1
|
Sun H, Zhang Y, Zhang L, Wang X, Zhang K, Cheng F, Chen S. Genetic Regulation of Chlorophyll Biosynthesis in Pepper Fruit: Roles of CaAPRR2 and CaGLK2. Genes (Basel) 2025; 16:219. [PMID: 40004548 PMCID: PMC11855580 DOI: 10.3390/genes16020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/26/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Pepper (Capsicum annuum L.) is a widely cultivated vegetable crop worldwide, with its rich fruit colors providing unique visual traits and economic value. This study investigated the genetic basis of the immature green fruit color by constructing a F2 segregating population derived from a cross between yellow fruit C20 and green fruit C62 parent lines. Methods: Bulked segregant analysis sequencing (BSA-seq) was performed to identify genomic regions associated with fruit color. Candidate genes were pinpointed through functional annotation and genetic variation analysis, supported by SNP markers, genotype analysis, and transcriptome profiling. Results: Two genomic regions associated with fruit color were identified on chromosomes 1 (14.55-20.85 Mb) and 10 (10.15-22.85 Mb), corresponding to previously reported loci pc1 and pc10.1. Two chlorophyll synthesis-related genes, CaAPRR2 and CaGLK2, were identified as candidate regulators of fruit color. Mutations in these genes include a premature stop codon in both CaGLK2 and CaAPRR2. The mutation of CaAPRR2 and CaGLK2 jointly regulate the yellow fruit trait in pepper, with CaGLK2 being the major gene and CaAPRR2 being the minor gene. Transcriptome analysis showed that the expression levels of the two genes increased during the green ripening stage of the parent fruits, with higher expression levels of CaGLK2. Conclusions: This study identifies CaGLK2 and CaAPRR2 as key regulators of immature green fruit color in pepper, with CaGLK2 playing a predominant role. These findings provide a theoretical foundation and data support for elucidating the molecular regulatory mechanisms of fruit color and advancing marker-assisted breeding in pepper.
Collapse
Affiliation(s)
- Huagang Sun
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China;
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (L.Z.); (X.W.); (K.Z.); (F.C.)
| | - Yiyue Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (L.Z.); (X.W.); (K.Z.); (F.C.)
| | - Lingkui Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (L.Z.); (X.W.); (K.Z.); (F.C.)
| | - Xiang Wang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (L.Z.); (X.W.); (K.Z.); (F.C.)
| | - Kang Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (L.Z.); (X.W.); (K.Z.); (F.C.)
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (L.Z.); (X.W.); (K.Z.); (F.C.)
| | - Shumin Chen
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (L.Z.); (X.W.); (K.Z.); (F.C.)
| |
Collapse
|
2
|
Amiot J, Gubeljak L, Fontaine A, Smith D, Mortemousque I, Parodi N, Mauillon J, Kasper E, Baert-Desurmont S, Tinat J, Houdayer C. New RPS20 gene variant in colorectal cancer diagnosis: insight from a large series of patients. Fam Cancer 2025; 24:22. [PMID: 39920491 DOI: 10.1007/s10689-025-00446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
Germline pathogenic variants of the RPS20 (ribosomal protein S20) gene are suspected to be involved in the predisposition to familial colorectal cancer (CRC) with no DNA mismatch repair deficiency. RPS20 pathogenic variants are very rare with only five reported cases in the literature. We report in this work the retrospective germline analysis of RPS20 for 1035 consecutive patients with a personal and/or familial history suggestive of hereditary predisposition to CRC. Within this series, a pathogenic variant in known CRC genes was found in 15% of cases and we describe one RPS20 loss-of-function variant (NM_001146227.1:c.115_116del, p.(Leu39Aspfs*33)). This frameshift is the first reported de novo variant in CRC, it was identified in in a female patient diagnosed with rectal cancer at the age of 35, 11 adenomatous polyps in 5 years and breast cancer at the age of 43. RPS20 has an intriguing role in oncogenesis, acting as an oncogene or tumour suppressor depending on the context, and is also involved in Diamond-Blackfan anemia via gain of function or dominant negative variants. This is therefore a complex gene for genetic counselling and, given the rarity of RPS20 pathogenic variants, we emphasise the need to collect data to clarify the phenotypic spectrum of RPS20-associated cancers and thus improve management.
Collapse
Affiliation(s)
- Julie Amiot
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, Rouen, F-76000, France.
- Department of Genetics, Univ Rouen Normandie, Normandie Univ, CHU Rouen, FHU-G4 Génomique, ERN GENTURIS, Rouen, F-76000, France.
