1
|
Karadeli HH, Kuram E. Single Component Polymers, Polymer Blends, and Polymer Composites for Interventional Endovascular Embolization of Intracranial Aneurysms. Macromol Biosci 2024; 24:e2300432. [PMID: 37992206 DOI: 10.1002/mabi.202300432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Intracranial aneurysm is the abnormal focal dilation in brain arteries. When untreated, it can enlarge to rupture points and account for subarachnoid hemorrhage cases. Intracranial aneurysms can be treated by blocking the flow of blood to the aneurysm sac with clipping of the aneurysm neck or endovascular embolization with embolics to promote the formation of the thrombus. Coils or an embolic device are inserted endovascularly into the aneurysm via a micro-catheter to fill the aneurysm. Many embolization materials have been developed. An embolization coil made of soft and thin platinum wire called the "Guglielmi detachable coil" (GDC) enables safer treatment for brain aneurysms. However, patients may experience aneurysm recurrence because of incomplete coil filling or compaction over time. Unsatisfactory recanalization rates and incomplete occlusion are the drawbacks of endovascular embolization. So, the fabrication of new medical devices with less invasive surgical techniques is mandatory to enhance the long-term therapeutic performance of existing endovascular procedures. For this aim, the current article reviews polymeric materials including blends and composites employed for embolization of intracranial aneurysms. Polymeric materials used in embolic agents, their advantages and challenges, results of the strategies used to overcome treatment, and results of clinical experiences are summarized and discussed.
Collapse
Affiliation(s)
- Hasan Hüseyin Karadeli
- Department of Neurology, Istanbul Medeniyet University Göztepe Prof. Dr. Süleyman Yalçın City Hospital, Istanbul, 34722, Turkey
| | - Emel Kuram
- Department of Mechanical Engineering, Gebze Technical University, Kocaeli, 41400, Turkey
| |
Collapse
|
2
|
Ai S, Gao Q, Cheng G, Zhong P, Cheng P, Ren Y, Wang H, Zhu X, Guan S, Qu X. Construction of an Injectable Composite Double-Network Hydrogel as a Liquid Embolic Agent. Biomacromolecules 2024; 25:2052-2064. [PMID: 38426456 DOI: 10.1021/acs.biomac.3c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Conventional embolists disreputably tend to recanalization arising from the low filling ratio due to their rigidity or instability. As a result, intelligent hydrogels with a tunable modulus may meaningfully improve the therapeutic efficacy. Herein, an injectable composite double-network (CDN) hydrogel with high shear responsibility was prepared as a liquid embolic agent by cross-linking poly(vinyl alcohol) (PVA) and carboxymethyl chitosan (CMC) via dynamic covalent bonding of borate ester and benzoic-imine. A two-dimensional nanosheet, i.e., layered double hydroxide (LDH), was incorporated into the network through physical interactions which led to serious reduction of yield stress for the injection of the hydrogel and the capacity for loading therapeutic agents like indocyanine green (ICG) and doxorubicin (DOX) for the functions of photothermal therapy (PTT) and chemotherapy. The CDN hydrogel could thus be transported through a thin catheter and further in situ strengthened under physiological conditions, like in blood, by secondarily cross-linking with phosphate ions for longer degradation duration and better mechanical property. These characteristics met the requirements of arterial interventional embolization, which was demonstrated by renal embolism operation on rabbits, and meanwhile favored the inhibition of subcutaneous tumor growth on an animal model. Therefore, this work makes a breakthrough in the case of largely reducing the embolism risks, thus affording a novel generation for interventional embolization.
Collapse
Affiliation(s)
- Shili Ai
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qinzong Gao
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Gele Cheng
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
- Duke Kunshan University, Suzhou, Jiangsu 215316, China
| | - Pengfei Zhong
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Peiyu Cheng
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Yingying Ren
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hao Wang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Xu Zhu
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaozhong Qu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
3
|
Chen X, Taguchi T. Enhanced skin adhesive property of α-cyclodextrin/nonanyl group-modified poly(vinyl alcohol) inclusion complex film. Carbohydr Polym 2021; 263:117993. [PMID: 33858580 DOI: 10.1016/j.carbpol.2021.117993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/19/2021] [Accepted: 03/24/2021] [Indexed: 01/02/2023]
Abstract
For skin contact medical devices, realizing a strong contact with skin is essential to precisely detect human biological information and enable human-machine interaction. In this study, we aimed to fabricate and characterize an inclusion complex film (ICF) for skin adhesion using α-cyclodextrin (α-CD) and nonanyl group-modified PVA (C9-PVA) under wet conditions. Based on the water insolubility of C9-PVA and the inclusion ability of α-CD for alkyl groups, α-CD/C9-PVA ICF was prepared. Among the prepared ICFs, α-CD/2.5C9-PVA (w/w = 0.5) ICF showed the highest bonding strength and T-peeling strength to porcine skin. Furthermore, α-CD/2.5C9-PVA (w/w = 0.5) ICF had better water vapor transmission rate than that of commercial tapes. In addition, the ion permeability test revealed that α-CD/2.5C9-PVA (w/w = 0.5) ICF exhibited excellent Na and Cl ion permeability. These results demonstrated that the multi-functional α-CD/2.5C9-PVA (w/w = 0.5) ICF can be a promising adhesive for skin contact medical devices.
