1
|
Zhu H, Liu F, Zhang H, Zhao J. A Pseudo-Block Copolymerization Access to Cyclic Alternating Copolymers through Segment-Selective Transesterification. ACS Macro Lett 2025; 14:142-148. [PMID: 39836968 DOI: 10.1021/acsmacrolett.4c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Efficient synthesis of cyclic polymers remains a frontier challenge. We report here that macromolecular transesterification during a pseudoblock copolymerization process can be utilized for such a purpose. Organobase-catalyzed ring-opening alternating copolymerization of 3,4-dihydrocoumarin and epoxide is conducted with four-armed poly(ethylene oxide) (PEO) as a macroinitiator. Intramolecular transesterification (backbiting) occurs selectively on the newly formed polyester segments. The disconnected cyclic alternating copolymers can be easily isolated by precipitation owing to their substantial solubility difference from the PEO-containing acyclic parts. The obtained cyclic alternating copolymers exhibit low dispersity (<1.2) and a molar mass of around 3 kg mol-1, irrespective of the monomer-to-initiator feed ratio, indicating thermodynamic control over the ring size. The macrocyclic structure is confirmed by both mass spectroscopy and microscopic visualization and then utilized to prepare cyclic-brush terpolymer by thiol-ene modification, followed by graft polymerization of propylene oxide.
Collapse
Affiliation(s)
- Hongxuan Zhu
- Faculty of Materials Science and Engineering, Qinghai University, Qinghai 810016, People's Republic of China
| | - Fengzhuang Liu
- Faculty of Materials Science and Engineering, Qinghai University, Qinghai 810016, People's Republic of China
| | - Hongxin Zhang
- Faculty of Materials Science and Engineering, Qinghai University, Qinghai 810016, People's Republic of China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
2
|
Xie H, Zhong K, Niu S, Li X, Hu Z, Xiao G, Huang Y, Zhang H, Liu Y, Zhang H, Cai Q. Air-Mediated Biomimetic Synthesis of Polyhydroxyalkanoate with C4 Diol. Angew Chem Int Ed Engl 2025; 64:e202417660. [PMID: 39714430 DOI: 10.1002/anie.202417660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Poly(4-hydroxybutyrate) (P4HB) is a high-performance, well-recyclable, and biodegradable polyhydroxyalkanoate (PHA). However, conventional bioproduction of homopolymeric P4HB involves complex and costly processes with C4 feedstocks, particularly 1,4-butanediol (BDO), and enzyme-coenzyme systems in genetically engineered bacteria. An alternative extracellular chemical route utilizing aerial oxidation of BDO offers cost and energy benefits but struggle with conversion efficiency. Inspired by efficient intracellular oxidation of primary alcohols, we propose a ruthenium-phosphine synergistic catalytic system that mimics enzyme-coenzyme functionality. This system effectively catalyzed the air-mediated, solvent-free oxidation of BDO to produce γ-butyrolactone (γ-BL) and oligomeric P4HB, with a space-time yield (10.37 g [γ-BL unit] g-1 catalyst h-1) surpassing the values (<5.5) of previous approaches. The oligomer-containing products were reversibly converted to γ-BL and then to P4HB (28.9 kDa) via ring-opening polymerization, exceeding reported values (<16 kDa). This study provides the potential for large-scale synthesis of high-value PHAs from diverse non-grain-based diols, offering economic and environmental advantages.
Collapse
Affiliation(s)
- Huilin Xie
- Advanced Functional Materials Research Center, Chemistry and Chemical Engineering Guangdong Laboratory, 515031, Shantou, China
- College of Chemistry and Chemical Engineering, Shantou University, 515063, Shantou, China
| | - Kaibin Zhong
- "New Chemical Engineering" Comprehensive Research Platform, Chemistry and Chemical Engineering Guangdong Laboratory, 515031, Shantou, China
| | - Shihao Niu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Xiaoxu Li
- Advanced Functional Materials Research Center, Chemistry and Chemical Engineering Guangdong Laboratory, 515031, Shantou, China
| | - Zexu Hu
- Advanced Functional Materials Research Center, Chemistry and Chemical Engineering Guangdong Laboratory, 515031, Shantou, China
| | - Guang Xiao
- Advanced Functional Materials Research Center, Chemistry and Chemical Engineering Guangdong Laboratory, 515031, Shantou, China
| | - Yifu Huang
- College of Chemistry and Chemical Engineering, Shantou University, 515063, Shantou, China
| | - Hongjie Zhang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Yuan Liu
- "New Chemical Engineering" Comprehensive Research Platform, Chemistry and Chemical Engineering Guangdong Laboratory, 515031, Shantou, China
| | - Hefeng Zhang
- College of Chemistry and Chemical Engineering, Shantou University, 515063, Shantou, China
| | - Qiuquan Cai
- Advanced Functional Materials Research Center, Chemistry and Chemical Engineering Guangdong Laboratory, 515031, Shantou, China
| |
Collapse
|
3
|
Ximenis M, Monot J, Gabirondo E, Jeschke J, Martín-Vaca B, Bourissou D, Sardon H. Boosting the Reactivity of Bis-Lactones to Enable Step-Growth Polymerization at Room Temperature. Macromolecules 2024; 57:3319-3327. [PMID: 38616811 PMCID: PMC11008534 DOI: 10.1021/acs.macromol.3c02527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 04/16/2024]
Abstract
The development of new sustainable polymeric materials endowed with improved performances but minimal environmental impact is a major concern, with polyesters as primary targets. Lactones are key monomers thanks to ring-opening polymerization, but their use in step-growth polymerization has remained scarce and challenging. Herein, we report a powerful bis(γ-lactone) (γSL) that was efficiently prepared on a gram scale from malonic acid by Pd-catalyzed cycloisomerization. The γ-exomethylene moieties and the spiro structure greatly enhance its reactivity toward ring-opening and enable step-growth polymerization under mild conditions. Using diols, dithiols, or diamines as comonomers, a variety of regioregular (AB)n copolymers with diverse linkages and functional groups (from oxo-ester to β-thioether lactone and β-hydroxy-lactame) have been readily prepared. Reaction modeling and monitoring revealed the occurrence of an original trans-lactonization process following the first ring-opening of γSL. This peculiar reactivity opens the way to regioregular (ABAC)n terpolymers, as illustrated by the successive step-growth polymerization of γSL with a diol and a diamine.
