1
|
de Boer EN, Scheper AJ, Hendriksen D, Charbon B, van der Vries G, ten Berge AM, Grootscholten PM, Lemmink HH, Jongbloed JDH, Bosscher L, Knoers NVAM, Swertz MA, Sikkema-Raddatz B, Dijkstra DJ, Johansson LF, van Diemen CC. Nanopore Long-Read Sequencing as a First-Tier Diagnostic Test to Detect Repeat Expansions in Neurological Disorders. Int J Mol Sci 2025; 26:2850. [PMID: 40243408 PMCID: PMC11988536 DOI: 10.3390/ijms26072850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Inherited neurological disorders, such as spinocerebellar ataxia (SCA) and fragile X (FraX), are frequently caused by short tandem repeat (STR) expansions. The detection and assessment of STRs is important for diagnostics and prognosis. We tested the abilities of nanopore long-read sequencing (LRS) using a custom panel including the nine most common SCA-related genes and FraX and created raw data to report workflow. Using known STR lengths for 23 loci in 12 patients, a pipeline was validated to detect and report STR lengths. In addition, we assessed the capability to detect SNVs, indels, and the methylation status in the same test. For the 23 loci, 22 were concordant with known STR lengths, while for the last, one of three replicates differed, indicating an artefact. All positive control STRs were detected as likely pathogenic, with no additional findings after a visual assessment of repeat motifs. Out of 226 SNV and Indel variants, two were false positive and one false negative (accuracy 98.7%). In all FMR1 controls, a methylation status could be determined. In conclusion, LRS is suitable as a diagnostic workflow for STR analysis in neurological disorders and can be generalized to other diseases. The addition of SNV/Indel and methylation detection promises to allow for a one-test-fits-all workflow.
Collapse
|
2
|
Novis LE, Silva TYT, Pedroso JL, Barsottini OGP. Demystifying the Etiology of ILOCA in the Genomic Era: A Narrative Review. CEREBELLUM (LONDON, ENGLAND) 2025; 24:45. [PMID: 39920364 DOI: 10.1007/s12311-025-01798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND Idiopathic Late-Onset Cerebellar Ataxia (ILOCA) is a challenging and heterogeneous disorder characterized by progressive cerebellar ataxia beginning after the age of 40 without a family history of cerebellar ataxia. Despite extensive investigations, many cases remain undiagnosed. The advent Next Generation Sequencing (NGS) has significantly advanced the identification of genetic causes associated with ILOCA. OBJECTIVE This study aims to review the concept of ILOCA, its historical perspective, epidemiology, diagnostic criteria, and the impact of the new era of genetic diagnosis facilitated by NGS technologies. METHODS A comprehensive literature review was conducted, focusing on the genetic advancements in diagnosing ILOCA. RESULTS ILOCA accounts for a significant proportion of late-onset cerebellar ataxias. The prevalence of late-onset cerebellar ataxias ranges from 2.2 to 12.4 per 100,000 individuals, with genetic causes identified in up to 30-50% of cases using NGS. Key genetic findings include repeat expansion disorders such as Spinocerebellar Ataxia type 27 B, Cerebellar Ataxia, Neuropathy and Vestibular Areflexia Syndrome and Friedreich Ataxia. SCAs and Autosomal Recessive Cerebellar Ataxia caused by point mutations are also frequently observed in large cohorts. Advances in NGS have increased the diagnostic yield for ILOCA. CONCLUSION ILOCA represents a significant diagnostic challenge due to its heterogeneous nature and the overlap with other neurodegenerative and genetic conditions. The use of NGS technologies has revolutionized the diagnostic approach, uncovering genetic causes in a substantial number of previously undiagnosed cases. Routine investigation of specific genes associated with ILOCA is recommended to improve diagnostic accuracy and patient management.
