1
|
Di Matteo F, Bonrath R, Pravata V, Schmidt H, Ayo Martin AC, Di Giaimo R, Menegaz D, Riesenberg S, de Vrij FMS, Maccarrone G, Holzapfel M, Straub T, Kushner SA, Robertson SP, Eder M, Cappello S. Neuronal hyperactivity in neurons derived from individuals with gray matter heterotopia. Nat Commun 2025; 16:1737. [PMID: 39966398 PMCID: PMC11836124 DOI: 10.1038/s41467-025-56998-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Periventricular heterotopia (PH), a common form of gray matter heterotopia associated with developmental delay and drug-resistant seizures, poses a challenge in understanding its neurophysiological basis. Human cerebral organoids (hCOs) derived from patients with causative mutations in FAT4 or DCHS1 mimic PH features. However, neuronal activity in these 3D models has not yet been investigated. Here we show that silicon probe recordings reveal exaggerated spontaneous spike activity in FAT4 and DCHS1 hCOs, suggesting functional changes in neuronal networks. Transcriptome and proteome analyses identify changes in neuronal morphology and synaptic function. Furthermore, patch-clamp recordings reveal a decreased spike threshold specifically in DCHS1 neurons, likely due to increased somatic voltage-gated sodium channels. Additional analyses reveal increased morphological complexity of PH neurons and synaptic alterations contributing to hyperactivity, with rescue observed in DCHS1 neurons by wild-type DCHS1 expression. Overall, we provide new comprehensive insights into the cellular changes underlying symptoms of gray matter heterotopia.
Collapse
Affiliation(s)
- Francesco Di Matteo
- Division of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU), Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Rebecca Bonrath
- Division of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Veronica Pravata
- Division of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU), Munich, Germany
| | | | - Ane Cristina Ayo Martin
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Rossella Di Giaimo
- Division of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU), Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Biology, University Federico II, Naples, Italy
| | | | | | - Femke M S de Vrij
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | | | - Tobias Straub
- Bioinformatics Core, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Steven A Kushner
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Stephen P Robertson
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - Matthias Eder
- Max Planck Institute of Psychiatry, Munich, Germany.
| | - Silvia Cappello
- Division of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU), Munich, Germany.
- Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
2
|
Walsh RM, Crabtree GW, Kalpana K, Jubierre L, Koo SY, Ciceri G, Gogos JA, Kruglikov I, Studer L. Cortical assembloids support the development of fast-spiking human PVALB+ cortical interneurons and uncover schizophrenia-associated defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.624368. [PMID: 39651135 PMCID: PMC11623588 DOI: 10.1101/2024.11.26.624368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Disruption of parvalbumin positive (PVALB+) cortical interneurons is implicated in the pathogenesis of schizophrenia. However, how these defects emerge during brain development remains poorly understood. The protracted maturation of these cells during postnatal life has made their derivation from human pluripotent stem cells (hPSCs) extremely difficult, precluding hPSC-based disease modeling of their role in neuropsychiatric disease. Here we present a cortical assembloid system that supports the development of PVALB+ cortical interneurons which match the molecular profiles of primary PVALB+ interneurons and display their distinctive electrophysiological features. Further, we characterized cortical interneuron development in a series of CRISPR-generated isogenic structural variants associated with schizophrenia and identified variant-specific phenotypes affecting cortical interneuron migration and the molecular profile of PVALB+ cortical interneurons. These findings offer plausible mechanisms on how the disruption of cortical interneuron development may impact schizophrenia risk and provide the first human experimental platform to study of PVALB+ cortical interneurons.
Collapse
|
3
|
Ma Q, Chen G, Li Y, Guo Z, Zhang X. The molecular genetics of PI3K/PTEN/AKT/mTOR pathway in the malformations of cortical development. Genes Dis 2024; 11:101021. [PMID: 39006182 PMCID: PMC11245990 DOI: 10.1016/j.gendis.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/07/2023] [Accepted: 04/30/2023] [Indexed: 07/16/2024] Open
Abstract
Malformations of cortical development (MCD) are a group of developmental disorders characterized by abnormal cortical structures caused by genetic or harmful environmental factors. Many kinds of MCD are caused by genetic variation. MCD is the common cause of intellectual disability and intractable epilepsy. With rapid advances in imaging and sequencing technologies, the diagnostic rate of MCD has been increasing, and many potential genes causing MCD have been successively identified. However, the high genetic heterogeneity of MCD makes it challenging to understand the molecular pathogenesis of MCD and to identify effective targeted drugs. Thus, in this review, we outline important events of cortical development. Then we illustrate the progress of molecular genetic studies about MCD focusing on the PI3K/PTEN/AKT/mTOR pathway. Finally, we briefly discuss the diagnostic methods, disease models, and therapeutic strategies for MCD. The information will facilitate further research on MCD. Understanding the role of the PI3K/PTEN/AKT/mTOR pathway in MCD could lead to a novel strategy for treating MCD-related diseases.
