1
|
Ding MQ, Ding J, Yang SS, Ren XR, Shi SN, Zhang LY, Xing DF, Ren NQ, Wu WM. Effects of plastic aging on biodegradation of polystyrene by Tenebrio molitor larvae: Insights into gut microbiome and bacterial metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176130. [PMID: 39260508 DOI: 10.1016/j.scitotenv.2024.176130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/15/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Plastics aging reduces resistance to microbial degradation. Plastivore Tenebrio molitor rapidly biodegrades polystyrene (PS, size: < 80 μm), but the effects of aging on PS biodegradation by T. molitor remain uncharacterized. This study examined PS biodegradation over 24 days following three pre-treatments: freezing with UV exposure (PS1), UV exposure (PS2), and freezing (PS3), compared to pristine PS (PSv) microplastic. The pretreatments deteriorated PS polymers, resulting in slightly higher specific PS consumption (602.8, 586.1, 566.7, and 563.9 mg PS·100 larvae-1·d-1, respectively) and mass reduction rates (49.6 %, 49.5 %, 49.2 %, and 48.7 %, respectively) in PS1, PS2, and PS3 compared to PSv. Improved biodegradation correlated with reduced molecular weights and the formation of oxidized functional groups. Larvae fed more aged PS exhibited greater gut microbial diversity, with microbial community and metabolic pathways shaped by PS aging, as supported by co-occurrence network analysis. These findings indicated that the aging treatments enhanced PS biodegradation by only limited extent but impacted greater on gut microbiome and bacterial metabolic genes, indicating that the T. molitor host have highly predominant capability to digest PS plastics and alters gut microbiome to adapt the PS polymers fed to them.
Collapse
Affiliation(s)
- Meng-Qi Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xin-Ran Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shao-Nan Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu-Yan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, Department of Chemistry, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Lewis G, Reczek S, Omozusi O, Hogue T, Cook MD, Hampton-Marcell J. Machine Learning Reveals Microbial Taxa Associated with a Swim across the Pacific Ocean. Biomedicines 2024; 12:2309. [PMID: 39457621 PMCID: PMC11504845 DOI: 10.3390/biomedicines12102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Purpose: This study aimed to characterize the association between microbial dynamics and excessive exercise. Methods: Swabbed fecal samples, body composition (percent body fat), and swimming logs were collected (n = 94) from a single individual over 107 days as he swam across the Pacific Ocean. The V4 region of the 16S rRNA gene was sequenced, generating 6.2 million amplicon sequence variants. Multivariate analysis was used to analyze the microbial community structure, and machine learning (random forest) was used to model the microbial dynamics over time using R statistical programming. Results: Our findings show a significant reduction in percent fat mass (Pearson; p < 0.01, R = -0.89) and daily swim distance (Spearman; p < 0.01, R = -0.30). Furthermore, the microbial community structure became increasingly similar over time (PERMANOVA; p < 0.01, R = -0.27). Decision-based modeling (random forest) revealed the genera Alistipes, Anaerostipes, Bifidobacterium, Butyricimonas, Lachnospira, Lachnobacterium, and Ruminococcus as important microbial biomarkers of excessive exercise for explaining variations observed throughout the swim (OOB; R = 0.893). Conclusions: We show that microbial community structure and composition accurately classify outcomes of excessive exercise in relation to body composition, blood pressure, and daily swim distance. More importantly, microbial dynamics reveal the microbial taxa significantly associated with increased exercise volume, highlighting specific microbes responsive to excessive swimming.
Collapse
Affiliation(s)
- Garry Lewis
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (G.L.); (S.R.)
| | - Sebastian Reczek
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (G.L.); (S.R.)
| | - Osayenmwen Omozusi
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Taylor Hogue
- Department of Kinesiology, North Carolina Agriculture and Technical State University, Greensboro, NC 27411, USA; (T.H.); (M.D.C.)
| | - Marc D. Cook
- Department of Kinesiology, North Carolina Agriculture and Technical State University, Greensboro, NC 27411, USA; (T.H.); (M.D.C.)
- Center of Integrative Health Disparities and Equity Research, North Carolina Agriculture and Technical State University, Greensboro, NC 27411, USA
| | - Jarrad Hampton-Marcell
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (G.L.); (S.R.)
| |
Collapse
|
3
|
Awe T, Fasawe A, Sawe C, Ogunware A, Jamiu AT, Allen M. The modulatory role of gut microbiota on host behavior: exploring the interaction between the brain-gut axis and the neuroendocrine system. AIMS Neurosci 2024; 11:49-62. [PMID: 38617041 PMCID: PMC11007408 DOI: 10.3934/neuroscience.2024004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
The brain-gut axis refers to the communication between the central nervous system and the gastrointestinal tract, with the gut microbiome playing a crucial role. While our understanding of the interaction between the gut microbiome and the host's physiology is still in its nascent stage, evidence suggests that the gut microbiota can indeed modulate host behavior. Understanding the specific mechanisms by which the gut microbiota community modulates the host's behavior remains the focus of present and future neuro-gastroenterology studies. This paper reviews several pieces of evidence from the literature on the impact of gut microbiota on host behavior across animal taxa. We explore the different pathways through which this modulation occurs, with the aim of deepening our understanding of the fascinating relationship between the gut microbiome and the central nervous system.