Collapse
Affiliation(s)
- Luiz Eduardo Novis
- Setor de Neurologia Geral e Ataxias, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Pedro Toledo Street, 650, 04039-002, Vila Clementino, São Paulo, SP, Brazil.
| | | | - José Luiz Pedroso
- Setor de Neurologia Geral e Ataxias, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Orlando Graziani Póvoas Barsottini
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Pedro Toledo Street, 650, 04039-002, Vila Clementino, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Maestri S, Scalzo D, Damaggio G, Zobel M, Besusso D, Cattaneo E. Navigating triplet repeats sequencing: concepts, methodological challenges and perspective for Huntington's disease. Nucleic Acids Res 2025; 53:gkae1155. [PMID: 39676657 PMCID: PMC11724279 DOI: 10.1093/nar/gkae1155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/16/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
The accurate characterization of triplet repeats, especially the overrepresented CAG repeats, is increasingly relevant for several reasons. First, germline expansion of CAG repeats above a gene-specific threshold causes multiple neurodegenerative disorders; for instance, Huntington's disease (HD) is triggered by >36 CAG repeats in the huntingtin (HTT) gene. Second, extreme expansions up to 800 CAG repeats have been found in specific cell types affected by the disease. Third, synonymous single nucleotide variants within the CAG repeat stretch influence the age of disease onset. Thus, new sequencing-based protocols that profile both the length and the exact nucleotide sequence of triplet repeats are crucial. Various strategies to enrich the target gene over the background, along with sequencing platforms and bioinformatic pipelines, are under development. This review discusses the concepts, challenges, and methodological opportunities for analyzing triplet repeats, using HD as a case study. Starting with traditional approaches, we will explore how sequencing-based methods have evolved to meet increasing scientific demands. We will also highlight experimental and bioinformatic challenges, aiming to provide a guide for accurate triplet repeat characterization for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Simone Maestri
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Davide Scalzo
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Gianluca Damaggio
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Martina Zobel
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Dario Besusso
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| |
Collapse
|
4
|
Tanudisastro HA, Deveson IW, Dashnow H, MacArthur DG. Sequencing and characterizing short tandem repeats in the human genome. Nat Rev Genet 2024; 25:460-475. [PMID: 38366034 DOI: 10.1038/s41576-024-00692-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 02/18/2024]
Abstract
Short tandem repeats (STRs) are highly polymorphic sequences throughout the human genome that are composed of repeated copies of a 1-6-bp motif. Over 1 million variable STR loci are known, some of which regulate gene expression and influence complex traits, such as height. Moreover, variants in at least 60 STR loci cause genetic disorders, including Huntington disease and fragile X syndrome. Accurately identifying and genotyping STR variants is challenging, in particular mapping short reads to repetitive regions and inferring expanded repeat lengths. Recent advances in sequencing technology and computational tools for STR genotyping from sequencing data promise to help overcome this challenge and solve genetically unresolved cases and the 'missing heritability' of polygenic traits. Here, we compare STR genotyping methods, analytical tools and their applications to understand the effect of STR variation on health and disease. We identify emergent opportunities to refine genotyping and quality-control approaches as well as to integrate STRs into variant-calling workflows and large cohort analyses.
Collapse
Affiliation(s)
- Hope A Tanudisastro
- Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Ira W Deveson
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Harriet Dashnow
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.
| | - Daniel G MacArthur
- Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
5
|
Shademan M, Mei H, van Engelen B, Ariyurek Y, Kloet S, Raz V. PABPN1 loss-of-function causes APA-shift in oculopharyngeal muscular dystrophy. HGG ADVANCES 2024; 5:100269. [PMID: 38213032 PMCID: PMC10840355 DOI: 10.1016/j.xhgg.2024.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
Alternative polyadenylation (APA) at the 3' UTR of transcripts contributes to the cell transcriptome. APA is suppressed by the nuclear RNA-binding protein PABPN1. Aging-associated reduced PABPN1 levels in skeletal muscles lead to muscle wasting. Muscle weakness in oculopharyngeal muscular dystrophy (OPMD) is caused by short alanine expansion in PABPN1 exon1. The expanded PABPN1 forms nuclear aggregates, an OPMD hallmark. Whether the expanded PABPN1 affects APA and how it contributes to muscle pathology is unresolved. To investigate these questions, we developed a procedure including RNA library preparation and a simple pipeline calculating the APA-shift ratio as a readout for PABPN1 activity. Comparing APA-shift results to previously published PAS utilization and APA-shift results, we validated this procedure. The procedure was then applied on the OPMD cell model and on RNA from OPMD muscles. APA-shift was genome-wide in the mouse OPMD model, primarily affecting muscle transcripts. In OPMD individuals, APA-shift was enriched with muscle transcripts. In an OPMD cell model APA-shift was not significant. APA-shift correlated with reduced expression levels of a subset of PABPN1 isoforms, whereas the expression of the expanded PABPN1 did not correlate with APA-shift. PABPN1 activity is not affected by the expression of expanded PABPN1, but rather by reduced PABPN1 expression levels. In muscles, PABPN1 activity initially affects muscle transcripts. We suggest that muscle weakness in OPMD is caused by PABPN1 loss-of-function leading to APA-shift that primarily affects in muscle transcripts.