Collapse
Affiliation(s)
- Qing Ma
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Guang Chen
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Ying Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Zhenming Guo
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Xue Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| |
Collapse
|
4
|
Cavalli A, Caraffi SG, Rizzi S, Trimarchi G, Napoli M, Frattini D, Spagnoli C, Garavelli L, Fusco C. Heterozygous truncating variant of TAOK1 in a boy with periventricular nodular heterotopia: a case report and literature review of TAOK1-related neurodevelopmental disorders. BMC Med Genomics 2024; 17:68. [PMID: 38443934 PMCID: PMC10916022 DOI: 10.1186/s12920-024-01840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Thousand and one amino-acid kinase 1 (TAOK1) encodes the MAP3K protein kinase TAO1, which has recently been displayed to be essential for neuronal maturation and cortical differentiation during early brain development. Heterozygous variants in TAOK1 have been reported in children with neurodevelopmental disorders, with or without macrocephaly, hypotonia and mild dysmorphic traits. Literature reports lack evidence of neuronal migration disorders in TAOK1 patients, although studies in animal models suggest this possibility. CASE PRESENTATION We provide a clinical description of a child with a neurodevelopmental disorder due to a novel TAOK1 truncating variant, whose brain magnetic resonance imaging displays periventricular nodular heterotopia. CONCLUSIONS To our knowledge, this is the first report of a neuronal migration disorder in a patient with a TAOK1-related neurodevelopmental disorder, thus supporting the hypothesized pathogenic mechanisms of TAOK1 defects.
Collapse
Affiliation(s)
- Anna Cavalli
- Child Neurology and Psychiatry Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy.
| | - Stefano Giuseppe Caraffi
- Medical Genetics Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Susanna Rizzi
- Child Neurology and Psychiatry Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Gabriele Trimarchi
- Medical Genetics Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Manuela Napoli
- Neuroradiology Unit, Arcispedale santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Daniele Frattini
- Child Neurology and Psychiatry Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Carlotta Spagnoli
- Child Neurology and Psychiatry Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, Dipartimento Materno-Infantile, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| |
Collapse
|
5
|
Hong SJ, Park JE, Sohn YB, Suh YA, Lee JH, Park MS. Newborn Periventricular Nodular Heterotopia with Persistent Feeding Cyanosis and Apneic Spell: A Case Report. NEONATAL MEDICINE 2022. [DOI: 10.5385/nm.2022.29.4.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Periventricular nodular heterotopia (PNH) is a neuronal migration disorder that occurs during early brain development. Patients with PNH may be asymptomatic and have normal intelligence; however, PNH is also known to cause various symptoms such as seizures, dyslexia, and cardiovascular anomalies. PNH is not commonly diagnosed during early infancy because of the lack of clinical manifestations during this period. We present the case of a female infant diagnosed with PNH based on brain magnetic resonance imaging, who had symptomatic patent ductus arteriosus that had to be ligated surgically and had prolonged feeding cyanosis with frequent apneic spells.
Collapse
|
6
|
Straka B, Hermanovska B, Krskova L, Zamecnik J, Vlckova M, Balascakova M, Tesner P, Jezdik P, Tichy M, Kyncl M, Musilova A, Lassuthova P, Marusic P, Krsek P. Genetic Testing for Malformations of Cortical Development: A Clinical Diagnostic Study. Neurol Genet 2022; 8:e200032. [PMID: 36324633 PMCID: PMC9621608 DOI: 10.1212/nxg.0000000000200032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Background and Objectives Malformations of cortical development (MCD), though individually rare, constitute a significant burden of disease. The diagnostic yield of next-generation sequencing (NGS) in these patients varies across studies and methods, and novel genes and variants continue to emerge. Methods Patients (n = 123) with a definite radiologic or histopathologic diagnosis of MCD, with or without epilepsy were included in this study. They underwent NGS-based targeted gene panel (TGP) testing, whole-exome sequencing (WES), or WES-based virtual panel testing. Selected patients who underwent epilepsy surgery (n = 69) also had somatic gene testing of brain tissue-derived DNA. We analyzed predictors of positive germline genetic finding and diagnostic yield of respective methods. Results Pathogenic or likely pathogenic germline genetic variants were detected in 21% of patients (26/123). In the surgical subgroup (69/123), we performed somatic sequencing in 40% of cases (28/69) and detected causal variants in 18% (5/28). Diagnostic yield did not differ between TGP, WES-based virtual gene panel, and open WES (p = 0.69). Diagnosis of focal cortical dysplasia type 2A, epilepsy, and intellectual disability were associated with positive results of germline testing. We report previously unpublished variants in 16/26 patients and 4 cases of MCD with likely pathogenic variants in non-MCD genes. Discussion In this study, we are reporting genetic findings of a large cohort of MCD patients with epilepsy or potentially epileptogenic MCD. We determine predictors of successful ascertainment of a genetic diagnosis in real-life setting and report novel, likely pathogenic variants in MCD and non-MCD genes alike.
