1
|
Yan B, Ge R, Yu M, Yin X, Zhao M, Zhang Y, Fan J. Efficacy, physicochemical and processing properties of oat peptides prepared via ultrasonication-assisted organic acid hydrolysis. Int J Biol Macromol 2025; 305:141181. [PMID: 39971056 DOI: 10.1016/j.ijbiomac.2025.141181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Currently, the low efficiency and pollution issues associated with biological and chemical methods for the preparation of functional peptides continue to pose challenges, restricting the large-scale production and utilization of functional peptides. This study has found that the ultrasound-assisted organic acid-surfactant system is an efficient and green method for the preparation of functional peptides. The probe ultrasonication-assisted tartaric acid system successfully degraded oat globulins into peptides with a degree of hydrolysis (DH) of 22.8 %. The addition of glyceryl monostearate increased the instantaneous burst rate of the bubble (with a D-value of 16 %), thereby elevating the DH to as high as 36 %. The resulting oat peptide particles exhibited high hydrophobicity, and consequently demonstrated strong foaming capacity (99.6 %), oil holding capacity (399.4 %), emulsifying ability (Emulsifying activity index = 50.5 m2/g, stability index = 108 min), and hydroxyl radical scavenging capacity of 98.9 % (at a concentration of 5 mg/mL), holding great promise for application in the field of food processing. These findings deepen our understanding of the enhanced ultrasonic hydrolysis ability of surfactants and pave a new way to produce functional peptides.
Collapse
Affiliation(s)
- Bing Yan
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Rui Ge
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Mengru Yu
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyu Yin
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Mengting Zhao
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Yanyan Zhang
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
| | - Junfeng Fan
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Terada K, Tsuchiya K, Lamprou A, Numata K. Chemoenzymatic Synthesis of Poly-l-lysine via Esterification with Alcohol in One-Pot. ACS POLYMERS AU 2025; 5:26-34. [PMID: 39958530 PMCID: PMC11826487 DOI: 10.1021/acspolymersau.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 02/18/2025]
Abstract
Chemoenzymatic polymerization (CEP) using enzymes as catalysts is gaining attention as an environmentally friendly method for synthesizing polypeptides. This method proceeds under mild conditions in aqueous solvents and leverages the substrate specificity of enzymes, allowing polymerization reactions to occur without the need to protect reactive side-chain functional groups. However, the monomers used must have esterified C-termini, such as amino acids or oligopeptides. In this study, we used l-lysine (Lys-OH) as a model example and performed one-pot CEP with papain without isolating the esterified lysine. Esterification of Lys-OH was achieved by using hydrochloric acid as a catalyst in ethanol, and one-pot polymerization resulted in poly-l-lysine (polyLys) with a peak top degree of polymerization (DP) of 6 and a maximum DP of 18, with a 31% conversion from the nonesterified lysine. The obtained polyLys was all α-linked, demonstrating that regioselective polymerization was successfully achieved even with one-pot CEP.
Collapse
Affiliation(s)
- Kayo Terada
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Kousuke Tsuchiya
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1
Hirosawa, Wako, Saitama 351-0198, Japan
| | | | - Keiji Numata
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1
Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
3
|
Terada K, Kurita T, Gimenez-Dejoz J, Masunaga H, Tsuchiya K, Numata K. Papain-Catalyzed, Sequence-Dependent Polymerization Yields Polypeptides Containing Periodic Histidine Residues. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kayo Terada
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Taichi Kurita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Joan Gimenez-Dejoz
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-C1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kousuke Tsuchiya
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-C1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
4
|
Watanabe T, Terada K, Takemura S, Masunaga H, Tsuchiya K, Lamprou A, Numata K. Chemoenzymatic Polymerization of l-Serine Ethyl Ester in Aqueous Media without Side-Group Protection. ACS POLYMERS AU 2022; 2:147-156. [PMID: 36855524 PMCID: PMC9954318 DOI: 10.1021/acspolymersau.1c00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Poly(l-serine) (polySer) has tremendous potential as a polypeptide-based functional material due to the utility of the hydroxyl group on its side chain; however, tedious protection/deprotection of the hydroxyl groups is required for its synthesis. In this study, polySer was synthesized by the chemoenzymatic polymerization (CEP) of l-serine ethyl ester (Ser-OEt) or l-serine methyl ester (Ser-OMe) using papain as a catalyst in an aqueous medium. The CEP of Ser-OEt proceeded at basic pH ranging from 7.5 to 9.5 and resulted in the maximum precipitate yield of polySer at an optimized pH of 8.5. A series of peaks detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry revealed that the formed precipitate consisted of polySer with a degree of polymerization ranging from 5 to 22. Moreover, infrared spectroscopy, circular dichroism spectroscopy, and synchrotron wide-angle X-ray diffraction measurements indicated that the obtained polySer formed a β-sheet/strand structure. This is the first time the synthesis of polySer was realized by CEP in aqueous solution without protecting the hydroxyl group of the Ser monomer.