Collapse
Affiliation(s)
- Milad Shademan
- Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, the Netherlands
| | - Baziel van Engelen
- Department of Neurology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Yavuz Ariyurek
- Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Susan Kloet
- Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Vered Raz
- Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
6
|
Kroon RHMJM, Kalf JG, de Swart BJM, Heskamp L, de Rooy JWJ, van Engelen BGM, Horlings CGC. Muscle MRI in Patients With Oculopharyngeal Muscular Dystrophy: A Longitudinal Study. Neurology 2024; 102:e207833. [PMID: 38165364 PMCID: PMC10834117 DOI: 10.1212/wnl.0000000000207833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Oculopharyngeal muscular dystrophy (OPMD) is a rare progressive neuromuscular disease. MRI is one of the techniques that is used in neuromuscular disorders to evaluate muscle alterations. The aim of this study was to describe the pattern of fatty infiltration of orofacial and leg muscles using quantitative muscle MRI in a large national cohort and to determine whether MRI can be used as an imaging biomarker of disease progression in OPMD. METHODS Patients with OPMD (18 years or older) were invited from the national neuromuscular database or by their treating physicians and were examined twice with an interval of 20 months, with quantitative MRI of orofacial and leg muscles to assess fatty infiltration which were compared with clinical measures. RESULTS In 43 patients with genetically confirmed OPMD, the muscles that were affected most severely were the tongue (mean fat fraction: 37.0%, SD 16.6), adductor magnus (31.9%; 27.1), and soleus (27.9%; 21.5) muscles. The rectus femoris and tibialis anterior muscles were least severely affected (mean fat fractions: 6.8%; SD 4.7, 7.5%; 5.9). Eleven of 14 significant correlations were found between fat fraction and a clinical task in the corresponding muscles (r = -0.312 to -0.769, CI = -0.874 to -0.005). At follow-up, fat fractions had increased significantly in 17 of the 26 muscles: mean 1.7% in the upper leg muscles (CI = 0.8-2.4), 1.7% (1.0-2.3) in the lower leg muscles, and 1.9% (0.6-3.3) in the orofacial muscles (p < 0.05). The largest increase was seen for the soleus (3.8%, CI = 2.5-5.1). Correlations were found between disease duration and repeat length vs increased fat fraction in 7 leg muscles (r = 0.323 to -0.412, p < 0.05). DISCUSSION According to quantitative muscle MRI, the tongue, adductor magnus and soleus show the largest fat infiltration levels in patients with OPMD. Fat fractions increased in several orofacial and leg muscles over 20 months, with the largest fat fraction increase seen in the soleus. This study supports that this technique is sensitive enough to show worsening in fat fractions of orofacial and leg muscles and therefore a responsive biomarker for future clinical trials.