Collapse
Affiliation(s)
- Barbora Straka
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Barbora Hermanovska
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Lenka Krskova
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Josef Zamecnik
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Marketa Vlckova
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Miroslava Balascakova
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Pavel Tesner
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Petr Jezdik
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Michal Tichy
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Martin Kyncl
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Alena Musilova
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Petra Lassuthova
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Petr Marusic
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Pavel Krsek
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| |
Collapse
|
7
|
Bonaglia MC, Fichera M, Marelli S, Romaniello R, Zuffardi O. Low-level complex mosaic with multiple cell lines affecting the 18q21.31q21.32 region in a patient with de novo 18q terminal deletion. Eur J Med Genet 2022; 65:104596. [PMID: 36064004 DOI: 10.1016/j.ejmg.2022.104596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/31/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
We describe a 5-year-old girl who was diagnosed at birth with 18q de novo homogeneous deletion at G-banding karyotype. Her clinical condition, characterized by hypotonia, psychomotor retardation, short stature, deafness secondary to bilateral atresia of the external auditory canals, was in agreement with the 18q deletion syndrome though presence of coloboma of a single eye only suggested a mosaic condition as an unusual sign. By combining multiple technologies including array-CGH, FISH, and WGS, we found that the terminal deletion 18q21.32q23 (21 Mb) was in segmental mosaicism of the proximal region 18q21.31q21.32 (2.7 Mb), which showed a variable number of copies: one, two, or three, in 7, 41 and 55% of the cells respectively. Breakpoint junction analysis demonstrated the presence of an inv-dup del (18q) with a disomic segment of 4.7 kb between the inverted and non-inverted copies of the duplicated region 18q21.31q21.32. From these results, we propose that all three types of abnormal chr18 (the inv-dup del and the two 18q terminal deletions of different sizes) arisen from breaks in a dicentric mirror chromosome 18q, either in more than one embryo cell or from subsequent breaking-fusion-bridge cycles. The duplication region was with identical polymorphisms as in all non-recurrent inv-dup del rearrangements though, in contrast with most of them, the 18q abnormality was of maternal origin. Taking into account that distal 18q deletions are not rarely associated with inv-dup del(18q) cell lines, and that the non-disjunction of chromosome 18 takes place especially at maternal meiosis II rather than meiosis I, multiple rescue events starting from trisomic zygotes could be considered alternative to the postmitotic ones. From the clinical point of view, our case, as well as those of del(18q) in mosaic with the dic(18q), shows that the final phenotype is the sum of the different cell lines that acted on embryonic development with signs typical of both the 18q deletion syndrome and trisomy 18. Asymmetrical malformations, such as coloboma of the iris only in the right eye, confirm the underlying mosaicism regardless of whether it is still detectable in the blood.
Collapse
Affiliation(s)
- Maria Clara Bonaglia
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy.
| | - Marco Fichera
- Department of Biomedical and Biotechnological Sciences, Medical Genetics, University of Catania, Catania, Italy; Oasi Research Institute-IRCCS, Troina, Italy.
| | - Susan Marelli
- Medical Genetics Service, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy.
| | - Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy.
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
8
|
Jin Y, Gao X, Lu M, Chen G, Yang X, Ren N, Song Y, Hou C, Li J, Liu Q, Gao J. Loss of BAF (mSWI/SNF) chromatin-remodeling ATPase Brg1 causes multiple malformations of cortical development in mice. Hum Mol Genet 2022; 31:3504-3520. [PMID: 35666215 DOI: 10.1093/hmg/ddac127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/12/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in genes encoding subunits of the BAF (BRG1/BRM-associated factor) complex cause various neurodevelopmental diseases. However, the underlying pathophysiology remains largely unknown. Here, we analyzed the function of Brg1, a core ATPase of BAF complexes, in the developing cerebral cortex. Loss of Brg1 causes several morphological defects resembling human malformations of cortical development (MCDs), including microcephaly, cortical dysplasia, cobblestone lissencephaly, and periventricular heterotopia. We demonstrated that neural progenitor cell (NPC) renewal, neuronal differentiation, neuronal migration, apoptotic cell death, pial basement membrane, and apical junctional complexes, which are associated with MCD formation, were impaired after Brg1 deletion. Furthermore, transcriptome profiling indicated that a large number of genes were deregulated. The deregulated genes were closely related to MCD formation, and most of these genes were bound by Brg1. Cumulatively, our study indicates an essential role of Brg1 in cortical development and provides a new possible pathogenesis underlying Brg1-based BAF complex-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yecheng Jin
