1
|
Song K, Ai Y, Zhou J, Dun B, Yue Q, Zhang L, Xu Y, Wang C. Isolation, Characterization, and Bioherbicidal Potential of the 16-Residue Peptaibols from Emericellopsis sp. XJ1056. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6315-6326. [PMID: 38470442 DOI: 10.1021/acs.jafc.3c08984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Eco-friendly bioherbicides are urgently needed for managing the problematic weed Amaranthus retroflexus. A mass spectrometry- and bioassay-guided screening approach was employed to identify phytotoxic secondary metabolites from fungi for the development of such bioherbicides. This effort led to the discovery of six phytotoxic 16-residue peptaibols, including five new compounds (2-6) and a known congener (1), from Emericellopsis sp. XJ1056. Their planar structures were elucidated through the analysis of tandem mass and NMR spectroscopic data. The absolute configurations of the chiral amino acids were determined by advanced Marfey's method and chiral-phase liquid chromatography-mass spectrometry (LC-MS) analysis. Bioinformatic analysis and targeted gene disruption identified the biosynthetic gene cluster for these peptaibols. Compounds 1 and 2 significantly inhibited the radicle growth of A. retroflexus seedlings, and 1 demonstrated potent postemergence herbicidal activity against A. retroflexus while exhibiting minimal toxicity to Sorghum bicolor. Structure-activity relationship analysis underscored the importance of trans-4-hydroxy-l-prolines at both the 10th and 13th positions for the herbicidal activities of these peptaibols.
Collapse
Affiliation(s)
- Kainan Song
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Yutong Ai
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Jianshuang Zhou
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Baoqing Dun
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, P. R. China
| | - Qun Yue
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Liwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, P. R. China
| | - Chen Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, P. R. China
| |
Collapse
|
2
|
Qin Y, Lu H, Qi X, Lin M, Gao C, Liu Y, Luo X. Recent Advances in Chemistry and Bioactivities of Secondary Metabolites from the Genus Acremonium. J Fungi (Basel) 2024; 10:37. [PMID: 38248947 PMCID: PMC10820033 DOI: 10.3390/jof10010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Acremonium fungi is one of the greatest and most complex genera in Hyphomycetes, comprising 130 species of marine and terrestrial sources. The past decades have witnessed substantial chemical and biological investigations on the diverse secondary metabolites from the Acremonium species. To date, over 600 compounds with abundant chemical types as well as a wide range of bioactivities have been obtained from this genus, attracting considerable attention from chemists and pharmacologists. This review mainly summarizes the sources, chemical structures, and biological activities of 115 recently reported new compounds from the genus Acremonium from December 2016 to September 2023. They are structurally classified into terpenoids (42%), peptides (29%), polyketides (20%), and others (9%), among which marine sources are predominant (68%). Notably, these compounds were primarily screened with cytotoxic, antibacterial, and anti-inflammatory activities. This paper provides insights into the exploration and utilization of bioactive compounds in this genus, both within the scientific field and pharmaceutical industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
3
|
Awasthi MK, Kumar V, Hellwig C, Wikandari R, Harirchi S, Sar T, Wainaina S, Sindhu R, Binod P, Zhang Z, Taherzadeh MJ. Filamentous fungi for sustainable vegan food production systems within a circular economy: Present status and future prospects. Food Res Int 2023; 164:112318. [PMID: 36737911 DOI: 10.1016/j.foodres.2022.112318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Filamentous fungi serve as potential candidates in the production of different value-added products. In the context of food, there are several advantages of using filamentous fungi for food. Among the main advantages is that the fungal biomass used food not only meets basic nutritional requirements but that it is also rich in protein, low in fat, and free of cholesterol. This speaks to the potential of filamentous fungi in the production of food that can substitute animal-derived protein sources such as meat. Moreover, life-cycle analyses and techno-economic analyses reveal that fungal proteins perform better than animal-derived proteins in terms of land use efficiency as well as global warming. The present article provides an overview of the potential of filamentous fungi as a source of food and food supplements. The commercialization potential as well as social, legal and safety issues of fungi-based food products are discussed.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Vinay Kumar