Collapse
Affiliation(s)
- Rosemarie H M J M Kroon
- From the Departments of Rehabilitation (R.H.M.J.M.K., J.G.K., B.J.M.d.S.) and Neurology (B.G.M.v.E., C.G.C.H.), Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen; Department of Radiology (L.H.), University Medical Centre Utrecht; Department of Imaging (J.W.J.d.R.), Radboud University Medical Center, Nijmegen; and Department of Neurology (C.G.C.H.), Medical University of Innsbruck, Austria
| | - Johanna G Kalf
- From the Departments of Rehabilitation (R.H.M.J.M.K., J.G.K., B.J.M.d.S.) and Neurology (B.G.M.v.E., C.G.C.H.), Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen; Department of Radiology (L.H.), University Medical Centre Utrecht; Department of Imaging (J.W.J.d.R.), Radboud University Medical Center, Nijmegen; and Department of Neurology (C.G.C.H.), Medical University of Innsbruck, Austria
| | - Bert J M de Swart
- From the Departments of Rehabilitation (R.H.M.J.M.K., J.G.K., B.J.M.d.S.) and Neurology (B.G.M.v.E., C.G.C.H.), Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen; Department of Radiology (L.H.), University Medical Centre Utrecht; Department of Imaging (J.W.J.d.R.), Radboud University Medical Center, Nijmegen; and Department of Neurology (C.G.C.H.), Medical University of Innsbruck, Austria
| | - Linda Heskamp
- From the Departments of Rehabilitation (R.H.M.J.M.K., J.G.K., B.J.M.d.S.) and Neurology (B.G.M.v.E., C.G.C.H.), Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen; Department of Radiology (L.H.), University Medical Centre Utrecht; Department of Imaging (J.W.J.d.R.), Radboud University Medical Center, Nijmegen; and Department of Neurology (C.G.C.H.), Medical University of Innsbruck, Austria
| | - Jacky W J de Rooy
- From the Departments of Rehabilitation (R.H.M.J.M.K., J.G.K., B.J.M.d.S.) and Neurology (B.G.M.v.E., C.G.C.H.), Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen; Department of Radiology (L.H.), University Medical Centre Utrecht; Department of Imaging (J.W.J.d.R.), Radboud University Medical Center, Nijmegen; and Department of Neurology (C.G.C.H.), Medical University of Innsbruck, Austria
| | - Baziel G M van Engelen
- From the Departments of Rehabilitation (R.H.M.J.M.K., J.G.K., B.J.M.d.S.) and Neurology (B.G.M.v.E., C.G.C.H.), Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen; Department of Radiology (L.H.), University Medical Centre Utrecht; Department of Imaging (J.W.J.d.R.), Radboud University Medical Center, Nijmegen; and Department of Neurology (C.G.C.H.), Medical University of Innsbruck, Austria
| | - Corinne G C Horlings
- From the Departments of Rehabilitation (R.H.M.J.M.K., J.G.K., B.J.M.d.S.) and Neurology (B.G.M.v.E., C.G.C.H.), Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen; Department of Radiology (L.H.), University Medical Centre Utrecht; Department of Imaging (J.W.J.d.R.), Radboud University Medical Center, Nijmegen; and Department of Neurology (C.G.C.H.), Medical University of Innsbruck, Austria
| |
Collapse
|
7
|
Harish P, Malerba A, Kroon RHMJM, Shademan M, van Engelan B, Raz V, Popplewell L, Snowden SG. Novel Metabolomic Approach for Identifying Pathology-Specific Biomarkers in Rare Diseases: A Case Study in Oculopharyngeal Muscular Dystrophy (OPMD). Metabolites 2023; 13:769. [PMID: 37367926 DOI: 10.3390/metabo13060769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
The identification of metabolomic biomarkers relies on the analysis of large cohorts of patients compared to healthy controls followed by the validation of markers in an independent sample set. Indeed, circulating biomarkers should be causally linked to pathology to ensure that changes in the marker precede changes in the disease. However, this approach becomes unfeasible in rare diseases due to the paucity of samples, necessitating the development of new methods for biomarker identification. The present study describes a novel approach that combines samples from both mouse models and human patients to identify biomarkers of OPMD. We initially identified a pathology-specific metabolic fingerprint in murine dystrophic muscle. This metabolic fingerprint was then translated into (paired) murine serum samples and then to human plasma samples. This study identified a panel of nine candidate biomarkers that could predict muscle pathology with a sensitivity of 74.3% and specificity of 100% in a random forest model. These findings demonstrate that the proposed approach can identify biomarkers with good predictive performance and a higher degree of confidence in their relevance to pathology than markers identified in a small cohort of human samples alone. Therefore, this approach has a high potential utility for identifying circulating biomarkers in rare diseases.