Collapse
Affiliation(s)
- Marta Ximenis
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Julien Monot
- Laboratoire
Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Elena Gabirondo
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Janna Jeschke
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Blanca Martín-Vaca
- Laboratoire
Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Didier Bourissou
- Laboratoire
Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Haritz Sardon
- POLYMAT
and Department of Polymers and Advanced Materials/Physics, Chemistry
and Technology, University of the Basque
Country UPV/EHU, Joxe
Mari Korta Center Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
4
|
Malekshah R, Moharramnejad M, Gharanli S, Shahi M, Ehsani A, Haribabu J, Ouachtak H, Mirtamizdoust B, Kamwilaisak K, Sillanpää M, Erfani H. MOFs as Versatile Catalysts: Synthesis Strategies and Applications in Value-Added Compound Production. ACS OMEGA 2023; 8:31600-31619. [PMID: 37692216 PMCID: PMC10483527 DOI: 10.1021/acsomega.3c02552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023]
Abstract
Catalysts played a crucial role in advancing modern human civilization, from ancient times to the industrial revolution. Due to high cost and limited availability of traditional catalysts, there is a need to develop cost-effective, high-activity, and nonprecious metal-based electrocatalysts. Metal-organic frameworks (MOFs) have emerged as an ideal candidate for heterogeneous catalysis due to their physicochemical properties, hybrid inorganic/organic structures, uncoordinated metal sites, and accessible organic sections. MOFs are high nanoporous crystalline materials that can be used as catalysts to facilitate polymerization reactions. Their chemical and structural diversity make them effective for various reactions compared to traditional catalysts. MOFs have been applied in gas storage and separation, ion-exchange, drug delivery, luminescence, sensing, nanofilters, water purification, and catalysis. The review focuses on MOF-enabled heterogeneous catalysis for value-added compound production, including alcohol oxidation, olefin oligomerization, and polymerization reactions. MOFs offer tunable porosity, high spatial density, and single-crystal XRD control over catalyst properties. In this review, MOFs were focused on reactions of CO2 fixation, CO2 reduction, and photoelectrochemical water splitting. Overall, MOFs have great potential as versatile catalysts for diverse applications in the future.
Collapse
Affiliation(s)
- Rahime
Eshaghi Malekshah
- Medical
Biomaterial Research Centre (MBRC), Tehran
University of Medical Sciences, Tehran 14166-34793, Iran
- Department
of Chemistry, Semnan University, Semnan 35131-19111, Iran
| | - Mojtaba Moharramnejad
- Young
Researcher and Elite Group, Qom University, Qom 37161-46611, Iran
- Department
of Chemistry, Faculty of Science, University
of Qom, Qom 37161-46611, Iran
| | - Sajjad Gharanli
- Department
of Chemical Engineering, Faculty of Engineering, University of Qom, Qom 37161-46611, Iran
| | - Mehrnaz Shahi
- Department
of Chemistry, Semnan University, Semnan 35131-19111, Iran
| | - Ali Ehsani
- Department
of Chemistry, Faculty of Science, University
of Qom, Qom 37161-46611, Iran
| | - Jebiti Haribabu
- Facultad
de Medicina, Universidad de Atacama, Los Carreras 1579, Copiapo 1532502, Chile
- Chennai Institute of Technology (CIT), Chennai 600069, India
| | - Hassan Ouachtak
- Laboratory
of Organic and Physical Chemistry, Faculty of Science, Ibn Zohr University, Agadir 80060, Morocco
- Faculty
of Applied Science, Ait Melloul, Ibn Zohr
University, Agadir 80060, Morocco
| | - Babak Mirtamizdoust
- Department
of Chemistry, Faculty of Science, University
of Qom, Qom 37161-46611, Iran
| | - Khanita Kamwilaisak
- Chemical
Engineering Department, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Mika Sillanpää
- Department
of Chemical Engineering, School of Mining, Metallurgy and Chemical
Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- International
Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, Himachal Pradesh 173212, India
- Department
of Biological and Chemical Engineering, Aarhus University, Nørrebrogade
44, Aarhus C 8000, Denmark
- Department
of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Hadi Erfani
- Department
of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 14778-93855, Iran
| |
Collapse
|
5
|
Ojo OS, Steel HJ, Miras HN. Expeditious access to cis-β-aryl, γ-alkyl disubstituted (±)-γ-butyrolactones via nickel-hydride catalysis. Org Biomol Chem 2023; 21:6738-6742. [PMID: 37551644 DOI: 10.1039/d3ob00895a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The 1,4-reduction of β- and γ-substituted butenolides using 5 mol% of NiCl2·6H2O and NaBH4 in MeOH for rapid access to cis-β,γ-disubstituted γ-butyrolactones is described. The reaction was selective for cis-products, which were obtained in good to excellent yields. This study showcased the influence of steric hindrance and angle strain on the diastereoselectivity outcome of conjugate reductions facilitated by in situ generated nickel-hydride.