Collapse
Affiliation(s)
- Takumi Watanabe
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kayo Terada
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shogo Takemura
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroyasu Masunaga
- Japan
Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kousuke Tsuchiya
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan,Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan,
| | - Alexandros Lamprou
- Innovation
Campus Asia Pacific (Shanghai), BASF Advanced
Chemicals Co., Ltd., No 300, Jiangxinsha Road, Pudong, Shanghai 200137, P.R. China
| | - Keiji Numata
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan,Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan,
| |
Collapse
|
5
|
Fujita S, Motoda Y, Kigawa T, Tsuchiya K, Numata K. Peptide-Based Polyion Complex Vesicles That Deliver Enzymes into Intact Plants To Provide Antibiotic Resistance without Genetic Modification. Biomacromolecules 2020; 22:1080-1090. [PMID: 33316156 DOI: 10.1021/acs.biomac.0c01380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Direct delivery of enzymes into intact plants using cell-penetrating peptides (CPPs) is an attractive approach for modifying plant functions without genetic modification. However, by conventional methods, it is difficult to maintain the enzyme activity for a long time because of proteolysis of the enzymes under physiological conditions. Here, we developed a novel enzyme delivery system using polyion complex vesicles (PICsomes) to protect the enzyme from proteases. We created PICsome-bearing reactive groups at the surface by mixing an anionic block copolymer, alkyne-TEG-P(Lys-COOH), and a cationic peptide, P(Lys). The PICsome encapsulated neomycin phosphotransferase II (NPTII), a kanamycin resistance enzyme, and protected NPTII from proteases in vitro. A CPP-modified PICsome delivered NPTII into the root hair cells of Arabidopsis thaliana seedlings and provided kanamycin resistance in the seedlings that lasted for 7 days. Thus, the PICsome-mediated enzyme delivery system is a promising method for imparting long-term transient traits to plants without genetic modification.
Collapse
Affiliation(s)
- Seiya Fujita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoko Motoda
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takanori Kigawa
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Cellular Structural Biology, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kousuke Tsuchiya
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.,Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Chen J, Ohta Y, Nakamura H, Masunaga H, Numata K. Aqueous spinning system with a citrate buffer for highly extensible silk fibers. Polym J 2020. [DOI: 10.1038/s41428-020-00419-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Construction methodologies and sequence-oriented properties of sequence-controlled oligomers/polymers generated via radical polymerization. Polym J 2020. [DOI: 10.1038/s41428-020-00405-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Abstract
AbstractStructural proteins, including silk fibroins, play an important role in shaping the skeletons and structures of cells, tissues, and organisms. The amino acid sequences of structural proteins often show characteristic features, such as a repeating tandem motif, that are notably different from those of functional proteins such as enzymes and antibodies. In recent years, materials composed of or containing structural proteins have been studied and developed as biomedical, apparel, and structural materials. This review outlines the definition of structural proteins, methods for characterizing structural proteins as polymeric materials, and potential applications.
Collapse
|
9
|
Arakawa H, Takeda K, Higashi SL, Shibata A, Kitamura Y, Ikeda M. Self-assembly and hydrogel formation ability of Fmoc-dipeptides comprising α-methyl-L-phenylalanine. Polym J 2020. [DOI: 10.1038/s41428-019-0301-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractVarious biofunctional hydrogel materials can be fabricated in aqueous media through the self-assembly of peptide derivatives, forming supramolecular nanostructures and their three-dimensional networks. In this study, we describe the self-assembly of new Fmoc-dipeptides comprising α-methyl-L-phenylalanine. We found that the position and number of methyl groups introduced onto the α carbons of the Fmoc-dipeptides by α-methyl-L-phenylalanine have a marked influence on the morphology of the supramolecular nanostructure as well as the hydrogel (network) formation ability.
Collapse
|
10
|
Tsuchiya K, Numata K. Facile terminal functionalization of peptides by protease-catalyzed chemoenzymatic polymerization toward synthesis of polymeric architectures consisting of peptides. Polym Chem 2020. [DOI: 10.1039/c9py01335k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Terminal functionalized polypeptides were synthesized in one-pot chemoenzymatic polymerization using protease for constructing special polymeric architectures.
Collapse
Affiliation(s)
- Kousuke Tsuchiya
- Biomacromolecules Research Team
- RIKEN Center for Sustainable Resource Science
- Saitama 351-0198
- Japan
| | - Keiji Numata
- Biomacromolecules Research Team
- RIKEN Center for Sustainable Resource Science
- Saitama 351-0198
- Japan
| |
Collapse
|
11
|
Gudeangadi PG, Uchida K, Tateishi A, Terada K, Masunaga H, Tsuchiya K, Miyakawa H, Numata K. Poly(alanine-nylon-alanine) as a bioplastic: chemoenzymatic synthesis, thermal properties and biological degradation effects. Polym Chem 2020. [DOI: 10.1039/d0py00137f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Poly(amino acids) such as polypeptides and proteins are attractive biomass-based polymers that potentially contribute to circular economy for plastic.
Collapse
Affiliation(s)
- Prashant G. Gudeangadi
- Biomacromolecules Research Team
- RIKEN Center for Sustainable Resource Science
- Saitama
- Japan
| | - Kei Uchida
- Center for Bioscience Research and Education
- Utsunomiya University
- Tochigi 321-8505
- Japan
| | - Ayaka Tateishi
- Biomacromolecules Research Team
- RIKEN Center for Sustainable Resource Science
- Saitama
- Japan
| | - Kayo Terada
- Biomacromolecules Research Team
- RIKEN Center for Sustainable Resource Science
- Saitama
- Japan
| | | | - Kousuke Tsuchiya
- Biomacromolecules Research Team
- RIKEN Center for Sustainable Resource Science
- Saitama
- Japan
| | - Hitoshi Miyakawa
- Center for Bioscience Research and Education
- Utsunomiya University
- Tochigi 321-8505
- Japan
| | - Keiji Numata
- Biomacromolecules Research Team
- RIKEN Center for Sustainable Resource Science
- Saitama
- Japan
| |
Collapse
|