Collapse
Affiliation(s)
- Pradeep Harish
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Alberto Malerba
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, Surrey, UK
| | - Rosemarie H M J M Kroon
- Department of Rehabilitation, Donder Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 AJ Nijmegen, The Netherlands
| | - Milad Shademan
- Department of Human Genetics, Leiden University Medical Centre, 2333 ZC Leiden, The Netherlands
| | - Baziel van Engelan
- Department of Rehabilitation, Donder Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 AJ Nijmegen, The Netherlands
| | - Vered Raz
- Department of Human Genetics, Leiden University Medical Centre, 2333 ZC Leiden, The Netherlands
| | - Linda Popplewell
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, Surrey, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, County Durham, UK
| | - Stuart G Snowden
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, Surrey, UK
| |
Collapse
|
8
|
Assessment of PABPN1 nuclear inclusions on a large cohort of patients and in a human xenograft model of oculopharyngeal muscular dystrophy. Acta Neuropathol 2022; 144:1157-1170. [PMID: 36197469 PMCID: PMC9637588 DOI: 10.1007/s00401-022-02503-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/26/2022] [Accepted: 09/17/2022] [Indexed: 01/26/2023]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a rare muscle disease characterized by an onset of weakness in the pharyngeal and eyelid muscles. The disease is caused by the extension of a polyalanine tract in the Poly(A) Binding Protein Nuclear 1 (PABPN1) protein leading to the formation of intranuclear inclusions or aggregates in the muscle of OPMD patients. Despite numerous studies stressing the deleterious role of nuclear inclusions in cellular and animal OPMD models, their exact contribution to human disease is still unclear. In this study, we used a large and unique collection of human muscle biopsy samples to perform an in-depth analysis of PABPN1 aggregates in relation to age, genotype and muscle status with the final aim to improve our understanding of OPMD physiopathology. Here we demonstrate that age and genotype influence PABPN1 aggregates: the percentage of myonuclei containing PABPN1 aggregates increases with age and the chaperone HSP70 co-localize more frequently with PABPN1 aggregates with a larger polyalanine tract. In addition to the previously described PRMT1 and HSP70 co-factors, we identified new components of PABPN1 aggregates including GRP78/BiP, RPL24 and p62. We also observed that myonuclei containing aggregates are larger than myonuclei without. When comparing two muscles from the same patient, a similar amount of aggregates is observed in different muscles, except for the pharyngeal muscle where fewer aggregates are observed. This could be due to the peculiar nature of this muscle which has a low level of PAPBN1 and contains regenerating fibers. To confirm the fate of PABPN1 aggregates in a regenerating muscle, we generated a xenograft model by transplanting human OPMD muscle biopsy samples into the hindlimb of an immunodeficient mouse. Xenografts from subjects with OPMD displayed regeneration of human myofibers and PABPN1 aggregates were rapidly present-although to a lower extent-after muscle fiber regeneration. Our data obtained on human OPMD samples add support to the dual non-exclusive models in OPMD combining toxic PABPN1 intranuclear inclusions together with PABPN1 loss of function which altogether result in this late-onset and muscle selective disease.
Collapse
|
9
|
Advancing FDSTools by integrating STRNaming 1.1. Forensic Sci Int Genet 2022; 61:102768. [PMID: 35994887 DOI: 10.1016/j.fsigen.2022.102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022]
Abstract
The introduction of massively parallel sequencing in forensic analysis has been facilitated with typing kits, analysis software and allele naming tools such as the ForenSeq DNA Signature Prep (DSP) kit, FDSTools and STRNaming respectively. Here we describe how FDSTools 2.0 with integrated and refined STRNaming nomenclature was validated for implementation under ISO 17025 accreditation for the ForenSeq DSP kit. Newly-added options result in efficient automatic allele calling for the majority of markers while specific settings are applied for 'novel' sequence variants to avoid the calling of remaining variable noise observed in samples sequenced with the ForenSeq DSP kit that seem to arise in the PCR. Genome-wide built-in reference data allows for greatly simplified configuration of allele naming for human targets.
Collapse
|
10
|
An Introductory Overview of Open-Source and Commercial Software Options for the Analysis of Forensic Sequencing Data. Genes (Basel) 2021; 12:genes12111739. [PMID: 34828345 PMCID: PMC8618049 DOI: 10.3390/genes12111739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
The top challenges of adopting new methods to forensic DNA analysis in routine laboratories are often the capital investment and the expertise required to implement and validate such methods locally. In the case of next-generation sequencing, in the last decade, several specifically forensic commercial options became available, offering reliable and validated solutions. Despite this, the readily available expertise to analyze, interpret and understand such data is still perceived to be lagging behind. This review gives an introductory overview for the forensic scientists who are at the beginning of their journey with implementing next-generation sequencing locally and because most in the field do not have a bioinformatics background may find it difficult to navigate the new terms and analysis options available. The currently available open-source and commercial software for forensic sequencing data analysis are summarized here to provide an accessible starting point for those fairly new to the forensic application of massively parallel sequencing.
