1
|
Cheeyattil S, Rajan A, Stephen J, Radhakrishnan M. Study on the optimization of barley flour xerogel and its programed oleomorphic
3D
shape‐shifting. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Subith Cheeyattil
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM‐T) Thanjavur India
| | - Anbarasan Rajan
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM‐T) Thanjavur India
| | - Jaspin Stephen
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM‐T) Thanjavur India
| | - Mahendran Radhakrishnan
- Centre of Excellence in Nonthermal Processing National Institute of Food Technology Entrepreneurship and Management (NIFTEM‐T) Thanjavur India
| |
Collapse
|
2
|
Sugiura T, Kanada T, Mori D, Sakai H, Shibata A, Kitamura Y, Ikeda M. Chemical stimulus-responsive supramolecular hydrogel formation and shrinkage of a hydrazone-containing short peptide derivative. SOFT MATTER 2020; 16:899-906. [PMID: 31829395 DOI: 10.1039/c9sm01969c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Artificial supramolecular nanostructures showing transient properties have attracted significant attention in recent years. New discoveries in this area may provide insights into a better understanding of the sophisticated organization of complex biomolecular systems. Nevertheless, research concerning such materials is still limited. Better knowledge of the chemical reactivity and corresponding molecular transformations of self-assembling molecules, which guide their assembly/disassembly, may provide an opportunity to construct transient supramolecular nanostructures capable of showing chemical stimulus responsiveness. Herein, we report a short peptide derivative containing a hydrazone bond, which shows transient hydrogel formation (no only sol-to-gel but also gel-to-shrunken gel phase transition) accompanied by continuous transformation and growth of supramolecular nanostructures triggered by hydrazone-oxime exchange reaction in response to hydroxylamine. Such controlled shrinkage behavior of supramolecular hydrogels in response to specific chemical stimuli has rarely been explored compared with conventional polymer hydrogel systems.
Collapse
Affiliation(s)
- Takumi Sugiura
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Takurou Kanada
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Daisuke Mori
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Hiroyuki Sakai
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Aya Shibata
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Yoshiaki Kitamura
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Masato Ikeda
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan. and United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan and Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), 1-1 Yanagido, Gifu 501-1193, Japan and Institute of Nano-Life-Systems, Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
3
|
Arakawa H, Takeda K, Higashi SL, Shibata A, Kitamura Y, Ikeda M. Self-assembly and hydrogel formation ability of Fmoc-dipeptides comprising α-methyl-L-phenylalanine. Polym J 2020. [DOI: 10.1038/s41428-019-0301-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractVarious biofunctional hydrogel materials can be fabricated in aqueous media through the self-assembly of peptide derivatives, forming supramolecular nanostructures and their three-dimensional networks. In this study, we describe the self-assembly of new Fmoc-dipeptides comprising α-methyl-L-phenylalanine. We found that the position and number of methyl groups introduced onto the α carbons of the Fmoc-dipeptides by α-methyl-L-phenylalanine have a marked influence on the morphology of the supramolecular nanostructure as well as the hydrogel (network) formation ability.
Collapse
|
4
|
Periodic introduction of aromatic units in polypeptides via chemoenzymatic polymerization to yield specific secondary structures with high thermal stability. Polym J 2019. [DOI: 10.1038/s41428-019-0242-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|