- Department of Community Medicine, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam 602105, India
| | - Coralie Hellwig
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Rachma Wikandari
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Gadjah Mada University, Jalan Flora, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | |
Collapse
|
4
|
Zhang SH, Zhao X, Xu R, Yang Y, Tang J, Yue XL, Wang YT, Tan HY, Zhang GG, Li CW. Eleven-Residue Peptaibols Isolated from Trichoderma Longibrachiatum Rifai DMG-3-1-1 and Their Structure-Activity Relationship. Chem Biodivers 2022; 19:e202200627. [PMID: 35921066 DOI: 10.1002/cbdv.202200627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022]
Abstract
Total 23 eleven-residue peptaibols, including five reported ones (1-5) in our previous work, were isolated from the fungus Trichoderma longibrachiatum Rifai DMG-3-1-1, which was obtained from the mushroom Clitocybe nebularis (Batsch) P. Kumm. The structures of the 13 new peptaibols (6-10 and 12-19) were determined by their NMR and MALDI-MS/MS data, their absolute structures were further determined by Marfey's analyses and their ECD data. Careful comparison of the structures of 1-23 showed that only seven residues varied including the 2nd (Gln 2 /Asn 2 ), 3rd (Ile 3 /Val 3 ), 4th (Ile 4 /Val 4 ), 6th (Pro 6 /Hyp 6 ), 8 th (Pro 6 /Hyp 6 ), 10th (Pro 10 /Hyp 10 ) and 11th (Leuol 11 /Ileol 11 /Valol 11 ) residues. Comparison of the IC 50 s against the three tested cell lines of 1-23 indicated that 2nd, 3rd and 4th amino acid residues affected their cytotoxicities powerfully. Compounds 2, 5, 9, 11, 21 and 22 showed moderate antibacterial activities against Staphylococcus aureus MRSA T144, which also showed stronger cytotoxicities against BV2 and MCF-7 cells.
Collapse
Affiliation(s)
- Shu-Hua Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Taiping road 27, Haidian District, Beijing, Beijing, CHINA
| | - Xue Zhao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Taiping road 27, Haidian District, Beijing, Beijing, CHINA
| | - Rui Xu
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Taiping road 27, Haidian District, Beijing, Beijing, CHINA
| | - Yu Yang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Taiping road 27, Haidian District, Beijing, Beijing, CHINA
| | - Jing Tang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Taiping road 27, Haidian District, Beijing, Beijing, CHINA
| | - Xian-Lin Yue
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Taiping road 27, Haidian District, Beijing, Beijing, CHINA
| | - Yu-Ting Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Taiping road 27, Haidian District, Beijing, Beijing, CHINA
| | - Hong-Yu Tan
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Taiping road 27, Haidian District, Beijing, Beijing, CHINA
| | - Guo-Gang Zhang
- Shenyang Pharmaceutical University, School of Traditional Chinese Materia Medica, Wenhua road 103, Shenhe District, Shenyang, Shenyang, CHINA
| | - Chang-Wei Li
- Beijing Institute of Pharmacology and Toxicology, Institute of Pharmacology and Toxicology, Taiping Road 27, Haidian District, Beijing, China, 100850, Beijing, CHINA
| |
Collapse
|
5
|
Xiao D, Zhang M, Wu P, Li T, Li W, Zhang L, Yue Q, Chen X, Wei X, Xu Y, Wang C. Halovirs I–K, antibacterial and cytotoxic lipopeptaibols from the plant pathogenic fungus Paramyrothecium roridum NRRL 2183. J Antibiot (Tokyo) 2022; 75:247-257. [DOI: 10.1038/s41429-022-00517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 11/09/2022]
|
6
|
Hao X, Li S, Ni J, Wang G, Li F, Li Q, Chen S, Shu J, Gan M. Acremopeptaibols A-F, 16-Residue Peptaibols from the Sponge-Derived Acremonium sp. IMB18-086 Cultivated with Heat-Killed Pseudomonas aeruginosa. JOURNAL OF NATURAL PRODUCTS 2021; 84:2990-3000. [PMID: 34781681 DOI: 10.1021/acs.jnatprod.1c00834] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Six new 16-residue peptaibols, acremopeptaibols A-F (1-6), along with five known compounds, were isolated from the cultures of the sponge-associated fungus Acremonium sp. IMB18-086 grown in the presence of the autoclaved bacterium Pseudomonas aeruginosa on solid rice medium. The peptaibol sequences were established based on comprehensive analysis of 1D and 2D NMR spectroscopic data in conjunction with HRESIMS/MS experiments. The configurations of the amino acid residues were determined by advanced Marfey's analysis. Compounds 1-6 feature the lack of the highly conserved Thr6 and Hyp10 residues in comparison with other members of the SF3 subfamily peptaibols. A plausible biosynthetic pathway of compounds 1-6 was proposed on the basis of genomic analysis. Compounds 1, 5, 7, and 10 exhibited significant antimicrobial activity against Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus subtilis, and Candida albicans. Compounds 7-10 showed potent cytotoxicities against the A549 and/or HepG2 cancer cell lines.