- Department of Genetics, Rouen Normandy University Hospital, Inserm U1245 Cancer and Brain Genomics, FHU- G4 Génomique UFR Santé, 22 Boulevard Gambetta, Rouen Cedex, 76183, France.
| | - Lara Gubeljak
- Department of Genetics, Univ Rouen Normandie, Normandie Univ, CHU Rouen, FHU-G4 Génomique, ERN GENTURIS, Rouen, F-76000, France
| | - Agathe Fontaine
- Department of Medical Genetics, CHU Bordeaux, Bordeaux, F-33000, France
| | - Denis Smith
- Department of Digestive Oncology, CHU Bordeaux, Bordeaux, F-33000, France
| | | | - Nathalie Parodi
- Department of Genetics, Univ Rouen Normandie, Normandie Univ, CHU Rouen, FHU-G4 Génomique, ERN GENTURIS, Rouen, F-76000, France
| | - Jacques Mauillon
- Department of Genetics, Univ Rouen Normandie, Normandie Univ, CHU Rouen, FHU-G4 Génomique, ERN GENTURIS, Rouen, F-76000, France
| | - Edwige Kasper
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, Rouen, F-76000, France
- Department of Genetics, Univ Rouen Normandie, Normandie Univ, CHU Rouen, FHU-G4 Génomique, ERN GENTURIS, Rouen, F-76000, France
| | - Stéphanie Baert-Desurmont
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, Rouen, F-76000, France
- Department of Genetics, Univ Rouen Normandie, Normandie Univ, CHU Rouen, FHU-G4 Génomique, ERN GENTURIS, Rouen, F-76000, France
| | - Julie Tinat
- Department of Medical Genetics, CHU Bordeaux, Bordeaux, F-33000, France
| | - Claude Houdayer
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, Rouen, F-76000, France
- Department of Genetics, Univ Rouen Normandie, Normandie Univ, CHU Rouen, FHU-G4 Génomique, ERN GENTURIS, Rouen, F-76000, France
| |
Collapse
|
3
|
de Moraes FCA, Moretti NR, Sano VKT, Ngan CWT, Burbano RMR. Genomic mosaicism in colorectal cancer and polyposis syndromes: a systematic review and meta-analysis. Int J Colorectal Dis 2024; 39:201. [PMID: 39674994 DOI: 10.1007/s00384-024-04776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) and polypoid syndromes are significant public health concerns, with somatic mosaicism playing a crucial role in their genetic diversity. This study aimed to investigate the prevalence and impact of somatic mosaicism in these conditions. METHODS A search was conducted using PubMed, Scopus, and Web of Sciences to identify studies evaluating mosaicism in patients with CRC or polyposis syndromes. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to determine prevalence rates. Statistical analyses were performed using R software 4.3. RESULTS A total of 27 studies, encompassing 2272 patients, were included in the analysis. Of these, 108 patients exhibited somatic mosaicism, resulting in an overall prevalence of 8.79% (95% CI 5.1 to 14.70%, I2 = 85; p < 0.01). Subgroup analyses revealed a significantly higher prevalence of mosaicism in patients with APC mutations (OR 13.43%, 95% CI 6.36 to 26.18%, I2 = 87; p < 0.01). Additionally, mosaicism in MLH1 and MSH2 genes was observed at rates of 2.75% (95% CI 1.20 to 6.18%) and 9.69% (95% CI 2.98 to 27.24%), respectively. CONCLUSIONS Our findings support the growing recognition of mosaicism as a critical factor in CRC susceptibility and underscore the importance of incorporating mosaicism screening into routine genetic testing for at-risk patients.
Collapse
|
4
|
Vautier S, Mauillon J, Parodi N, Bou J, Kasper E, Manase S, Houdayer C, Baert-Desurmont S. SMAD4 mosaicism in juvenile polyposis: Essential contribution of somatic analysis in diagnosis. Am J Med Genet A 2024; 194:e63648. [PMID: 38695688 DOI: 10.1002/ajmg.a.63648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 08/10/2024]
Abstract
Juvenile polyposis syndrome (JPS) is a rare disease characterized by multiple hamartomatous polyps in the gastrointestinal tract, associated with pathogenic variants of BMPR1A and SMAD4. We present the description of SMAD4 mosaicism in a 30-year-old man who had caecum adenocarcinoma, 11 juvenile colon polyps and epistaxis since childhood. We conducted NGS polyposis and CRC panel analysis on DNA extracted from two polyps, revealing a likely pathogenic SMAD4 variant: NM_005359.5:c. 1600C>T, p.(Gln534*). This variant was then identified at a very low frequency on blood and normal colonic tissue, by targeted visualization of previously obtained NGS data. These findings support the presence of a likely pathogenic mosaic SMAD4 variant that aligns with the patient's phenotype. Given the relatively frequent occurrence of de novo SMAD4 mutations, somatic mosaicism could account for a significant proportion of sporadic JPS patients with unidentified pathogenic variants. This case underscores the diagnosis challenge of detecting mosaicism and emphasizes the importance of somatic analyses.