Collapse
Affiliation(s)
- O Stephen Ojo
- WestCHEM, School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow, G12 8QQ, UK.
| | - Hannah J Steel
- WestCHEM, School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow, G12 8QQ, UK.
| | - Haralampos N Miras
- WestCHEM, School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow, G12 8QQ, UK.
| |
Collapse
|
6
|
Liu F, Cheng Z, Fang Y, Wang X, Zhao L, Rong ZQ. Metal-Catalyst-Controlled Divergent Synthesis of γ-Butyrolactones via Intramolecular Coupling of Epoxides with Alcohols. Org Lett 2023; 25:3618-3622. [PMID: 37184068 DOI: 10.1021/acs.orglett.3c00898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A metal-controlled divergent protocol for the synthesis of α- and β-substituted γ-butyrolactones was developed through intramolecular coupling of epoxides with alcohols. This method provides an efficient and practicable way to afford γ-butyrolactones with good efficiency, excellent regioselectivity, and broad substrate scope.
Collapse
Affiliation(s)
- Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Zifan Cheng
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Yiyun Fang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Lingzi Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
7
|
Narmon AS, van Slagmaat CAMR, De Wildeman SMA, Dusselier M. Sustainable Polythioesters via Thio(no)lactones: Monomer Synthesis, Ring-Opening Polymerization, End-of-Life Considerations, and Industrial Perspectives. CHEMSUSCHEM 2023; 16:e202202276. [PMID: 36649173 DOI: 10.1002/cssc.202202276] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 05/06/2023]
Abstract
As the environmental effects of plastics are of ever greater concern, the industry is driven towards more sustainable polymers. Besides sustainability, our fast-developing society imposes the need for highly versatile materials. Whereas aliphatic polyesters (PEs) are widely adopted and studied as next-generation biobased and (bio)degradable materials, their sulfur-containing analogs, polythioesters (PTEs), only recently gained attention. Nevertheless, the introduction of S atoms is known to often enhance thermal, mechanical, electrochemical, and optical properties, offering prospects for broad applicability. Furthermore, thanks to their thioester-based backbone, PTEs are inherently susceptible to degradation, giving them a high sustainability potential. The key route to PTEs is through ring-opening polymerization (ROP) of thio(no)lactones. This Review critically discusses the (potential) sustainability of the most relevant state-of-the-art in every step from sulfur source to end-of-life treatment options of PTEs, obtained through ROP of thio(no)lactones. The benefits and drawbacks of PTEs versus PEs are highlighted, including their industrial perspective.
Collapse
Affiliation(s)
- An Sofie Narmon
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
- B4Plastics BV, IQ-Parklaan 2 A, 3650, Dilsen-Stokkem, Belgium
| | | | | | - Michiel Dusselier
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| |
Collapse
|
8
|
Abduh NAY, Al-Kahtani A, Algarni TS, Al-Odayni AB. Selective Oxidation of Tetrahydrofuran to Gamma-Butyrolactone over Spinel ZnFe2O4 Nanoparticle Catalyst. Catalysts 2023. [DOI: 10.3390/catal13040692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The selective oxidation of tetrahydrofuran (THF) to gamma-butyrolactone (GBL) on spinel ZnFe2O4 nanoparticles (ZFNPs) was investigated. The catalyst was prepared with the coprecipitation method and characterized by FTIR, XRD, TEM, SEM, EDS, TGA, XPS, and BET surface area. The characterization techniques showed that a nonuniform spherical spinal oxide with an average particle size of 26 nm was formed. The oxidation reaction was carried out using hydrogen peroxide as an oxidizing agent under solvent-free conditions. GC-MS analysis revealed that the main product was GBL. 2-hydroxytetrahydrofuran (THF-2-OH), gamma-hydroxybutyric acid (GHBA), and gamma-hydroxybutaldehyde (GHBAl) were obtained as minor products. The effects of different reaction parameters, such as temperature, H2O2/THF mole ratio, catalyst dose, reaction time, and reusability, were evaluated. A 47.3% conversion of THF with an 88.2% selectivity of GBL was achieved by conducting the reaction at 80 °C for nine hours using a 1:1 mole ratio of H2O2/THF. A slight increase in the conversion degree was attained at higher temperatures; however, an over-oxidation process was observed as the temperature exceeded 80 °C. The catalyst remained effective and stable over four reuses.