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaotong Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, Shandong 250100, China
| | - Miaoqing Lu
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Ge Chen
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, Shandong 250100, China
| | - Xiaofan Yang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Naixia Ren
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, Shandong 250100, China
| | - Yuning Song
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, Shandong 250100, China
| | - Congzhe Hou
- Department of Reproductive medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Jiangxia Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiangang Gao
- School of Laboratory Animal Science, Shandong First Medical University, Jinan, Shandong 250117, China
| |
Collapse
|
9
|
Moore KS, Moore R, Fulmer DB, Guo L, Gensemer C, Stairley R, Glover J, Beck TC, Morningstar JE, Biggs R, Muhkerjee R, Awgulewitsch A, Norris RA. DCHS1, Lix1L, and the Septin Cytoskeleton: Molecular and Developmental Etiology of Mitral Valve Prolapse. J Cardiovasc Dev Dis 2022; 9:62. [PMID: 35200715 PMCID: PMC8874669 DOI: 10.3390/jcdd9020062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Mitral valve prolapse (MVP) is a common cardiac valve disease that often progresses to serious secondary complications requiring surgery. MVP manifests as extracellular matrix disorganization and biomechanically incompetent tissues in the adult setting. However, MVP has recently been shown to have a developmental basis, as multiple causal genes expressed during embryonic development have been identified. Disease phenotypes have been observed in mouse models with human MVP mutations as early as birth. This study focuses on the developmental function of DCHS1, one of the first genes to be shown as causal in multiple families with non-syndromic MVP. By using various biochemical techniques as well as mouse and cell culture models, we demonstrate a unique link between DCHS1-based cell adhesions and the septin-actin cytoskeleton through interactions with cytoplasmic protein Lix1-Like (LIX1L). This DCHS1-LIX1L-SEPT9 axis interacts with and promotes filamentous actin organization to direct cell-ECM alignment and valve tissue shape.
Collapse
Affiliation(s)
- Kelsey S. Moore
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Reece Moore
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Diana B. Fulmer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Lilong Guo
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Cortney Gensemer
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Rebecca Stairley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Janiece Glover
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Tyler C. Beck
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Jordan E. Morningstar
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Rachel Biggs
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Rupak Muhkerjee
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Alexander Awgulewitsch
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| |
Collapse
|
10
|
Budisteanu M, Papuc S, Erbescu A, Iliescu C, Dobre M, Barca D, Tarta‑arsene O, Motoescu C, Dica A, Sandu C, Anghelescu C, Craiu D, Arghir A. Clinical and genomic findings in brain heterotopia: Report of a pediatric patient cohort from Romania. Exp Ther Med 2021; 23:101. [PMID: 34976143 PMCID: PMC8674960 DOI: 10.3892/etm.2021.11024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/09/2021] [Indexed: 11/08/2022] Open
Abstract
Brain heterotopia is a group of rare malformations with a heterogeneous phenotype, ranging from asymptomatic to a severe clinical picture (drug-resistant epilepsy, severe developmental delay). The etiology is multifactorial, including both genetic and environmental factors. In the present study, a cohort of 15 pediatric patients with brain heterotopia were investigated by clinical examination, electroencephalographic studies, brain imaging, and genomic tests. Most of the patients had epileptic seizures, often difficult to control with one antiepileptic drug; another frequent characteristic in the cohort was developmental delay or intellectual disability, in some cases associated with behavioral problems. The genomic studies revealed an interstitial 22q11.2 microduplication, an anomaly not reported previously in heterotopia patients. Comparing the cohort of the present study with that of a previous series of heterotopia patients, both adult and pediatric, similar aspects, such as the high frequency of drug-resistant epilepsy were observed as well as some differences, such as no systemic malformations and no cases with fatal evolution. The current findings add new data to existing knowledge on a rare heterogeneous disorder. The detailed clinical description, including the epilepsy phenotypes, and genomic profiles bring new insights into a group of disorders, yet to be fully understood.