Collapse
Affiliation(s)
- Sabine Vautier
- Department of Genetics, Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Rouen, France
| | - Jacques Mauillon
- Department of Genetics, Univ Rouen Normandie, Normandie Univ, CHU Rouen, Rouen, France
| | - Nathalie Parodi
- Department of Genetics, Univ Rouen Normandie, Normandie Univ, CHU Rouen, Rouen, France
| | - Jacqueline Bou
- Department of Genetics, Univ Rouen Normandie, Normandie Univ, CHU Rouen, Rouen, France
| | - Edwige Kasper
- Department of Genetics, Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Rouen, France
| | - Sandrine Manase
- Department of Genetics, Univ Rouen Normandie, Normandie Univ, CHU Rouen, Rouen, France
| | - Claude Houdayer
- Department of Genetics, Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Rouen, France
| | - Stéphanie Baert-Desurmont
- Department of Genetics, Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Rouen, France
| |
Collapse
|
5
|
Karunakaran C, Niranjan V, Setlur AS, Pradeep D, Kumar J. Exploring the Role of Non-synonymous and Deleterious Variants Identified in Colorectal Cancer: A Multi-dimensional Computational Scrutiny of Exomes. Curr Genomics 2024; 25:41-64. [PMID: 38544823 PMCID: PMC10964087 DOI: 10.2174/0113892029285310231227105503] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 08/25/2024] Open
Abstract
Introduction Colorectal cancers are the world's third most commonly diagnosed type of cancer. Currently, there are several diagnostic and treatment options to combat it. However, a delay in detection of the disease is life-threatening. Additionally, a thorough analysis of the exomes of cancers reveals potential variation data that can be used for early disease prognosis. Methods By utilizing a comprehensive computational investigation, the present study aimed to reveal mutations that could potentially predispose to colorectal cancer. Ten colorectal cancer exomes were retrieved. Quality control assessments were performed using FastQC and MultiQC, gapped alignment to the human reference genome (hg19) using Bowtie2 and calling the germline variants using Haplotype caller in the GATK pipeline. The variants were filtered and annotated using SIFT and PolyPhen2 successfully categorized the mutations into synonymous, non-synonymous, start loss and stop gain mutations as well as marked them as possibly damaging, probably damaging and benign. This mutational profile helped in shortlisting frequently occurring mutations and associated genes, for which the downstream multi-dimensional expression analyses were carried out. Results Our work involved prioritizing the non-synonymous, deleterious SNPs since these polymorphisms bring about a functional alteration to the phenotype. The top variations associated with their genes with the highest frequency of occurrence included LGALS8, CTSB, RAD17, CPNE1, OPRM1, SEMA4D, MUC4, PDE4DIP, ELN and ADRA1A. An in-depth multi-dimensional downstream analysis of all these genes in terms of gene expression profiling and analysis and differential gene expression with regard to various cancer types revealed CTSB and CPNE1 as highly expressed and overregulated genes in colorectal cancer. Conclusion Our work provides insights into the various alterations that might possibly lead to colorectal cancer and suggests the possibility of utilizing the most important genes identified for wet-lab experimentation.
Collapse
Affiliation(s)
- Chandrashekar Karunakaran
- Department of Biotechnology, R V College of Engineering, Bangalore, 560059, affiliated to Visveswaraya Technological University, Belagavi, 590018, India
| | - Vidya Niranjan
- Department of Biotechnology, R V College of Engineering, Bangalore, 560059, affiliated to Visveswaraya Technological University, Belagavi, 590018, India
| | - Anagha S. Setlur
- Department of Biotechnology, R V College of Engineering, Bangalore, 560059, affiliated to Visveswaraya Technological University, Belagavi, 590018, India
| | - Dhanya Pradeep
- Department of Biotechnology, BMS College of Engineering, Bangalore, 560019, India
| | - Jitendra Kumar
- Biotechnology Industry Research Assistance Council (BIRAC), CGO complex Lodhi Road, New Delhi, India
| |
Collapse
|
6
|
Guo T, Zhao S, Zhu W, Zhou H, Cheng H. Research progress on the biological basis of Traditional Chinese Medicine syndromes of gastrointestinal cancers. Heliyon 2023; 9:e20653. [PMID: 38027682 PMCID: PMC10643116 DOI: 10.1016/j.heliyon.2023.e20653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Gastrointestinal cancers account for 11.6 % of all cancers, and are the second most frequently diagnosed type of cancer worldwide. Traditional Chinese medicine (TCM), together with Western medicine or alone, has unique advantages for the prevention and treatment of cancers, including gastrointestinal cancers. Syndrome differentiation and treatment are basic characteristics of the theoretical system of TCM. TCM syndromes are the result of the differentiation of the syndrome and the basis of treatment. Genomics, transcriptomics, proteomics, metabolomics, intestinal microbiota, and serology, generated around the central law, are used to study the biological basis of TCM syndromes in gastrointestinal cancers. This review summarizes current research on the biological basis of TCM syndrome in gastrointestinal cancers and provides useful references for future research on TCM syndrome in gastrointestinal cancers.