Collapse
Affiliation(s)
- Xiaomeng Hao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shasha Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jun Ni
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Guiyang Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Fang Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Qin Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, People's Republic of China
| | - Shuzhen Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jicheng Shu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, People's Republic of China
| | - Maoluo Gan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
7
|
Gavryushina IA, Georgieva ML, Kuvarina AE, Sadykova VS. Peptaibols as Potential Antifungal and Anticancer Antibiotics: Current and Foreseeable Development (Review). APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821050070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
The Emericellipsins A-E from an Alkalophilic Fungus Emericellopsis alkalina Show Potent Activity against Multidrug-Resistant Pathogenic Fungi. J Fungi (Basel) 2021; 7:jof7020153. [PMID: 33669976 PMCID: PMC7924852 DOI: 10.3390/jof7020153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
Novel antimicrobial peptides with antifungal and cytotoxic activity were derived from the alkalophilic fungus Emericellopsis alkalina VKPM F1428. We previously reported that this strain produced emericellipsin A (EmiA), which has strong antifungal and cytotoxic properties. Further analyses of the metabolites obtained under a special alkaline medium resulted in the isolation of four new homologous (Emi B-E). In this work, we report the complete primary structure and detailed biological activity for the newly synthesized nonribosomal antimicrobial peptides called emericellipsins B-E. The inhibitory activity of themajor compound, EmiA, against drug-resistant pathogenic fungi was similar to that of amphotericin B (AmpB). At the same time, EmiA had no hemolytic activity towards human erythrocytes. In addition, EmiA demonstrated low cytotoxic activity towards the normal HPF line, but possessed cancer selectivity to the K-562 and HCT-116 cell lines. Emericillipsins from the alkalophilic fungus Emericellopsis alkaline are promising treatment alternatives to licensed antifungal drugs for invasive mycosis therapy, especially for multidrug-resistant aspergillosis and cryptococcosis.
Collapse
|
9
|
Yang L, Li X, Wu P, Xue J, Xu L, Li H, Wei X. Streptovertimycins A-H, new fasamycin-type antibiotics produced by a soil-derived Streptomyces morookaense strain. J Antibiot (Tokyo) 2020; 73:283-289. [PMID: 31949315 PMCID: PMC7223045 DOI: 10.1038/s41429-020-0277-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/16/2022]
Abstract
Eight new fasamycin-type polyketides, streptovertimycins A-H (1-8), were isolated from soil-derived Streptomyces morookaense SC1169 cultivated on wheat grains. Their structures were established by extensive spectroscopic analysis and theoretical computations of ECD spectra. Compounds 1-8 have a fasamycin-type pentacyclic structure featuring a 15-O-methyl group. They exhibited potent activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) with MIC values in the range of 0.63-5.0 μg/ml. The activity profile provided new insights into the structure-activity relationships of fasamycin-type antibiotics.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Lab Building No. 2, CAS, Xingke Road 723, Tianhe District, Guangzhou, 510650, PR China.,University of Chinese Academy of Sciences, Yuquanlu 19A, 100049, Beijing, PR China
| | - Xiaoxia Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Lab Building No. 2, CAS, Xingke Road 723, Tianhe District, Guangzhou, 510650, PR China.,University of Chinese Academy of Sciences, Yuquanlu 19A, 100049, Beijing, PR China
| | - Ping Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Lab Building No. 2, CAS, Xingke Road 723, Tianhe District, Guangzhou, 510650, PR China. .,South China Branch of Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, PR China.