Collapse
Affiliation(s)
- Magdalena Budisteanu
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Sorina Papuc
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Alina Erbescu
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Catrinel Iliescu
- Department of Pediatric Neurology, Expertise Centre for Rare Diseases in Pediatric Neurology, Member of The EpiCARE European Reference Network, ‘Prof. Dr. Alex. Obregia’ Clinical Hospital, 041914 Bucharest, Romania
| | - Maria Dobre
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Diana Barca
- Department of Pediatric Neurology, Expertise Centre for Rare Diseases in Pediatric Neurology, Member of The EpiCARE European Reference Network, ‘Prof. Dr. Alex. Obregia’ Clinical Hospital, 041914 Bucharest, Romania
| | - Oana Tarta‑arsene
- Department of Pediatric Neurology, Expertise Centre for Rare Diseases in Pediatric Neurology, Member of The EpiCARE European Reference Network, ‘Prof. Dr. Alex. Obregia’ Clinical Hospital, 041914 Bucharest, Romania
| | - Cristina Motoescu
- Department of Pediatric Neurology, Expertise Centre for Rare Diseases in Pediatric Neurology, Member of The EpiCARE European Reference Network, ‘Prof. Dr. Alex. Obregia’ Clinical Hospital, 041914 Bucharest, Romania
| | - Alice Dica
- Department of Pediatric Neurology, Expertise Centre for Rare Diseases in Pediatric Neurology, Member of The EpiCARE European Reference Network, ‘Prof. Dr. Alex. Obregia’ Clinical Hospital, 041914 Bucharest, Romania
| | - Carmen Sandu
- Department of Pediatric Neurology, Expertise Centre for Rare Diseases in Pediatric Neurology, Member of The EpiCARE European Reference Network, ‘Prof. Dr. Alex. Obregia’ Clinical Hospital, 041914 Bucharest, Romania
| | - Cristina Anghelescu
- Department of Pediatric Neurology, Expertise Centre for Rare Diseases in Pediatric Neurology, Member of The EpiCARE European Reference Network, ‘Prof. Dr. Alex. Obregia’ Clinical Hospital, 041914 Bucharest, Romania
| | - Dana Craiu
- Department of Pediatric Neurology, Expertise Centre for Rare Diseases in Pediatric Neurology, Member of The EpiCARE European Reference Network, ‘Prof. Dr. Alex. Obregia’ Clinical Hospital, 041914 Bucharest, Romania
| | - Aurora Arghir
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
11
|
Vriend I, Oegema R. Genetic causes underlying grey matter heterotopia. Eur J Paediatr Neurol 2021; 35:82-92. [PMID: 34666232 DOI: 10.1016/j.ejpn.2021.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022]
Abstract
Grey matter heterotopia (GMH) can cause of seizures and are associated with a wide range of neurodevelopmental disorders and syndromes. They are caused by a failure of neuronal migration during fetal development, leading to clusters of neurons that have not reached their final destination in the cerebral cortex. We have performed an extensive literature search in Pubmed, OMIM, and Google scholar and provide an overview of known genetic associations with periventricular nodular heterotopia (PNVH), subcortical band heterotopia (SBH) and other subcortical heterotopia (SUBH). We classified the heterotopias as PVNH, SBH, SUBH or other and collected the genetic information, frequency, imaging features and salient features in tables for every subtype of heterotopia. This resulted in 105 PVNH, 16 SBH and 25 SUBH gene/locus associations, making a total of 146 genes and chromosomal loci. Our study emphasizes the extreme genetic heterogeneity underlying GMH. It will aid the clinician in establishing an differential diagnosis and eventually a molecular diagnosis in GMH patients. A diagnosis enables proper counseling of prognosis and recurrence risks, and enables individualized patient management.
Collapse
Affiliation(s)
- Ilona Vriend
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
12
|
Selli A, Ventura RV, Fonseca PAS, Buzanskas ME, Andrietta LT, Balieiro JCC, Brito LF. Detection and Visualization of Heterozygosity-Rich Regions and Runs of Homozygosity in Worldwide Sheep Populations. Animals (Basel) 2021; 11:2696. [PMID: 34573664 PMCID: PMC8472390 DOI: 10.3390/ani11092696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
In this study, we chose 17 worldwide sheep populations of eight breeds, which were intensively selected for different purposes (meat, milk, or wool), or locally-adapted breeds, in order to identify and characterize factors impacting the detection of runs of homozygosity (ROH) and heterozygosity-rich regions (HRRs) in sheep. We also applied a business intelligence (BI) tool to integrate and visualize outputs from complementary analyses. We observed a prevalence of short ROH, and a clear distinction between the ROH profiles across populations. The visualizations showed a fragmentation of medium and long ROH segments. Furthermore, we tested different scenarios for the detection of HRR and evaluated the impact of the detection parameters used. Our findings suggest that HRRs are small and frequent in the sheep genome; however, further studies with higher density SNP chips and different detection methods are suggested for future research. We also defined ROH and HRR islands and identified common regions across the populations, where genes related to a variety of traits were reported, such as body size, muscle development, and brain functions. These results indicate that such regions are associated with many traits, and thus were under selective pressure in sheep breeds raised for different purposes. Interestingly, many candidate genes detected within the HRR islands were associated with brain integrity. We also observed a strong association of high linkage disequilibrium pattern with ROH compared with HRR, despite the fact that many regions in linkage disequilibrium were not located in ROH regions.
Collapse
Affiliation(s)
- Alana Selli
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil; (L.T.A.); (J.C.C.B.)
| | - Ricardo V. Ventura
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil; (L.T.A.); (J.C.C.B.)
| | - Pablo A. S. Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Marcos E. Buzanskas
- Department of Animal Science, Federal University of Paraíba, João Pessoa 58051-900, Paraiba, Brazil;
| | - Lucas T. Andrietta
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil; (L.T.A.); (J.C.C.B.)
| | - Júlio C. C. Balieiro
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil; (L.T.A.); (J.C.C.B.)