Collapse
Affiliation(s)
- Tianhao Guo
- Institute of Health and Regimen, Jiangsu Open University, Nanjing, Jiangsu 210036, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Shuoqi Zhao
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wenjian Zhu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Hongguang Zhou
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Departments of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Departments of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| |
Collapse
|
7
|
Shang S, Wang C, Chen L, Shen W, Xie Y, Li W, Li Q. Novel method for the genomic analysis of PKD1 mutation in autosomal dominant polycystic kidney disease. Front Cell Dev Biol 2023; 10:937580. [PMID: 36699011 PMCID: PMC9868468 DOI: 10.3389/fcell.2022.937580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease. Although next-generation sequencing (NGS) technology can be used to sequence tens of thousands of DNA molecules simultaneously. It has poor capture efficiency for the six PKD1 pseudogenes and GC-rich regions. Multiplex ligation-dependent probe amplification (MLPA) technology can detect consecutive deletions of exons, but it is less sensitive for single-base mutations. However, pathogenic genes might not be detected in some patients, even when using the above methods. Improving the detection rate of pathogenic genes is an important technical problem hindering clinical diagnosis of ADPKD. Four pedigrees of ADPKD patients with mutation sites not identified by NGS were examined by other methods. First, MLPA was performed. Then, pedigrees in which MLPA did not identify pathogenic genes were subjected to multiplex polymerase chain reaction (MPCR) and targeted region sequencing. Finally, the detected mutation sites were verified by Sanger sequencing. The results showed that MLPA detected the following PKD1 exonic deletion mutations in three pedigrees: PKD1-18 nt-290 nt, PKD1-up-257 nt, PKD1-up-444 nt and PKD1-3 nt-141 nt. A new mutation site was identified through targeted region sequencing in one pedigree: PKD1 NM_001009944: c.151T > C at the protein level, described as p. Cys51Arg. In summary, we established a system of genetic detection and analytical methods, from NGS to MLPA to targeted region sequencing and finally to Sanger sequencing. We combined MPCR and targeted region sequencing for the first time in ADPKD diagnosis, which further improved diagnosis accuracy. Moreover, we identified one new missense mutation and four new deletion mutations.
Collapse
Affiliation(s)
- Shunlai Shang
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China,Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China,School of Medicine, Nankai University, Tianjin, China
| | - Chao Wang
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China,Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lang Chen
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Wanjun Shen
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yuansheng Xie
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Wenge Li
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China,*Correspondence: Wenge Li, ; Qinggang Li,
| | - Qinggang Li
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China,*Correspondence: Wenge Li, ; Qinggang Li,
| |
Collapse
|
8
|
Eyries M, Ariste O, Legrand G, Basset N, Guillerm E, Perrier A, Duros C, Cohen-Haguenauer O, de la Grange P, Coulet F. Detection of a pathogenic Alu element insertion in PALB2 gene from targeted NGS diagnostic data. Eur J Hum Genet 2022; 30:1187-1190. [PMID: 35277653 PMCID: PMC9553905 DOI: 10.1038/s41431-022-01064-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Despite routine analysis of a large panel of genes, pathogenic variants are only detected in approximately 20% of families with hereditary breast and/or ovarian cancer. Mobile element insertions (MEI) are known to cause genetic diseases in humans, but remain challenging to detect. Retrospective analysis of targeted next-generation sequencing (NGS) data from 359 patients was performed using a dedicated MEI detection pipeline. We detected one MEI in exon 9 of the PALB2 gene in a woman with a family history of breast cancer. The pathogenic variant, c.2872_2888delins114AluL2, disrupts the PALB2 coding sequence and leads to the production of a truncated protein, p.(Gln958Valfs*38). This is the first report of a pathogenic MEI in PALB2. This study illustrates that MEI analysis may help to improve molecular diagnostic yield and can be performed from targeted NGS data used for routine diagnosis.
Collapse
Affiliation(s)
- Mélanie Eyries
- Sorbonne Université, Département de génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, F-75013, Paris, France.
| | | | - Gaelle Legrand
- Sorbonne Université, Département de génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Noémie Basset
- Sorbonne Université, Département de génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Erell Guillerm
- Sorbonne Université, Département de génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Alexandre Perrier
- Sorbonne Université, Département de génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Caroline Duros
- Hôpital Saint-Louis-Lariboisière-Fernand-Widal, Service d'oncologie médicale Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Odile Cohen-Haguenauer
- Hôpital Saint-Louis-Lariboisière-Fernand-Widal, Service d'oncologie médicale Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | | | - Florence Coulet
- Sorbonne Université, Département de génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| |
Collapse
|
9
|
Kasper E, Coutant S, Manase S, Vasseur S, Macquère P, Bougeard G, Faivre L, Ingster O, Baert-Desurmont S, Houdayer C. Detecting inversions in routine molecular diagnosis in MMR genes. Fam Cancer 2022; 21:423-428. [PMID: 34997397 DOI: 10.1007/s10689-021-00287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/27/2021] [Indexed: 01/07/2023]
Abstract
Inversions, i.e. a change in orientation of a segment of DNA, are a recognized cause of human diseases which remain overlooked due to their balanced nature. Inversions can have severe or more subtle impacts on gene expression. We describe two families that exemplify these aspects and underline the need for inversion detection in routine diagnosis. The first family (F1) displayed a sibship with two constitutional mismatch repair deficiency patients and a family history of colon cancer in the paternal branch. The second family (F2) displayed a severe history of Lynch syndrome. These families were analyzed using a whole gene panel (WGP) strategy i.e. including colon cancer genes with their intronic and flanking genomic regions. In F1, a PMS2 inversion encompassing the promoter region to intron 1 and a PMS2 splice variant were found in the maternal and paternal branch, respectively. In F2, we described the first MSH6 inversion, involving the 5' part of MSH6 and the 3' part of the nearby gene ANXA4. Inversion detection mandates genomic sequencing, but makes a valuable contribution to the diagnostic rate. WGP is an attractive strategy as it maximizes the detection power on validated genes and keeps sufficient depth to detect de novo events.