Collapse
|
11
|
Raz V, Kroon RHMJM, Mei H, Riaz M, Buermans H, Lassche S, Horlings C, Swart BD, Kalf J, Harish P, Vissing J, Kielbasa S, van Engelen BGM. Age-Associated Salivary MicroRNA Biomarkers for Oculopharyngeal Muscular Dystrophy. Int J Mol Sci 2020; 21:ijms21176059. [PMID: 32842713 PMCID: PMC7503697 DOI: 10.3390/ijms21176059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
Small non-coding microRNAs (miRNAs) are involved in the regulation of mRNA stability. Their features, including high stability and secretion to biofluids, make them attractive as potential biomarkers for diverse pathologies. This is the first study reporting miRNA as potential biomarkers for oculopharyngeal muscular dystrophy (OPMD), an adult-onset myopathy. We hypothesized that miRNA that is differentially expressed in affected muscles from OPMD patients is secreted to biofluids and those miRNAs could be used as biomarkers for OPMD. We first identified candidate miRNAs from OPMD-affected muscles and from muscles from an OPMD mouse model using RNA sequencing. We then compared the OPMD-deregulated miRNAs to the literature and, subsequently, we selected a few candidates for expression studies in serum and saliva biofluids using qRT-PCR. We identified 126 miRNAs OPMD-deregulated in human muscles, but 36 deregulated miRNAs in mice only (pFDR < 0.05). Only 15 OPMD-deregulated miRNAs overlapped between the in humans and mouse studies. The majority of the OPMD-deregulated miRNAs showed opposite deregulation direction compared with known muscular dystrophies miRNAs (myoMirs), which are associated. In contrast, similar dysregulation direction was found for 13 miRNAs that are common between OPMD and aging muscles. A significant age-association (p < 0.05) was found for 17 OPMD-deregulated miRNAs (13.4%), whereas in controls, only six miRNAs (1.4%) showed a significant age-association, suggesting that miRNA expression in OPMD is highly age-associated. miRNA expression in biofluids revealed that OPMD-associated deregulation in saliva was similar to that in muscles, but not in serum. The same as in muscle, miRNA expression levels in saliva were also found to be associated with age (p < 0.05). Moreover, the majority of OPMD-miRNAs were found to be associated with dysphagia as an initial symptom. We suggest that levels of specific miRNAs in saliva can mark muscle degeneration in general and dysphagia in OPMD.
Collapse
Affiliation(s)
- Vered Raz
- Department of Human Genetics, Leiden University Medical Centre, 2333ZC Leiden, The Netherlands; (M.R.); (H.B.)
- Correspondence:
| | - Rosemarie H. M. J. M. Kroon
- Radboud University Medical Center, Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, 6525AJ Nijmegen, The Netherlands; (R.H.M.J.M.K.); (B.D.S.); (J.K.)
| | - Hailiang Mei
- Sequence Analysis Support Core, Leiden University Medical Centre, 2333ZC Leiden, The Netherlands; (H.M.); (S.K.)
| | - Muhammad Riaz
- Department of Human Genetics, Leiden University Medical Centre, 2333ZC Leiden, The Netherlands; (M.R.); (H.B.)
| | - Henk Buermans
- Department of Human Genetics, Leiden University Medical Centre, 2333ZC Leiden, The Netherlands; (M.R.); (H.B.)
| | - Saskia Lassche
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525AJ Nijmegen, The Netherlands; (S.L.); (C.H.); (B.G.M.v.E.)
| | - Corinne Horlings
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525AJ Nijmegen, The Netherlands; (S.L.); (C.H.); (B.G.M.v.E.)
| | - Bert De Swart
- Radboud University Medical Center, Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, 6525AJ Nijmegen, The Netherlands; (R.H.M.J.M.K.); (B.D.S.); (J.K.)
| | - Johanna Kalf
- Radboud University Medical Center, Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, 6525AJ Nijmegen, The Netherlands; (R.H.M.J.M.K.); (B.D.S.); (J.K.)