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA;
| |
Collapse
|
13
|
Lerman-Sagie T, Pogledic I, Leibovitz Z, Malinger G. A practical approach to prenatal diagnosis of malformations of cortical development. Eur J Paediatr Neurol 2021; 34:50-61. [PMID: 34390998 DOI: 10.1016/j.ejpn.2021.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/27/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
Malformations of cortical development (MCD) can frequently be diagnosed at multi-disciplinary Fetal Neurology clinics with the aid of multiplanar neurosonography and MRI. The patients are usually referred following prenatal sonographic screening that raises the suspicion of a possible underlying MCD. These indirect findings include, but are not limited to, ventriculomegaly (lateral ventricles larger than 10 mm), asymmetric ventricles, commissural anomalies, absent cavum septum pellucidum, cerebellar vermian and/or hemispheric anomalies, abnormal head circumference (microcephaly or macrocephaly), multiple CNS malformations, and associated systemic defects. The aim of this paper is to suggest a practical approach to prenatal diagnosis of malformations of cortical development utilizing dedicated neurosonography and MRI, based on the current literature and our own experience. We suggest that an MCD should be suspected in utero when the following intracranial imaging signs are present: abnormal development of the Sylvian fissure; delayed achievement of cortical milestones, premature appearance of sulcation; irregular ventricular borders, abnormal cortical thickness (thick, thin); abnormal shape and orientation of the sulci and gyri; irregular, abnormal, asymmetric, and enlarged hemisphere; simplified cortex; non continuous cortex or cleft; and intraparenchymal echogenic nodules. Following the putative diagnosis of fetal MCD by neurosonography and MRI, when appropriate and possible (depending on gestational age), the imaging diagnosis is supplemented by genetic studies (CMA and trio whole exome sequencing). In some instances, no further studies are required during pregnancy due to the clear dire prognosis and then the genetic evaluation can be deferred after delivery or termination of pregnancy (in countries where allowed).
Collapse
Affiliation(s)
- Tally Lerman-Sagie
- Fetal Neurology Clinic, Ultrasound in Obstetrics and Gynecology Unit, Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon, Israel; Pediatric Neurology Unit, Center for Rare Diseases-Magen, Wolfson Medical Center, Holon, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Ivana Pogledic
- Department of Biomedical Imaging and Image-guided Therapy, Division of Neuroradiology and Musculoskeletal Radiology, Medical University of Vienna, Vienna, Austria
| | - Zvi Leibovitz
- Fetal Neurology Clinic, Ultrasound in Obstetrics and Gynecology Unit, Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon, Israel; Ultrasound in Obstetrics and Gynecology Unit, Bnai-Zion Medical Center, Haifa, Israel; Technion Faculty of Medicine, Haifa, Israel
| | - Gustavo Malinger
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Fetal Neurology Multidisciplinary Clinic, Division of Ultrasound in Obstetrics & Gynecology, Lis Hospital for Women, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| |
Collapse
|
14
|
Gana S, Casella A, Cociglio S, Tartara E, Rognone E, Giorgio E, Pichiecchio A, Orcesi S, Valente EM. ARF1 haploinsufficiency causes periventricular nodular heterotopia with variable clinical expressivity. J Med Genet 2021; 59:781-784. [PMID: 34353862 DOI: 10.1136/jmedgenet-2021-107783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/23/2021] [Indexed: 11/03/2022]
Abstract
The primary anatomical defect leading to periventricular nodular heterotopia occurs within the neural progenitors along the neuroepithelial lining of the lateral ventricles and results from a defect in the initiation of neuronal migration, following disruption of the neuroependyma and impaired neuronal motility. Growing evidence indicates that the FLNA-dependent actin dynamics and regulation of vesicle formation and trafficking by activation of ADP-ribosylation factors (ARFs) can play an important role in this cortical malformation. We report the first inherited variant of ARF1 in a girl with intellectual disability and periventricular nodular heterotopia who inherited the variant from the father with previously undiagnosed single nodular heterotopia and mild clinical expression. Additionally, both patients presented some features suggestive of hypohidrotic ectodermal dysplasia. These clinical features showed similarities to those of three previously reported cases with ARF1 missense variants, confirming that haploinsufficiency of this gene causes a recognisable neurological disorder with abnormal neuronal migration and variable clinical expressivity.