Collapse
Affiliation(s)
- Naaser A. Y. Abduh
- Department of Chemistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Al-Kahtani
- Department of Chemistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Tahani Saad Algarni
- Department of Chemistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdel-Basit Al-Odayni
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|
9
|
Xia Y, Yuan P, Zhang Y, Sun Y, Hong M. Converting Non-strained γ-Valerolactone and Derivatives into Sustainable Polythioesters via Isomerization-driven Cationic Ring-Opening Polymerization of Thionolactone Intermediate. Angew Chem Int Ed Engl 2023; 62:e202217812. [PMID: 36757807 DOI: 10.1002/anie.202217812] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 02/10/2023]
Abstract
This contribution reports the efficient conversion of γ-valerolactone and its derivatives, abundant but unexplored renewable feedstocks, into sustainable and degradable polythioesters via the establishment of the first isomerization-driven ring-opening polymerizations (IROPs) of corresponding thionolactone intermediates. The key to this success relies on the development of a new simple and robust [Et3 O]+ [B(C6 F5 )4 ]- cationic initiator which possesses high activity, exclusive selectivity, living nature, and broad scope of thionolactones. A complete inversion of configuration during IROP of enantiopure γ-thionovalerolactone is also disclosed, affording isotactic semicrystalline polythioesters (Tm =87.0 °C) with mechanical property compared well to the representative commodity polyolefins. The formation of a highly crystalline supramolecular stereocomplex with enhanced thermal property (Tm =117.6 °C) has also been revealed.
Collapse
Affiliation(s)
- Yongliang Xia
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Pengjun Yuan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanping Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yangyang Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Miao Hong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
10
|
Jin M, Hoye TR. Lactone Ring-opening Equilibria in Methanol by 1H NMR Analysis: An Assessment of the Ring-opening Polymerizability of Lactone Monomers. Macromolecules 2023; 56:1122-1129. [PMID: 38817685 PMCID: PMC11139012 DOI: 10.1021/acs.macromol.2c01141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The purpose of this study was to learn if a convenient 1H NMR method could be developed to serve as a tool for estimating the propensity of a given lactone to participate in ring-opening transesterification polymerization (ROTEP). The methanolysis of each of 18 lactones was initially examined in CD3OD solution in the presence of sulfuric acid as a Brønsted catalyst at ambient temperature. Once equilibrium was established, the ratio of remaining lactone to the ring-opened methyl ester/alcohol could be readily measured by NMR spectroscopy. The observed thermodynamic driving force observed for the methanol ring-openings are roughly in line with the extent of ROTEP for the various classes of lactones. This is the case even though the reaction conditions for these methanolyses vs. ROTEP reactions are substantially different. Qualitative evaluations of the rates of the ring-opening methanolyses were also made, and several non-obvious relative reactivities were observed. Finally, employing this simple NMR methanolysis using low concentrations of methanol in CDCl3 is recommended as the preferred protocol for initial evaluation of the polymerizability of any new lactone monomer that researchers may prepare in the future.
Collapse
Affiliation(s)
- Mengyuan Jin
- Department of Chemistry, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, Minnesota 55455, USA
| | - Thomas R. Hoye
- Department of Chemistry, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
11
|
Functional polyesters via ring-opening copolymerization of α–hydroxy–γ–butyrolactone and ε-caprolactone: La[N(SiMe3)2]3 as an efficient coordination-insertion catalyst. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Li S, Ma X, Li R, Sun C, Hu J, Zhang Y. Lipase-catalyzed ring-opening copolymerization of macrocycles for diselenide-functionalized long-chain polycarbonate: Synthesis, kinetic process and ROS responsiveness. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
13
|
Cobalt-catalyzed ring expansion/ring opening of oxetanes using phosphine oxides as promoters under hydroformylation conditions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Fully Chemical Recyclable Poly(γ-butyrolactone)-based Copolymers with Tunable Structures and Properties. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2685-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Plajer AJ, Williams CK. Heterocycle/Heteroallene Ring-Opening Copolymerization: Selective Catalysis Delivering Alternating Copolymers. Angew Chem Int Ed Engl 2022; 61:e202104495. [PMID: 34015162 PMCID: PMC9298364 DOI: 10.1002/anie.202104495] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 11/29/2022]
Abstract
Heteroatom-containing polymers have strong potential as sustainable replacements for petrochemicals, show controllable monomer-polymer equilibria and properties spanning plastics, elastomers, fibres, resins, foams, coatings, adhesives, and self-assembled nanostructures. Their current and future applications span packaging, house-hold goods, clothing, automotive components, electronics, optical materials, sensors, and medical products. An interesting route to these polymers is the catalysed ring-opening copolymerisation (ROCOP) of heterocycles and heteroallenes. It is a living polymerization, occurs with high atom economy, and creates precise, new polymer structures inaccessible by traditional methods. In the last decade there has been a renaissance in research and increasing examples of commercial products made using ROCOP. It is better known in the production of polycarbonates and polyesters, but is also a powerful route to make N-, S-, and other heteroatom-containing polymers, including polyamides, polycarbamates, and polythioesters. This Review presents an overview of the different catalysts, monomer combinations, and polymer classes that can be accessed by heterocycle/heteroallene ROCOP.