| | - Pradeep Harish
- Centre of Gene and Cell Therapy, Royal Holloway, University of London, Egham TW2 0EX, UK;
| | - John Vissing
- The Copenhagen Neuromuscular Center, Righospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark;
| | - Szymon Kielbasa
- Sequence Analysis Support Core, Leiden University Medical Centre, 2333ZC Leiden, The Netherlands; (H.M.); (S.K.)
| | - Baziel G. M. van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525AJ Nijmegen, The Netherlands; (S.L.); (C.H.); (B.G.M.v.E.)
| |
Collapse
|
12
|
Novis LE, Spitz M, Jardim M, Raskin S, Teive HAG. Evidence and practices of the use of next generation sequencing in patients with undiagnosed autosomal dominant cerebellar ataxias: a review. ARQUIVOS DE NEURO-PSIQUIATRIA 2020; 78:576-585. [PMID: 32725052 DOI: 10.1590/0004-282x20200017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/28/2020] [Indexed: 11/22/2022]
Abstract
Autosomal dominant cerebellar ataxias (ADCA) are heterogeneous diseases with a highly variable phenotype and genotype. They can be divided into episodic ataxia and spinocerebellar ataxia (SCA); the latter is considered the prototype of the ADCA. Most of the ADCA are caused by polyglutamine expansions, mainly SCA 1, 2, 3, 6, 7, 17 and Dentatorubral-pallidoluysian atrophy (DRPLA). However, 30% of patients remain undiagnosed after testing for these most common SCA. Recently, several studies have demonstrated that the new generation of sequencing methods are useful for the diagnose of these patients. This review focus on searching evidence on the literature, its usefulness in clinical practice and future perspectives.
Collapse
Affiliation(s)
- Luiz Eduardo Novis
- Universidade do Estado do Rio de Janeiro, Hospital Universitário Pedro Ernesto, Serviço de Neurologia, Rio de Janeiro RJ, Brazil
| | - Mariana Spitz
- Universidade do Estado do Rio de Janeiro, Hospital Universitário Pedro Ernesto, Serviço de Neurologia, Rio de Janeiro RJ, Brazil
| | - Marcia Jardim
- Universidade do Estado do Rio de Janeiro, Hospital Universitário Pedro Ernesto, Serviço de Neurologia, Rio de Janeiro RJ, Brazil
| | | | - Hélio A G Teive
- Universidade Federal do Paraná, Departamento de Clínica Médica, Serviço de Neurologia, Setor de Distúrbios do Movimento, Hospital das Clínicas, Curitiba PR, Brazil
| |
Collapse
|
13
|
van Putten M, Lloyd EM, de Greef JC, Raz V, Willmann R, Grounds MD. Mouse models for muscular dystrophies: an overview. Dis Model Mech 2020; 13:dmm043562. [PMID: 32224495 PMCID: PMC7044454 DOI: 10.1242/dmm.043562] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Muscular dystrophies (MDs) encompass a wide variety of inherited disorders that are characterized by loss of muscle tissue associated with a progressive reduction in muscle function. With a cure lacking for MDs, preclinical developments of therapeutic approaches depend on well-characterized animal models that recapitulate the specific pathology in patients. The mouse is the most widely and extensively used model for MDs, and it has played a key role in our understanding of the molecular mechanisms underlying MD pathogenesis. This has enabled the development of therapeutic strategies. Owing to advancements in genetic engineering, a wide variety of mouse models are available for the majority of MDs. Here, we summarize the characteristics of the most commonly used mouse models for a subset of highly studied MDs, collated into a table. Together with references to key publications describing these models, this brief but detailed overview would be useful for those interested in, or working with, mouse models of MD.
Collapse
Affiliation(s)
- Maaike van Putten
- Leiden University Medical Center, Department of Human Genetics, Leiden, 2333 ZA, The Netherlands
| | - Erin M Lloyd
- The University of Western Australia, School of Human Sciences, Perth 6009, Australia
| | - Jessica C de Greef
- Leiden University Medical Center, Department of Human Genetics, Leiden, 2333 ZA, The Netherlands
| | - Vered Raz
- Leiden University Medical Center, Department of Human Genetics, Leiden, 2333 ZA, The Netherlands
| | | | - Miranda D Grounds
- The University of Western Australia, School of Human Sciences, Perth 6009, Australia
| |
Collapse
|