Collapse
Affiliation(s)
- Edwige Kasper
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 and Rouen University Hospital, CHU Rouen, Normandie University, 76000, Rouen, France.
| | - Sophie Coutant
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 and Rouen University Hospital, CHU Rouen, Normandie University, 76000, Rouen, France
| | - Sandrine Manase
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 and Rouen University Hospital, CHU Rouen, Normandie University, 76000, Rouen, France
| | - Stéphanie Vasseur
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 and Rouen University Hospital, CHU Rouen, Normandie University, 76000, Rouen, France
| | - Pierre Macquère
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 and Rouen University Hospital, CHU Rouen, Normandie University, 76000, Rouen, France
| | - Gaëlle Bougeard
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 and Rouen University Hospital, CHU Rouen, Normandie University, 76000, Rouen, France
| | - Laurence Faivre
- Centre de Référence Maladies Rares, «Anomalies du Développement ET Syndromes Malformatifs», Centre de Génétique, FHU-TRANSLAD et Institut GIMI, 77908, Dijon, France.,UMR 1231 GAD, Inserm - Université Bourgogne-Franche Comté, 77908, Dijon, France
| | - Olivier Ingster
- Department of Genetics, University Hospital Centre Angers, Angers, Pays de la Loire, France
| | - Stéphanie Baert-Desurmont
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 and Rouen University Hospital, CHU Rouen, Normandie University, 76000, Rouen, France
| | - Claude Houdayer
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, UNIROUEN, Inserm U1245 and Rouen University Hospital, CHU Rouen, Normandie University, 76000, Rouen, France
| |
Collapse
|
10
|
Kamburova Z, Popovska S, Kovacheva K, Petrov K, Nikolova S. Familial Lynch syndrome with early age of onset and confirmed splice site mutation in MSH2: A case report. Biomed Rep 2022; 16:39. [DOI: 10.3892/br.2022.1522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/09/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zornitsa Kamburova
- Department of Medical Genetics, Medical University‑Pleven, Center of Medical Genetics in University Hospital ‘Dr. Georgi Stranski’, 5800 Pleven, Bulgaria
| | - Savelina Popovska
- Department of Pathoanatomy, Medical University‑Pleven, University Hospital ‘Dr. Georgi Stranski’, 5800 Pleven, Bulgaria
| | - Katya Kovacheva
- Department of Medical Genetics, Medical University‑Pleven, Center of Medical Genetics in University Hospital ‘Dr. Georgi Stranski’, 5800 Pleven, Bulgaria
| | - Krasimir Petrov
- Department of Pathoanatomy, Medical University‑Pleven, University Hospital ‘Dr. Georgi Stranski’, 5800 Pleven, Bulgaria
| | - Slavena Nikolova
- Department of Medical Genetics, Medical University‑Pleven, Center of Medical Genetics in University Hospital ‘Dr. Georgi Stranski’, 5800 Pleven, Bulgaria
| |
Collapse
|
11
|
Bouras A, Leone M, Bonadona V, Lebrun M, Calender A, Boutry-Kryza N. Identification and Characterization of New Alu Element Insertion in the BRCA1 Exon 14 Associated with Hereditary Breast and Ovarian Cancer. Genes (Basel) 2021; 12:genes12111736. [PMID: 34828342 PMCID: PMC8623961 DOI: 10.3390/genes12111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/30/2022] Open
Abstract
Hereditary breast and ovarian cancer syndrome (HBOC) is an autosomal dominant cancer predisposition syndrome characterized by an increased risk of breast and ovarian cancers. Germline pathogenic variants in BRCA1 are found in about 7–10% of all familial breast cancers and 10% of ovarian cancers. Alu elements are the most abundant mobile DNA element in the human genome and are known to affect the human genome by different mechanisms leading to human disease. We report here the detection, by next-generation sequencing (NGS) analysis coupled with a suitable bioinformatics pipeline, of an AluYb8 element in exon 14 of the BRCA1 gene in a family with HBOC history first classified as BRCA-negative by Sanger sequencing and first NGS analysis. The c.4475_c.4476insAluYb8 mutation impacts splicing and induces the skipping of exon 14. As a result, the produced mRNA contains a premature stop, leading to the production of a short and likely non-functional protein (pAla1453Glyfs*10). Overall, our study allowed us to identify a novel pathogenic variant in BRCA1 and showed the importance of bioinformatics tool improvement and versioning.
Collapse
Affiliation(s)
- Ahmed Bouras
- Department of Molecular and Medical Genetics, Hospices Civils de Lyon, University Hospital, 69500 Bron, France; (M.L.); (A.C.); (N.B.-K.)