Collapse
Affiliation(s)
- Alex J. Plajer
- Oxford ChemistryChemical Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | | |
Collapse
|
16
|
Plajer AJ, Williams CK. Heterocycle/Heteroallene Ring‐Opening Copolymerization: Selective Catalysis Delivering Alternating Copolymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alex J. Plajer
- Oxford Chemistry Chemical Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | | |
Collapse
|
17
|
Illy N, Mongkhoun E. Thiolactone chemistry, a versatile platform for macromolecular engineering. Polym Chem 2022. [DOI: 10.1039/d2py00731b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the extensive use of γ-thiolactone chemistry as a versatile and powerful tool for macromolecular engineering and the preparation of various polymer architectures, such as functional, alternating, or sequence-controlled (co)polymers.
Collapse
Affiliation(s)
- Nicolas Illy
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 place Jussieu, F-75005 Paris, France
| | - Emma Mongkhoun
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 place Jussieu, F-75005 Paris, France
| |
Collapse
|
18
|
Liu Y, Yuan X, Wu J, Hu X, Zhu N, Guo K. Access to high-molecular-weight poly(γ-butyrolactone) by using simple commercial catalysts. Polym Chem 2022. [DOI: 10.1039/d1py01340h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The simple commercial organomagnesium catalysts were utilized for efficient access to high-molecular-weight poly(γ-butyrolactone) and facile manipulation of the reaction conditions enabled the polymer topology controlled.
Collapse
Affiliation(s)
- Yihuan Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Xin Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Jiaqi Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Xin Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
19
|
Yamamoto Y, Tabuchi A, Hosono K, Ochi T, Yamazaki K, Kodama S, Nomoto A, Ogawa A. A two-phase bromination process using tetraalkylammonium hydroxide for the practical synthesis of α-bromolactones from lactones. Beilstein J Org Chem 2021; 17:2906-2914. [PMID: 34956409 PMCID: PMC8685563 DOI: 10.3762/bjoc.17.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
A simple and efficient method for α-brominating lactones that affords α-bromolactones under mild conditions using tetraalkylammonium hydroxide (R4N+OH-) as a base was developed. Lactones are ring-opened with Br2 and a substoichiometric amount of PBr3, leading to good yields of the corresponding α-bromocarboxylic acids. Subsequent intramolecular cyclization over 1 h using a two-phase system (H2O/CHCl3) containing R4N+OH- afforded α-bromo lactones in good yields. This method can be applied at the 10 mmol scale using simple operations. α-Bromo-δ-valerolactone, which is extremely reactive and difficult to isolate, could be isolated and stored in a freezer for about one week using the developed method. Optimizing the solvent for environmentally friendly large-scale syntheses revealed that methyl ethyl ketone (MEK) was as effective. In addition, in situ-generated α-bromo-δ-valerolactone was directly converted into a sulfur-substituted functional lactone without difficulty by reacting it with a sulfur nucleophile in one pot without isolation. This new bromination system is expected to facilitate the industrial use of α-bromolactones as important intermediates.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Akihiro Tabuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Kazumi Hosono
- Nippoh Chemicals Co., Ltd. Neo Kawai Building, 8-15,4-Chome, Nihonbashi-Honchou, Chuo-Ku, Tokyo 103-0023, Japan
| | - Takanori Ochi
- Nippoh Chemicals Co., Ltd. Neo Kawai Building, 8-15,4-Chome, Nihonbashi-Honchou, Chuo-Ku, Tokyo 103-0023, Japan
| | - Kento Yamazaki
- Nippoh Chemicals Co., Ltd. Neo Kawai Building, 8-15,4-Chome, Nihonbashi-Honchou, Chuo-Ku, Tokyo 103-0023, Japan
| | - Shintaro Kodama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Akiya Ogawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
20
|
Scoponi G, Francini N, Paradiso V, Donno R, Gennari A, d’Arcy R, Capacchione C, Athanassiou A, Tirelli N. Versatile Preparation of Branched Polylactides by Low-Temperature, Organocatalytic Ring-Opening Polymerization in N-Methylpyrrolidone and Their Surface Degradation Behavior. Macromolecules 2021; 54:9482-9495. [PMID: 34720189 PMCID: PMC8552446 DOI: 10.1021/acs.macromol.1c01503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/16/2021] [Indexed: 11/28/2022]
Abstract
We describe how the organocatalytic, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)-based lactide ring-opening polymerization can be effectively performed in a very polar solvent, N-methylpyrrolidone (NMP). Due to a low ceiling temperature, this "living" mechanism has been unreported to date, but we here demonstrate that through a combination of low temperature and repeated monomer additions (starve-fed process), this mechanism enables the generation of a plethora of multifunctional homo- and (stereo)block-poly(lactide)s (PLAs) with exquisite control of the molecular weight dispersity (typically Đ < 1.1) and topology (from linear through 4-, 6-, or 8-armed stars and up to ∼140 armed combs). They are scarcely obtainable or inaccessible through more classical synthetic methods due to the poor solubility of multifunctional initiators (polyols) in most organic solvents and monomer melts. In these precisely designed structures, branching significantly altered the nature of the materials' hydrolytic degradation, allowing them to acquire a pronounced surface character (as opposed to the bulk degradation of linear polymers). Finally, we have assessed the amenability of this method to in situ block copolymerization by using the tacticity of PLLA blocks in PLLA-b-PDLLA versus PDLLA-b-PLLA (L-LA polymerized before or after DL-LA) as a sensitive method to detect (stereochemical) defects.