Collapse
Affiliation(s)
- Simone Gana
- Medical Genetics Unit, Foundation National Neurological Institute C Mondino Institute for Hospitalization and Care Scientific, Pavia, Italy
| | - Antonella Casella
- Medical Genetics Unit, Foundation National Neurological Institute C Mondino Institute for Hospitalization and Care Scientific, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Sara Cociglio
- Department of Child Neurology and Psychiatry, Foundation National Neurological Institute C Mondino Institute for Hospitalization and Care Scientific, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Elena Tartara
- Epilepsy Center, Foundation National Neurological Institute C Mondino Institute for Hospitalization and Care Scientific, Pavia, Italy
| | - Elisa Rognone
- Department of Neuroradiology, Foundation National Neurological Institute C Mondino Institute for Hospitalization and Care Scientific, Pavia, Italy
| | - Elisa Giorgio
- Medical Genetics Unit, Foundation National Neurological Institute C Mondino Institute for Hospitalization and Care Scientific, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Simona Orcesi
- Department of Child Neurology and Psychiatry, Foundation National Neurological Institute C Mondino Institute for Hospitalization and Care Scientific, Pavia, Italy
| | - Enza Maria Valente
- Medical Genetics Unit, Foundation National Neurological Institute C Mondino Institute for Hospitalization and Care Scientific, Pavia, Italy .,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
15
|
De Angelis C, Byrne AB, Morrow R, Feng J, Ha T, Wang P, Schreiber AW, Babic M, Taranath A, Manton N, King-Smith SL, Schwarz Q, Arts P, Scott HS, Barnett C. Compound heterozygous variants in LAMC3 in association with posterior periventricular nodular heterotopia. BMC Med Genomics 2021; 14:64. [PMID: 33639934 PMCID: PMC7916305 DOI: 10.1186/s12920-021-00911-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/25/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Periventricular nodular heterotopia (PNH) is a malformation of cortical development characterized by nodules of abnormally migrated neurons. The cause of posteriorly placed PNH is not well characterised and we present a case that provides insights into the cause of posterior PNH. CASE PRESENTATION We report a fetus with extensive posterior PNH in association with biallelic variants in LAMC3. LAMC3 mutations have previously been shown to cause polymicrogyria and pachygyria in the occipital cortex, but not PNH. The occipital location of PNH in our case and the proposed function of LAMC3 in cortical development suggest that the identified LAMC3 variants may be causal of PNH in this fetus. CONCLUSION We hypothesise that this finding extends the cortical phenotype associated with LAMC3 and provides valuable insight into genetic cause of posterior PNH.
Collapse
Affiliation(s)
- Carla De Angelis
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, North Adelaide, SA, Australia
- School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Alicia B Byrne
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer Biology, An Alliance Between SA Pathology and the University of South Australia, Adelaide, Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Rebecca Morrow
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer Biology, An Alliance Between SA Pathology and the University of South Australia, Adelaide, Australia
| | - Jinghua Feng
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, An Alliance Between SA Pathology and the University of South Australia, Adelaide, SA, Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Thuong Ha
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer Biology, An Alliance Between SA Pathology and the University of South Australia, Adelaide, Australia
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, An Alliance Between SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Paul Wang
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, An Alliance Between SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Andreas W Schreiber
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, An Alliance Between SA Pathology and the University of South Australia, Adelaide, SA, Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Milena Babic
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer Biology, An Alliance Between SA Pathology and the University of South Australia, Adelaide, Australia
| | - Ajay Taranath
- South Australian Medical Imaging, Women's and Children's Hospital, North Adelaide, SA, Australia
- School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Nick Manton
- Department of Surgical Pathology, Women's and Children's Hospital/SA Pathology, North Adelaide, SA, Australia
| | - Sarah L King-Smith
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer Biology, An Alliance Between SA Pathology and the University of South Australia, Adelaide, Australia
- Australian Genomic Health Alliance, Melbourne, VIC, Australia
| | - Quenten Schwarz
- Neurovascular Research Laboratory, Centre for Cancer Biology, An Alliance Between SA Pathology and the University of South Australia, Adelaide, Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Peer Arts
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer Biology, An Alliance Between SA Pathology and the University of South Australia, Adelaide, Australia
| | - Hamish S Scott
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer Biology, An Alliance Between SA Pathology and the University of South Australia, Adelaide, Australia
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, An Alliance Between SA Pathology and the University of South Australia, Adelaide, SA, Australia
- School of Medicine, University of Adelaide, Adelaide, SA, Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
- Australian Genomic Health Alliance, Melbourne, VIC, Australia
| | - Christopher Barnett
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, North Adelaide, SA, Australia.
- School of Medicine, University of Adelaide, Adelaide, SA, Australia.