- Correspondence:
| | - Melanie Leone
- Department of Molecular and Medical Genetics, Hospices Civils de Lyon, University Hospital, 69500 Bron, France; (M.L.); (A.C.); (N.B.-K.)
| | - Valerie Bonadona
- Unit of Prevention and Genetic Epidemiology, UMR CNRS 5558, Centre Léon Bérard, 69008 Lyon, France;
| | - Marine Lebrun
- Department of Genetics, Saint Etienne University Hospital, 42270 Saint Priez en Jarez, France;
| | - Alain Calender
- Department of Molecular and Medical Genetics, Hospices Civils de Lyon, University Hospital, 69500 Bron, France; (M.L.); (A.C.); (N.B.-K.)
| | - Nadia Boutry-Kryza
- Department of Molecular and Medical Genetics, Hospices Civils de Lyon, University Hospital, 69500 Bron, France; (M.L.); (A.C.); (N.B.-K.)
| |
Collapse
|
12
|
Cusenza VY, Bisagni A, Rinaldini M, Cattani C, Frazzi R. Copy Number Variation and Rearrangements Assessment in Cancer: Comparison of Droplet Digital PCR with the Current Approaches. Int J Mol Sci 2021; 22:ijms22094732. [PMID: 33946969 PMCID: PMC8124143 DOI: 10.3390/ijms22094732] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
The cytogenetic and molecular assessment of deletions, amplifications and rearrangements are key aspects in the diagnosis and therapy of cancer. Not only the initial evaluation and classification of the disease, but also the follow-up of the tumor rely on these laboratory approaches. The therapeutic choice can be guided by the results of the laboratory testing. Genetic deletions and/or amplifications directly affect the susceptibility or the resistance to specific therapies. In an era of personalized medicine, the correct and reliable molecular characterization of the disease, also during the therapeutic path, acquires a pivotal role. Molecular assays like multiplex ligation-dependent probe amplification and droplet digital PCR represent exceptional tools for a sensitive and reliable detection of genetic alterations and deserve a role in molecular oncology. In this manuscript we provide a technical comparison of these two approaches with the golden standard represented by fluorescence in situ hybridization. We also describe some relevant targets currently evaluated with these techniques in solid and hematologic tumors.
Collapse
Affiliation(s)
- Vincenza Ylenia Cusenza
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Alessandra Bisagni
- Pathology Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Monia Rinaldini
- Medical Genetics Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (M.R.); (C.C.)
| | - Chiara Cattani
- Medical Genetics Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (M.R.); (C.C.)
| | - Raffaele Frazzi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
- Correspondence:
| |
Collapse
|
13
|
Boulouard F, Kasper E, Buisine MP, Lienard G, Vasseur S, Manase S, Bahuau M, Barouk Simonet E, Bubien V, Coulet F, Cusin V, Dhooge M, Golmard L, Goussot V, Hamzaoui N, Lacaze E, Lejeune S, Mauillon J, Beaumont MP, Pinson S, Tlemsani C, Toulas C, Rey JM, Uhrhammer N, Bougeard G, Frebourg T, Houdayer C, Baert-Desurmont S. Further delineation of the NTHL1 associated syndrome: A report from the French Oncogenetic Consortium. Clin Genet 2021; 99:662-672. [PMID: 33454955 DOI: 10.1111/cge.13925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/21/2020] [Accepted: 01/10/2021] [Indexed: 12/13/2022]
Abstract
Biallelic pathogenic variants in the NTHL1 (Nth like DNA glycosylase 1) gene cause a recently identified autosomal recessive hereditary cancer syndrome predisposing to adenomatous polyposis and colorectal cancer. Half of biallelic carriers also display multiple colonic or extra-colonic primary tumors, mainly breast, endometrium, urothelium, and brain tumors. Published data designate NTHL1 as an important contributor to hereditary cancers but also underline the scarcity of available informations. Thanks to the French oncogenetic consortium (Groupe Génétique et Cancer), we collected NTHL1 variants from 7765 patients attending for hereditary colorectal cancer or polyposis (n = 3936) or other hereditary cancers (n = 3829). Here, we describe 10 patients with pathogenic biallelic NTHL1 germline variants, that is, the second largest NTHL1 series. All carriers were from the "colorectal cancer or polyposis" series. All nine biallelic carriers who underwent colonoscopy presented adenomatous polyps. For digestive cancers, average age at diagnosis was 56.2 and we reported colorectal, duodenal, caecal, and pancreatic cancers. Extra-digestive malignancies included sarcoma, basal cell carcinoma, breast cancer, urothelial carcinoma, and melanoma. Although tumor risks remain to be precisely defined, these novel data support NTHL1 inclusion in diagnostic panel testing. Colonic surveillance should be conducted based on MUTYH recommendations while extra-colonic surveillance has to be defined.