Collapse
Affiliation(s)
- Giulia Scoponi
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- DIBRIS, University of Genova, Via Opera Pia 13, 16145 Genova, Italy
| | - Nora Francini
- Laboratory
of Polymers Biomaterials, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genoa, Italy
| | - Veronica Paradiso
- Department
of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Roberto Donno
- Laboratory
of Polymers Biomaterials, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genoa, Italy
| | - Arianna Gennari
- Laboratory
of Polymers Biomaterials, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genoa, Italy
| | - Richard d’Arcy
- Laboratory
of Polymers Biomaterials, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genoa, Italy
| | - Carmine Capacchione
- Department
of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | | | - Nicola Tirelli
- Laboratory
of Polymers Biomaterials, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genoa, Italy
- School
of Health Sciences, University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
| |
Collapse
|
21
|
Bernat R, Maksym P, Tarnacka M, Malarz K, Mrozek-Wilczkiewicz A, Biela T, Golba S, Kamińska E, Paluch M, Kamiński K. High pressure as a novel tool for the cationic ROP of γ-butyrolactone. RSC Adv 2021; 11:34806-34819. [PMID: 35494728 PMCID: PMC9042710 DOI: 10.1039/d1ra06081c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/03/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, we report the acid-catalyzed and high pressure assisted ring-opening polymerization (ROP) of γ-butyrolactone (GBL). The use of a dually-catalyzed approach combining an external physical factor and internal catalyst (trifluoromethanesulfonic acid (TfOH) or p-toluenesulfonic acid (PTSA)) enforced ROP of GBL, which is considered as hardly polymerizable monomer still remaining a challenge for the modern polymer chemistry. The experiments performed at various thermodynamic conditions (T = 278–323 K and p = 700–1500 MPa) clearly showed that the high pressure supported polymerization process led to obtaining well-defined macromolecules of better parameters (Mn = 2200–9700 g mol−1; Đ = 1.05–1.46) than those previously reported. Furthermore, the parabolic-like dependence of both the molecular weight (MW) and the yield of obtained polymers on variation in temperature and pressure at either isobaric or isothermal conditions was also noticed, allowing the determination of optimal conditions for the polymerization process. However, most importantly, this strategy allowed to significantly reduce the reaction time (just 3 h at room temperature) and increase the yield of obtained polymers (up to 0.62 gPGBL/gGBL). Moreover, despite using a strongly acidic catalyst, synthesized polymers remained non-toxic and biocompatible, as proven by the cytotoxicity test we performed in further analysis. Additional investigation (including MALDI-TOF measurements) showed that the catalyst selection affected not only MW and yield but also the linear/cyclic form content in obtained macromolecules. These findings show the way to tune the properties of PGBL and obtain polymer suitable for application in the biomedical industry. Well-defined poly(γ-butyrolactone) was synthesized with great efficiency via high pressure assisted cationic ROP of hardly polimerizable γ-butyrolactone.![]()
Collapse
Affiliation(s)
- Roksana Bernat
- Institute of Chemistry, University of Silesia in Katowice Szkolna 9 40-007 Katowice Poland.,Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice 75 Pułku Piechoty 1A 41-500 Chorzów Poland
| | - Paulina Maksym
- Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice 75 Pułku Piechoty 1A 41-500 Chorzów Poland .,Institute of Materials Engineering, University of Silesia in Katowice 75 Pułku Piechoty 1 41-500 Chorzów Poland
| | - Magdalena Tarnacka
- Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice 75 Pułku Piechoty 1A 41-500 Chorzów Poland .,Chelkowski Institute of Physics, University of Silesia in Katowice 75 Pułku Piechoty 1 41-500 Chorzów Poland
| | - Katarzyna Malarz
- Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice 75 Pułku Piechoty 1A 41-500 Chorzów Poland .,Chelkowski Institute of Physics, University of Silesia in Katowice 75 Pułku Piechoty 1 41-500 Chorzów Poland
| | - Anna Mrozek-Wilczkiewicz
- Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice 75 Pułku Piechoty 1A 41-500 Chorzów Poland .,Chelkowski Institute of Physics, University of Silesia in Katowice 75 Pułku Piechoty 1 41-500 Chorzów Poland
| | - Tadeusz Biela
- Department of Polymer Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Lódź Poland
| | - Sylwia Golba
- Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice 75 Pułku Piechoty 1A 41-500 Chorzów Poland .,Institute of Materials Engineering, University of Silesia in Katowice 75 Pułku Piechoty 1 41-500 Chorzów Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice Jagiellońska 4 41-200 Sosnowiec Poland
| | - Marian Paluch
- Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice 75 Pułku Piechoty 1A 41-500 Chorzów Poland .,Chelkowski Institute of Physics, University of Silesia in Katowice 75 Pułku Piechoty 1 41-500 Chorzów Poland
| | - Kamil Kamiński
- Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice 75 Pułku Piechoty 1A 41-500 Chorzów Poland .,Chelkowski Institute of Physics, University of Silesia in Katowice 75 Pułku Piechoty 1 41-500 Chorzów Poland
| |
Collapse
|
22
|
Fadlallah S, Flourat AL, Mouterde LMM, Annatelli M, Peru AAM, Gallos A, Aricò F, Allais F. Sustainable Hyperbranched Functional Materials via Green Polymerization of Readily Accessible Levoglucosenone-Derived Monomers. Macromol Rapid Commun 2021; 42:e2100284. [PMID: 34347323 DOI: 10.1002/marc.202100284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/19/2021] [Indexed: 01/20/2023]
Abstract
The homopolymerization in basic conditions of the recently reported bis(γ-lactone), 2H-HBO-HBO, is herein described for the first time. The solvent-free polymerization of this pentafunctional levoglucosenone (LGO) derivative affords fully renewable poly(vinyl-ether lactone) copolymers with a highly hyperbranched structure. This investigation stems from the polycondensation trials between 2H-HBO-HBO and di(methyl carbonate) isosorbide (DCI) that fails to give the anticipated polycarbonates. Such unexpected behavior is ascribed to the higher reactivity of the 2H-HBO-HBO hydroxy groups toward its α,β-conjugated endocyclic C═C, rather than the DCI methylcarbonate moieties. The different mechanistic scenarios involved in 2H-HBO-HBO homopolymerization are addressed and a possible structure of poly(2H-HBO-HBO) is suggested. Furthermore, the readily accessible (S)-γ-hydroxymethyl-α,β-butenolide (HBO) is also polymerized for the first time at a relatively large scale, without any prior modification, resulting in a new hyperbranched polymer with an environmental factor (E factor) ≈0. These new HBO-based polymers have a great potential for industrial-scale production due to their interesting properties and easy preparation via a low-cost, green, and efficient process.
Collapse
Affiliation(s)
- Sami Fadlallah
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 3, Rue des Rouges-Terres, Pomacle, 51110, France
| | - Amandine L Flourat
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 3, Rue des Rouges-Terres, Pomacle, 51110, France
| | - Louis M M Mouterde
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 3, Rue des Rouges-Terres, Pomacle, 51110, France
| | - Mattia Annatelli
- Department of Environmental Science, Informatics and Statistics, University Ca'Foscari of Venice, Via Torino155, Venezia Mestre, Venice, 30172, Italy
| | - Aurélien A M Peru
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 3, Rue des Rouges-Terres, Pomacle, 51110, France
| | - Antoine Gallos
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 3, Rue des Rouges-Terres, Pomacle, 51110, France
| | - Fabio Aricò
- Department of Environmental Science, Informatics and Statistics, University Ca'Foscari of Venice, Via Torino155, Venezia Mestre, Venice, 30172, Italy
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 3, Rue des Rouges-Terres, Pomacle, 51110, France
| |
Collapse
|
23
|
Nomura T, Ryukan M, Matsuoka SI, Suzuki M. Cooligomerization of γ-butyrolactone with (meth)acrylates catalyzed by N-heterocyclic carbene: Low possibility of hybrid copolymerization. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Chiriac AP, Rusu AG, Nita LE, Macsim AM, Tudorachi N, Rosca I, Stoica I, Tampu D, Aflori M, Doroftei F. Synthesis of Poly(Ethylene Brassylate-Co-squaric Acid) as Potential Essential Oil Carrier. Pharmaceutics 2021; 13:477. [PMID: 33916007 PMCID: PMC8067060 DOI: 10.3390/pharmaceutics13040477] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 11/26/2022] Open
Abstract
Bio-based compounds are a leading direction in the context of the increased demand for these materials due to the numerous advantages associated with their use over conventional materials, which hardly degrade in the environment. At the same time, the use of essential oils and their components is generated mainly by finding alternative solutions to antibiotics and synthetic preservatives due to their bioactive characteristics, but also to their synergistic capacity during the manifestation of different biological properties. The present study is devoted to poly(ethylene brassylate-co-squaric acid) (PEBSA), synthesis and its use for thymol encapsulation and antibacterial system formation. The synthesized copolymer, performed through ethylene brassylate macrolactone ring-opening and copolymerization with squaric acid, was physicochemical characterized. Its amphiphilic character allowed the entrapment of thymol (Ty), a natural monoterpenoid phenol found in oil of thyme, a compound with strong antiseptic properties. The copolymer chemical structure was confirmed by spectroscopic analyses. Thermal analysis evidenced a good thermal stability for the copolymer. Additionally, the antimicrobial activity of PEBSA_Ty complex was investigated against eight different reference strains namely: bacterial strains-Staphylococcus aureus ATCC25923, Escherichia coli ATCC25922, Enterococcus faecalis ATCC 29212, Klebsiella pneumonie ATCC 10031 and Salmonella typhimurium ATCC 14028, yeast strains represented by Candida albicans ATCC10231 and Candida glabrata ATCC 2001, and the fungal strain Aspergillus brasiliensis ATCC9642.