Collapse
Affiliation(s)
- Xi Chen
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Tetsushi Taguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| |
Collapse
|
4
|
Chen X, Taguchi T. Bonding a titanium plate and soft tissue interface by using an adhesive bone paste composed of α-tricalcium phosphate and α-cyclodextrin/nonanyl group-modified poly(vinyl alcohol) inclusion complex. Colloids Surf B Biointerfaces 2021; 203:111757. [PMID: 33862571 DOI: 10.1016/j.colsurfb.2021.111757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Adhesive bone pastes for dental implants and soft tissue interfaces were developed using α-tricalcium phosphate (α-TCP) and α-cyclodextrin (α-CD)/nonanyl group-modified poly(vinyl alcohol) (C9-PVA) inclusion complex solution (ICS). The thixotropic solution of α-CD/C9-PVA ICS was prepared by mixing α-CD and C9-PVA in deionized water. The α-CD/C9-PVA bone paste led to the highest bonding and shear adhesion between commercial pure titanium plates and soft tissue like collagen casing. Moreover, the compressive strength of these pastes reached 14.1 ± 3.8 MPa within 24 h incubation. Young's modulus of the α-CD/C9-PVA bone paste was lower than that of commercial calcium phosphate paste. Furthermore, the surface of α-CD/C9-PVA bone paste demonstrated excellent cell adhesion for cultured L929 fibroblast cells. Overall, the α-CD/C9-PVA bone paste can likely be effectively used to adhere dental implant abutments and soft tissue interfaces.
Collapse
Affiliation(s)
- Xi Chen
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Tetsushi Taguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| |
Collapse
|
5
|
Chen X, Taguchi T. Enhanced skin adhesive property of electrospun α-cyclodextrin/nonanyl group-modified poly(vinyl alcohol) inclusion complex fiber sheet. RSC Adv 2021; 11:8759-8766. [PMID: 35423382 PMCID: PMC8695218 DOI: 10.1039/d1ra00422k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/18/2021] [Indexed: 11/27/2022] Open
Abstract
Many medical tapes on the market lack sufficient adhesive strength and breathability. Owing to its high biocompatibility, poly(vinyl alcohol) (PVA), a synthetic polymer, has attracted attention in the medical field. In this study, we aimed to prepare an inclusion complex fiber (ICFiber) using α-cyclodextrin (α-CD) and nonanyl-group-modified PVA (C9-PVA) for skin adhesion with improved performance. By changing the concentration of α-CD, six microfiber sheets were fabricated by electrospinning the α-CD/2.3C9-PVA inclusion complex solutions. The bonding strength and energy of the ICFiber sheets on the porcine skin were evaluated. Among the tested ICFiber sheets, the ICFiber-3 (molar ratio of α-CD/C9 groups was 0.612) sheet showed high tensile strength and break strain. The bonding strength and energy of ICFiber-3 sheet on porcine skin were 1.10 ± 0.11 N and 5.07 ± 0.94 J m-2, respectively, in the presence of water. In addition, ICFiber-3 sheet showed a better water vapor transmission rate (0.95 ± 0.02 mL per day) than commercial tapes. These results demonstrate that the α-CD/2.3C9-PVA ICFiber sheet is a promising adhesive for wearable medical devices.
Collapse
Affiliation(s)
- Xi Chen
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science 1-1 Namiki, Tsukuba Ibaraki 305-0044 Japan
| | - Tetsushi Taguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science 1-1 Namiki, Tsukuba Ibaraki 305-0044 Japan
| |
Collapse
|
6
|
Chen X, Nishiguchi A, Taguchi T. Adhesive Submucosal Injection Material Based on the Nonanal Group-Modified Poly(vinyl alcohol)/α-Cyclodextrin Inclusion Complex for Endoscopic Submucosal Dissection. ACS APPLIED BIO MATERIALS 2020; 3:4370-4379. [DOI: 10.1021/acsabm.0c00384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xi Chen
- Polymer-Bio Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Akihiro Nishiguchi
- Polymer-Bio Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Polymer-Bio Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|