Collapse
Affiliation(s)
- Flavie Boulouard
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France.,Comprehensive Cancer Center François Baclesse, Laboratory of Cancer Biology and Genetics, Caen, France
| | - Edwige Kasper
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Marie-Pierre Buisine
- Department of Biochemistry and Molecular Biology, Lille University Hospital Center, UMR 1277 Inserm-9020 CNRS, Lille University, Lille, France
| | - Gwendoline Lienard
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Stéphanie Vasseur
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Sandrine Manase
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Michel Bahuau
- Medical genetics Department, Henri Mondor Hospital, Créteil, France
| | | | | | - Florence Coulet
- Department of Genetics, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris, France
| | - Véronica Cusin
- Department of Genetics, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris, France
| | - Marion Dhooge
- Gastroenterology Unit, Cochin University Hospital, Paris Descartes University, Paris, France
| | - Lisa Golmard
- Institut Curie, Department of Genetics and Paris Sciences, Lettres Research University, Paris, France
| | - Vincent Goussot
- Department of Tumor Biology and Pathology, Georges-François Leclerc Center, Dijon, France
| | - Nadim Hamzaoui
- Department of Oncogenetics, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Elodie Lacaze
- Department of Genetics, Le Havre General Hospital, Normandy Centre for Genomic and Personalized Medicine, Le Havre, France
| | - Sophie Lejeune
- Genetic Pathology Biology Department, Lille University Hospital Center, Jeanne de Flandre Hospital, Lille, France
| | - Jacques Mauillon
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | | | - Stéphane Pinson
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, Bron, France
| | - Camille Tlemsani
- Department of Oncogenetics, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Christine Toulas
- Oncogenetic Laboratory, Cancer University Institute Toulouse Oncopole, Toulouse, France
| | - Jean-Marc Rey
- Department of Pathology and Oncobiology, Montpellier University Hospital, Montpellier, France
| | - Nancy Uhrhammer
- Centre Jean Perrin, Oncogenetics and Clermont Auvergne University, INSERM U1240, Clermont-Ferrand, France
| | - Gaëlle Bougeard
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Thierry Frebourg
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Claude Houdayer
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Stéphanie Baert-Desurmont
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| |
Collapse
|
14
|
Yamamoto G, Miyabe I, Tanaka K, Kakuta M, Watanabe M, Kawakami S, Ishida H, Akagi K. SVA retrotransposon insertion in exon of MMR genes results in aberrant RNA splicing and causes Lynch syndrome. Eur J Hum Genet 2020; 29:680-686. [PMID: 33293698 DOI: 10.1038/s41431-020-00779-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 11/10/2022] Open
Abstract
Lynch syndrome is an autosomal dominant hereditary cancer syndrome in which many cancers develop, the main one being colorectal cancer. Germline pathogenic variants in one of four mismatch repair (MMR) genes are known to be causative of this disease. Accurate diagnosis using genetic testing can greatly benefit the health of those affected. Recently, owing to the improvement of sequence techniques, complicated variants affecting the functions of MMR genes were discovered. In this study, we analyzed insertions of a retrotransposon-like sequence in exon 5 of the MSH6 gene and exon 3 of the MSH2 gene found in Japanese families suspected of having Lynch syndrome. Both of these insertions induced aberrant splicing, and these variants were successfully identified by mRNA sequencing or visual observation of mapping results, although a standard DNA-seq analysis pipeline failed to detect them. The insertion sequences were ~2.5 kbp in length and were found to have the structure of an SVA retrotransposon (SVA). One SVA sequence was not present in the hg19 or hg38 reference genome, but was in a Japanese-specific reference sequence (JRGv2). Our study illustrates the difficulties of identifying SVA insertions in disease genes, and that the possibility of polymorphic insertions should be considered when analyzing mobile elements.
Collapse
Affiliation(s)
- Gou Yamamoto
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Izumi Miyabe
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Keisuke Tanaka
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Miho Kakuta
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Motoko Watanabe
- Department of Clinical Genetics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Satoru Kawakami
- Department of Urology, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Kiwamu Akagi
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan.
| |
Collapse
|
15
|
Cavaillé M, Uhrhammer N, Privat M, Ponelle-Chachuat F, Gay-Bellile M, Lepage M, Viala S, Bidet Y, Bignon YJ. Feedback of extended panel sequencing in 1530 patients referred for suspicion of hereditary predisposition to adult cancers. Clin Genet 2020; 99:166-175. [PMID: 33047316 PMCID: PMC7821123 DOI: 10.1111/cge.13864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022]
Abstract
High‐throughput sequencing analysis represented both a medical diagnosis and technological revolution. Gene panel analysis is now routinely performed in the exploration of hereditary predisposition to cancer, which is becoming increasingly heterogeneous, both clinically and molecularly. We present 1530 patients with suspicion of hereditary predisposition to cancer, for which two types of analyses were performed: a) oriented according to the clinical presentation (n = 417), or b) extended to genes involved in hereditary predisposition to adult cancer (n = 1113). Extended panel analysis had a higher detection rate compared to oriented analysis in hereditary predisposition to breast / ovarian cancer (P < .001) and in digestive cancers (P < .094) (respectively 15% vs 5% and 19.3%, vs 12.5%). This higher detection is explained by the inclusion of moderate penetrance genes, as well as the identification of incident mutations and double mutations. Our study underscores the utility of proposing extended gene panel analysis to patients with suspicion of hereditary predisposition to adult cancer.
