the use of substrate surfaces and external fields, such as pressure and centrifugal force, for organizing structures and molecularly oriented structures.
Collapse
Affiliation(s)
- Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Japan
| |
Collapse
|
8
|
Tsuksamoto M, Ebata K, Sakiyama H, Yamamoto S, Mitsuishi M, Miyashita T, Matsui J. Biomimetic Polyelectrolytes Based on Polymer Nanosheet Films and Their Proton Conduction Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3302-3307. [PMID: 30744379 DOI: 10.1021/acs.langmuir.8b04079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report a biomimetic polyelectrolyte based on amphiphilic polymer nanosheet multilayer films. Copolymers of poly( N-dodecylacrylamide- co-vinylphosphonic acid) [p(DDA/VPA)] form a uniform monolayer at the air-water interface. By depositing such monolayers onto solid substrates using the Langmuir-Blodgett (LB) method, multilayer lamellae films with a structure similar to a bilayer membrane were fabricated. The proton conductivity at the hydrophilic interlayer of the lamellar multilayer films was studied by impedance spectroscopy under temperature- and humidity-controlled conditions. At 60 °C and 98% relative humidity (RH), the conductivity increased with increasing mole fraction of VPA ( n) up to 3.2 × 10-2 S cm-1 for n = 0.41. For a film with n = 0.45, the conductivity decreased to 2.2 × 10-2 S cm-1 despite the increase of proton sources. The reason for this decrease was evaluated by studying the effect of the distance between the VPAs ( lVPA) on the proton conductivity as well as their activation energy. We propose that for n = 0.41, lVPA is the optimal distance not only to form an efficient two-dimensional (2D) hydrogen bonding network but also to reorient water and VPA. For n = 0.45, on the other hand, the lVPA was too close for a reorientation. Therefore, we concluded that there should be an optimal distance to obtain high proton conductivity at the hydrophilic interlayer of such multilayer films.
Collapse
Affiliation(s)
| | | | | | - Shunsuke Yamamoto
- Institute of Multidisciplinary Research for Advanced Materials , Tohoku University , 2-1-1 Katahira , Aoba-ku , Sendai 980-8577 , Japan
| | - Masaya Mitsuishi
- Institute of Multidisciplinary Research for Advanced Materials , Tohoku University , 2-1-1 Katahira , Aoba-ku , Sendai 980-8577 , Japan
| | - Tokuji Miyashita
- Institute of Multidisciplinary Research for Advanced Materials , Tohoku University , 2-1-1 Katahira , Aoba-ku , Sendai 980-8577 , Japan
| | | |
Collapse
|
9
|
Introducing planar hydrophobic groups into an alkyl-sulfonated rigid polyimide and how this affects morphology and proton conductivity. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|