Collapse
Affiliation(s)
- Temitope Awe
- Department of Cell Biology and Genetics, University of Lagos, Lagos, Nigeria
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Ayoola Fasawe
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Caleb Sawe
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Adedayo Ogunware
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - Michael Allen
- Department of Physiology, College of Medicine, Lagos State University, Lagos, Nigeria
| |
Collapse
|
4
|
Anton-Păduraru DT, Trofin F, Nastase EV, Miftode RS, Miftode IL, Trandafirescu MF, Cojocaru E, Țarcă E, Mindru DE, Dorneanu OS. The Role of the Gut Microbiota in Anorexia Nervosa in Children and Adults-Systematic Review. Int J Mol Sci 2023; 25:41. [PMID: 38203211 PMCID: PMC10779038 DOI: 10.3390/ijms25010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Among the factors incriminated in the appearance of eating disorders, intestinal microbiota has recently been implicated. Now there is evidence that the composition of gut microbiota is different in anorexia nervosa. We gathered many surveys on the changes in the profile of gut microbiota in patients with anorexia nervosa. This review comprehensively examines the contemporary experimental evidence concerning the bidirectional communication between gut microbiota and the brain. Drawing from recent breakthroughs in this area of research, we propose that the gut microbiota significantly contributes to the intricate interplay between the body and the brain, thereby contributing to overall healthy homeostasis while concurrently impacting disease risk, including anxiety and mood disorders. Particular attention is devoted to elucidating the structure and functional relevance of the gut microbiota in the context of Anorexia Nervosa.
Collapse
Affiliation(s)
- Dana-Teodora Anton-Păduraru
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.-T.A.-P.); (D.E.M.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania; (E.C.); (E.Ț.)
| | - Felicia Trofin
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
| | - Eduard Vasile Nastase
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
- Department of Internal Medicine II—Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Radu Stefan Miftode
- Department of Internal Medicine I—Cardiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- “Sf. Spiridon” Clinical Hospital, 700111 Iasi, Romania
| | - Ionela-Larisa Miftode
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
- Department of Internal Medicine II—Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mioara Florentina Trandafirescu
- Department of Morphofunctional Sciences I—Histology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Elena Cojocaru
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania; (E.C.); (E.Ț.)
- Department of Morphofunctional Sciences I—Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Țarcă
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania; (E.C.); (E.Ț.)
- Department of Surgery II—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dana Elena Mindru
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.-T.A.-P.); (D.E.M.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania; (E.C.); (E.Ț.)
| | - Olivia Simona Dorneanu
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
| |
Collapse
|
5
|
Tanelian A, Nankova B, Cheriyan A, Arens C, Hu F, Sabban EL. Differences in gut microbiota associated with stress resilience and susceptibility to single prolonged stress in female rodents. Neurobiol Stress 2023; 24:100533. [PMID: 36970450 PMCID: PMC10034505 DOI: 10.1016/j.ynstr.2023.100533] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Exposure to traumatic stress is a major risk factor for the development of neuropsychiatric disorders in a subpopulation of individuals, whereas others remain resilient. The determinants of resilience and susceptibility remain unclear. Here, we aimed to characterize the microbial, immunological, and molecular differences between stress-susceptible and stress-resilient female rats before and after exposure to a traumatic experience. Animals were randomly divided into unstressed controls (n = 10) and experimental groups (n = 16) exposed to Single Prolonged Stress (SPS), an animal model of PTSD. Fourteen days later, all rats underwent a battery of behavioral tests and were sacrificed the following day to collect different organs. Stool samples were collected before and after SPS. Behavioral analyses revealed divergent responses to SPS. The SPS treated animals were further subdivided into SPS-resilient (SPS-R) and SPS-susceptible (SPS-S) subgroups. Comparative analysis of fecal 16S sequencing before and after SPS exposure indicated significant differences in the gut microbial composition, functionality, and metabolites of the SPS-R and SPS-S subgroups. In line with the observed distinct behavioral phenotypes, the SPS-S subgroup displayed higher blood-brain barrier permeability and neuroinflammation relative to the SPS-R and/or controls. These results indicate, for the first time, pre-existing and trauma-induced differences in the gut microbial composition and functionality of female rats that relate to their ability to cope with traumatic stress. Further characterization of these factors will be crucial for understanding susceptibility and fostering resilience, especially in females, who are more likely than males to develop mood disorders.