Collapse
Affiliation(s)
- Mathias Cavaillé
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France.,Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies, Clermont Ferrand, France
| | - Nancy Uhrhammer
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France.,Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies, Clermont Ferrand, France
| | - Maud Privat
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France.,Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies, Clermont Ferrand, France
| | - Flora Ponelle-Chachuat
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France.,Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies, Clermont Ferrand, France
| | - Mathilde Gay-Bellile
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France.,Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies, Clermont Ferrand, France
| | - Mathis Lepage
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Sandrine Viala
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France.,Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies, Clermont Ferrand, France
| | - Yannick Bidet
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France.,Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies, Clermont Ferrand, France
| | - Yves-Jean Bignon
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France.,Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies, Clermont Ferrand, France
| |
Collapse
|
16
|
Detection of copy-number variations from NGS data using read depth information: a diagnostic performance evaluation. Eur J Hum Genet 2020; 29:99-109. [PMID: 32591635 DOI: 10.1038/s41431-020-0672-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/20/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022] Open
Abstract
The detection of copy-number variations (CNVs) from NGS data is underexploited as chip-based or targeted techniques are still commonly used. We assessed the performances of a workflow centered on CANOES, a bioinformatics tool based on read depth information. We applied our workflow to gene panel (GP) and whole-exome sequencing (WES) data, and compared CNV calls to quantitative multiplex PCR of short fluorescent fragments (QMSPF) or array comparative genomic hybridization (aCGH) results. From GP data of 3776 samples, we reached an overall positive predictive value (PPV) of 87.8%. This dataset included a complete comprehensive QMPSF comparison of four genes (60 exons) on which we obtained 100% sensitivity and specificity. From WES data, we first compared 137 samples with aCGH and filtered comparable events (exonic CNVs encompassing enough aCGH probes) and obtained an 87.25% sensitivity. The overall PPV was 86.4% following the targeted confirmation of candidate CNVs from 1056 additional WES. In addition, our CANOES-centered workflow on WES data allowed the detection of CNVs with a resolution of single exons, allowing the detection of CNVs that were missed by aCGH. Overall, switching to an NGS-only approach should be cost-effective as it allows a reduction in overall costs together with likely stable diagnostic yields. Our bioinformatics pipeline is available at: https://gitlab.bioinfo-diag.fr/nc4gpm/canoes-centered-workflow .
Collapse
|
17
|
Lecoquierre F, Cassinari K, Chambon P, Nicolas G, Malsa S, Marlin R, Assouline Y, Fléjou JF, Frebourg T, Houdayer C, Bera O, Baert-Desurmont S. Patients with 10q22.3q23.1 recurrent deletion syndrome are at risk for juvenile polyposis. Eur J Med Genet 2019; 63:103773. [PMID: 31561016 DOI: 10.1016/j.ejmg.2019.103773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/16/2019] [Accepted: 09/22/2019] [Indexed: 01/10/2023]
Abstract
Juvenile polyposis syndrome (JPS) is a rare autosomal dominant predisposition to hamartomatous polyps within the gastrointestinal tract, at high risk for malignant transformation. BMPR1A and SMAD4 loss-of-function variants account for 50% of the cases. More specifically, point mutations and structural abnormalities in BMPR1A lead to a highly penetrant yet variable phenotype of JPS. Intriguingly, in the developmental disorder caused by a recurrent 10q22.3q23.1 7 Mb deletion which includes BMPR1A, juvenile polyps have never been reported. We present the case of a young adult harboring this recurrent deletion, in a context of intellectual disability, ventricular septal defect and severe juvenile polyposis syndrome diagnosed at the age of 25 years, requiring a surgical preventive colectomy. She developed a gastric adenocarcinoma from which she died at the age of 32. We hypothesize that with the current available pangenomic CNV arrays, the diagnosis of 10q22.3q23.1 deletion is often made several years before the onset of the digestive phenotype, which could explain the absence of reports for juvenile polyps. This observation highlights the importance of an active digestive surveillance of patients with 10q22.3q23.1 deletion.
Collapse
Affiliation(s)
- François Lecoquierre
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, F76000, Rouen, France.
| | - Kévin Cassinari
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, F76000, Rouen, France
| | - Pascal Chambon
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, F76000, Rouen, France
| | - Gaël Nicolas
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, F76000, Rouen, France
| | - Sarah Malsa
- Department of Cancer Genetics, Martinique University Hospital, Fort-de-France, Martinique, France
| | - Régine Marlin
- Department of Cancer Genetics, Martinique University Hospital, Fort-de-France, Martinique, France
| | - Yvon Assouline
- Departement of Gastro-Enterology, Clinique Saint Paul, Fort-de-France, Martinique, France
| | - Jean-François Fléjou
- Pathology Department, AP-HP, Hôpital Saint-Antoine, Faculté de Médecine Sorbonne Université, Paris, France
| | - Thierry Frebourg
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, F76000, Rouen, France
| | - Claude Houdayer
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, F76000, Rouen, France
| | - Odile Bera
- Department of Cancer Genetics, Martinique University Hospital, Fort-de-France, Martinique, France
| | - Stéphanie Baert-Desurmont
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, F76000, Rouen, France
| |
Collapse
|