| | - Jinghua Xue
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Lab Building No. 2, CAS, Xingke Road 723, Tianhe District, Guangzhou, 510650, PR China.,South China Branch of Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, PR China
| | - Liangxiong Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Lab Building No. 2, CAS, Xingke Road 723, Tianhe District, Guangzhou, 510650, PR China.,School of Life Sciences, Huizhou University, Huizhou, 516001, PR China
| | - Hanxiang Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Lab Building No. 2, CAS, Xingke Road 723, Tianhe District, Guangzhou, 510650, PR China.,South China Branch of Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, PR China
| | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Lab Building No. 2, CAS, Xingke Road 723, Tianhe District, Guangzhou, 510650, PR China. .,South China Branch of Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, PR China.
| |
Collapse
|
10
|
Brückner H, Fox S, Degenkolb T. Sequences of Acretocins, Peptaibiotics Containing the Rare 1-Aminocyclopropanecarboxylic Acid, from Acremonium crotocinigenum CBS 217.70. Chem Biodivers 2019; 16:e1900276. [PMID: 31336036 DOI: 10.1002/cbdv.201900276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Hans Brückner
- Interdisciplinary Research Center for BioSystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Science, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Stefan Fox
- Institute of Chemistry, Department of Bioinorganic Chemistry, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Thomas Degenkolb
- Interdisciplinary Research Center for BioSystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Science, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.,Present address: Institute of Insect Biotechnology, Department of Applied Entomology, IFZ, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, Giessen, Germany
| |
Collapse
|
11
|
A New Meroterpene, A New Benzofuran Derivative and Other Constituents from Cultures of the Marine Sponge-Associated Fungus Acremonium persicinum KUFA 1007 and Their Anticholinesterase Activities. Mar Drugs 2019; 17:md17060379. [PMID: 31242631 PMCID: PMC6628235 DOI: 10.3390/md17060379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 12/04/2022] Open
Abstract
Previously unreported meroterpene, acremine S (1), and benzopyran derivative, acremine T (2), were isolated, together with lumichrome (3), ergosterol (4) and ergosterol 5,8-endoperoxide, from cultures of the marine sponge-associated fungus Acremonium persicinum KUF1007. The structure of the previously unreported compounds was established based on an extensive analysis of 1D and 2D NMR spectra as well as HRMS data. The absolute configurations of the stereogenic centers of 1 were established, unambiguously, based on NOESY correlations and comparison of calculated and experimental electronic circular dichroism (ECD) spectra. Compounds 1–3 were tested for their in vitro acetylcholinesterase and butyrylcholinesterase inhibitory activities.
Collapse
|
12
|
Zhao P, Xue Y, Li X, Li J, Zhao Z, Quan C, Gao W, Zu X, Bai X, Feng S. Fungi-derived lipopeptide antibiotics developed since 2000. Peptides 2019; 113:52-65. [PMID: 30738838 DOI: 10.1016/j.peptides.2019.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
Abstract
Lipopeptide antibiotics have linear or cyclic structures with one or more hydrocarbon tails linked to the N-terminus of a short oligopeptide that may be chemically modified and/or contain unusual amino acid residues in their structures. They possess huge potential as pharmaceutical drugs and biocontrol agents, and ˜30 representative genera of fungi are known to produce them. Some chemically synthesised derivatives have already been developed into commercial products or subjected to clinical trials, including cilofungin, caspofungin, micafungin, anidulafungin, rezafungin, emodepside, fusafungine and destruxins. This review summarizes 200 fungi-derived compounds reported since 2000, including 95 cyclic depsipeptides, 67 peptaibiotics (including 35 peptaibols, eight lipoaminopeptides, and five lipopeptaibols), and 38 non-depsipeptide and non-peptaibiotic lipopeptides. Their sources, structural sequences, antibiotic activities (e.g. antibacterial, antifungal, antiviral, antimycobacterial, antimycoplasmal, antimalarial, antileishmanial, insecticidal, antitrypanosomal and nematicidal), structure-activity relationships, mechanisms of action, and specific relevance are discussed. These compounds have attracted considerable interest within the pharmaceutical and agrochemical industries.
Collapse
Affiliation(s)
- Pengchao Zhao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Xin Li
- Life Science College, Yuncheng University, Yuncheng, 044000, China
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhanqin Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Chunshan Quan
- Department of Life Science, Dalian Nationalities University, Dalian, 116600, China
| | - Weina Gao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiangyang Zu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xuefei Bai
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shuxiao Feng
- College of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|