Collapse
|
6
|
Garcia-Gil M, Ceccarini MR, Stoppini F, Cataldi S, Mazzeschi C, Delvecchio E, Albi E, Gizzi G. Brain and gut microbiota disorders in the psychopathology of anorexia nervosa. Transl Neurosci 2022; 13:516-526. [PMID: 36660007 PMCID: PMC9824428 DOI: 10.1515/tnsci-2022-0267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 01/08/2023] Open
Abstract
Studies of pathophysiological mechanisms involved in eating disorders (EDs) have intensified over the past several years, revealing their unprecedented and unanticipated complexity. Results from many articles highlight critical aspects in each member of ED family. Notably, anorexia nervosa (AN) is a disorder due to undefined etiology, frequently associated with symptoms of depression, anxiety, obsessive-compulsiveness, accompanied by endocrine alterations, altered immune response, increased inflammation, and dysbiosis of the gut microbiota. Hence, an advanced knowledge of how and why a multisystem involvement exists is of paramount importance to understand the pathogenetic mechanisms of AN. In this review, we describe the change in the brain structure/function focusing on hypothalamic endocrine disorders and the disequilibrium of gut microbiota in AN that might be responsible for the psychopathological complication.
Collapse
Affiliation(s)
- Mercedes Garcia-Gil
- Department of Biology, University of Pisa, 56127, Pisa, Italy,Department of Biology, Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56127 Pisa, Italy,Department of Biology, CISUP, Center for Instrument Sharing of the University of Pisa, 56127 Pisa, Italy
| | | | - Fabrizio Stoppini
- Department of Pharmaceutical Science, University of Perugia, 06126 Perugia, Italy
| | - Samuela Cataldi
- Department of Pharmaceutical Science, University of Perugia, 06126 Perugia, Italy
| | - Claudia Mazzeschi
- Department of Philosophy, Social Sciences and Education, University of Perugia, 06126 Perugia, Italy
| | - Elisa Delvecchio
- Department of Philosophy, Social Sciences and Education, University of Perugia, 06126 Perugia, Italy
| | - Elisabetta Albi
- Department of Pharmaceutical Science, University of Perugia, 06126 Perugia, Italy
| | - Giulia Gizzi
- Department of Philosophy, Social Sciences and Education, University of Perugia, 06126 Perugia, Italy
| |
Collapse
|
7
|
Smith KS, Morris MM, Morrow CD, Novak JR, Roberts MD, Frugé AD. Associations between Changes in Fat-Free Mass, Fecal Microbe Diversity, and Mood Disturbance in Young Adults after 10-Weeks of Resistance Training. Microorganisms 2022; 10:microorganisms10122344. [PMID: 36557597 PMCID: PMC9785032 DOI: 10.3390/microorganisms10122344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The gut microbiome contributes to numerous physiological processes in humans, and diet and exercise are known to alter both microbial composition and mood. We sought to explore the effect of a 10-week resistance training (RT) regimen with or without peanut protein supplementation (PPS) in untrained young adults on fecal microbiota and mood disturbance (MD). METHODS Participants were randomized into PPS (n = 25) and control (CTL [no supplement]; n = 24) groups and engaged in supervised, full-body RT twice a week. Measures included body composition, fecal microbe relative abundance, alpha- and beta-diversity from 16 s rRNA gene sequencing with QIIME2 processing, dietary intake at baseline and following the 10-week intervention, and post-intervention MD via the profile of mood states (POMS) questionnaire. Independent samples t-tests were used to determine differences between PPS and CTL groups. Paired samples t-tests investigated differences within groups. RESULTS Our sample was mostly female (69.4%), white (87.8%), normal weight (body mass index 24.6 ± 4.2 kg/m2), and 21 ± 2.0 years old. Shannon index significantly increased from baseline in all participants (p = 0.040), with no between-group differences or pre-post beta-diversity dissimilarities. Changes in Blautia abundance were associated with the positive POMS subscales, Vigor and self-esteem-related-affect (SERA) (rho = -0.451, p = 0.04; rho = -0.487, p = 0.025, respectively). Whole tree phylogeny changes were negatively correlated with SERA and Vigor (rho = -0.475, p = 0.046; rho = -0.582, p = 0.011, respectively) as well as change in bodyfat percentage (rho = -0.608, p = 0.007). Mediation analysis results indicate changes in PD Whole Tree Phylogeny was not a significant mediator of the relationship between change in fat-free mass and total MD. CONCLUSIONS Mood state subscales are associated with changes in microbial taxa and body composition. PD Whole Tree Phylogeny increased following the 10-week RT regimen; further research is warranted to explore how RT-induced changes in microbial diversity are related to changes in body composition and mood disturbance.
Collapse
Affiliation(s)
- Kristen S. Smith
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
- Correspondence:
| | - Molly M. Morris
- College of Science and Mathematics, Auburn University, Auburn, AL 36849, USA
| | - Casey D. Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Josh R. Novak
- Department of Human Development and Family Sciences, Auburn University, Auburn, AL 36849, USA
| | | | - Andrew Dandridge Frugé
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
- College of Nursing, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|