Collapse
Affiliation(s)
- Aurica P Chiriac
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alina Gabriela Rusu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Loredana Elena Nita
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Ana-Maria Macsim
- Department of Polycondensation and Thermostable Polymers, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Nita Tudorachi
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Irina Rosca
- Center of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Iuliana Stoica
- Department of Physical Chemistry of Polymers, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Daniel Tampu
- Department of Physical Chemistry of Polymers, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Magdalena Aflori
- Department of Physics of Polymers and Polymeric Materials, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Florica Doroftei
- Department of Physics of Polymers and Polymeric Materials, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
25
|
Kaalberg SM, Schissel SM, Soumounthong M, Jessop JLP. Elucidation of network structure in cationic photopolymerization of cyclic ether comonomers. Polym Chem 2021. [DOI: 10.1039/d1py00824b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kinetic outcomes of epoxide photopolymerizations are substantially improved by oxetane addition, resulting in copolymeric structures elucidated through reactivity ratios.
Collapse
Affiliation(s)
- Sara M. Kaalberg
- The University of Iowa, 4133 Seamans Center, Iowa City, Iowa 52242, USA
| | - Sage M. Schissel
- The University of Iowa, 4133 Seamans Center, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
26
|
Tang Y, Shen C, Yao Q, Tian X, Wang B, Dong K. Efficient Synthesis of γ‐Lactones by Cobalt‐Catalyzed Carbonylative Ring Expansion of Oxetanes under Syngas Atmosphere. ChemCatChem 2020. [DOI: 10.1002/cctc.202001294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yitian Tang
- Chang-Kung Chuang Institute and Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Chaoren Shen
- Chang-Kung Chuang Institute and Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Qiyi Yao
- Chang-Kung Chuang Institute and Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Xinxin Tian
- Institute of Molecular Science Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province Shanxi University Taiyuan 030006 P. R. China
| | - Bo Wang
- Shanghai Puyi Chemical Co., Ltd. Shanghai 201612 P. R. China
| | - Kaiwu Dong
- Chang-Kung Chuang Institute and Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| |
Collapse
|
27
|
|
28
|
Goetjen TA, Liu J, Wu Y, Sui J, Zhang X, Hupp JT, Farha OK. Metal-organic framework (MOF) materials as polymerization catalysts: a review and recent advances. Chem Commun (Camb) 2020; 56:10409-10418. [PMID: 32745156 DOI: 10.1039/d0cc03790g] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic polymers are ubiquitous across both the industrial and consumer segments of the world economy. Catalysts enable rapid, efficient, selective, and even stereoselective, formation of desired polymers from any of a host of candidate monomers. While numerous molecular catalysts have been shown to be effective for these reactions, separation of the catalysts from reaction products is typically difficult - a potentially problematic complication that suggests instead the use of heterogeneous catalysts. Many of the most effective heterogeneous catalysts, however, comprise supported collections of reaction centres that are decidedly nonuniform in their composition, siting, and activity. Nonuniformity complicates atomic-scale evaluation of the basis for catalytic activity and thus impedes scientific hypothesis-driven understanding and development of superior catalysts. In view of the fundamental desirability of structural and chemical uniformity at the meso, nano, and even atomic scale, crystallographically well-defined, high-porosity metal-organic frameworks (MOFs) have attracted attention as model catalysts and/or catalyst-supports for a wide variety of chemical transformations. In the realm of synthetic polymers, catalyst-functionalized MOFs have been studied for reactions ranging from coordination-mediated polymerization of ethylene to visible-light initiated radical polymerizations. Nevertheless, many polymerization reactions remain to be explored - and, no doubt, will be explored, given the remarkable structural and compositional diversity of attainable MOFs. Noteworthy emerging studies include work directed toward more sophisticated catalytic schemes such as polymer templating using MOF pore architectures and tandem copolymerizations using MOF-supported reaction centres. Finally, it is appropriate to recognize that MOFs themselves are synthetic polymers - albeit, uncoventional ones.
Collapse
Affiliation(s)
- Timothy A Goetjen
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Puchelle V, Latreyte Y, Girardot M, Garnotel L, Levesque L, Coutelier O, Destarac M, Guégan P, Illy N. Functional Poly(ester- alt-sulfide)s Synthesized by Organo-Catalyzed Anionic Ring-Opening Alternating Copolymerization of Oxiranes and γ-Thiobutyrolactones. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00261] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Valentin Puchelle
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 place Jussieu, F-75005 Paris, France
| | - Yannick Latreyte
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 place Jussieu, F-75005 Paris, France
| | - Mélanie Girardot
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 place Jussieu, F-75005 Paris, France
| | - Laura Garnotel
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 place Jussieu, F-75005 Paris, France
| | - Léa Levesque
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 place Jussieu, F-75005 Paris, France
| | - Olivier Coutelier
- IMRCP, UMR 5623, CNRS, Université de Toulouse, 118 route de Narbonne, F-31062 Toulouse, France
| | - Mathias Destarac
- IMRCP, UMR 5623, CNRS, Université de Toulouse, 118 route de Narbonne, F-31062 Toulouse, France
| | - Philippe Guégan
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 place Jussieu, F-75005 Paris, France
| | - Nicolas Illy
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 place Jussieu, F-75005 Paris, France
| |
Collapse
|