- SA Clinical Genetics Service, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA, 5006, Australia.
| |
Collapse
|
16
|
International consensus recommendations on the diagnostic work-up for malformations of cortical development. Nat Rev Neurol 2020; 16:618-635. [PMID: 32895508 PMCID: PMC7790753 DOI: 10.1038/s41582-020-0395-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2020] [Indexed: 12/22/2022]
Abstract
Malformations of cortical development (MCDs) are neurodevelopmental disorders that result from abnormal development of the cerebral cortex in utero. MCDs place a substantial burden on affected individuals, their families and societies worldwide, as these individuals can experience lifelong drug-resistant epilepsy, cerebral palsy, feeding difficulties, intellectual disability and other neurological and behavioural anomalies. The diagnostic pathway for MCDs is complex owing to wide variations in presentation and aetiology, thereby hampering timely and adequate management. In this article, the international MCD network Neuro-MIG provides consensus recommendations to aid both expert and non-expert clinicians in the diagnostic work-up of MCDs with the aim of improving patient management worldwide. We reviewed the literature on clinical presentation, aetiology and diagnostic approaches for the main MCD subtypes and collected data on current practices and recommendations from clinicians and diagnostic laboratories within Neuro-MIG. We reached consensus by 42 professionals from 20 countries, using expert discussions and a Delphi consensus process. We present a diagnostic workflow that can be applied to any individual with MCD and a comprehensive list of MCD-related genes with their associated phenotypes. The workflow is designed to maximize the diagnostic yield and increase the number of patients receiving personalized care and counselling on prognosis and recurrence risk.
Collapse
|
17
|
Accogli A, Severino M, Riva A, Madia F, Balagura G, Iacomino M, Carlini B, Baldassari S, Giacomini T, Croci C, Pisciotta L, Messana T, Boni A, Russo A, Bilo L, Tonziello R, Coppola A, Filla A, Mecarelli O, Casalone R, Pisani F, Falsaperla R, Marino S, Parisi P, Ferretti A, Elia M, Luchetti A, Milani D, Vanadia F, Silvestri L, Rebessi E, Parente E, Vatti G, Mancardi MM, Nobili L, Capra V, Salpietro V, Striano P, Zara F. Targeted re-sequencing in malformations of cortical development: genotype-phenotype correlations. Seizure 2020; 80:145-152. [DOI: 10.1016/j.seizure.2020.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/15/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022] Open
|
18
|
Buchsbaum IY, Kielkowski P, Giorgio G, O'Neill AC, Di Giaimo R, Kyrousi C, Khattak S, Sieber SA, Robertson SP, Cappello S. ECE2 regulates neurogenesis and neuronal migration during human cortical development. EMBO Rep 2020; 21:e48204. [PMID: 32207244 PMCID: PMC7202216 DOI: 10.15252/embr.201948204] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 11/24/2022] Open
Abstract
During embryonic development, excitatory projection neurons migrate in the cerebral cortex giving rise to organised layers. Periventricular heterotopia (PH) is a group of aetiologically heterogeneous disorders in which a subpopulation of newborn projection neurons fails to initiate their radial migration to the cortex, ultimately resulting in bands or nodules of grey matter lining the lateral ventricles. Although a number of genes have been implicated in its cause, currently they only satisfactorily explain the pathogenesis of the condition for 50% of patients. Novel gene discovery is complicated by the extreme genetic heterogeneity recently described to underlie its cause. Here, we study the neurodevelopmental role of endothelin‐converting enzyme‐2 (ECE2) for which two biallelic variants have been identified in two separate patients with PH. Our results show that manipulation of ECE2 levels in human cerebral organoids and in the developing mouse cortex leads to ectopic localisation of neural progenitors and neurons. We uncover the role of ECE2 in neurogenesis, and mechanistically, we identify its involvement in the generation and secretion of extracellular matrix proteins in addition to cytoskeleton and adhesion.
Collapse
Affiliation(s)
- Isabel Y Buchsbaum
- Max Planck Institute of Psychiatry, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg, Germany
| | - Pavel Kielkowski
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Garching bei München, Germany
| | - Grazia Giorgio
- Max Planck Institute of Psychiatry, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg, Germany
| | - Adam C O'Neill
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - Rossella Di Giaimo
- Max Planck Institute of Psychiatry, Munich, Germany.,Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Shahryar Khattak
- DFG Center for Regenerative Therapies, Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Garching bei München, Germany
| | - Stephen P Robertson
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
19
|
Guerrini R, Parrini E, Esposito A, Fassio A, Conti V. Lesional and non-lesional epilepsies: A blurring genetic boundary. Eur J Paediatr Neurol 2020; 24:24-29. [PMID: 31875834 DOI: 10.1016/j.ejpn.2019.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 01/02/2023]
Abstract
There has been a traditional conceptual partition between the so-called non-lesional genetic epilepsies and the genetically determined interposed epileptogenic structural abnormalities. In this review, we summarise how growing evidence acquired through neuroimaging and neurobiology modelling is demonstrating that a distinction between lesional and functional (or non-lesional) epileptogenesis is less obvious than previously thought, particularly for epileptogenic neurodevelopmental disorders, but also for most genetically determined epilepsies.
Collapse
Affiliation(s)
- Renzo Guerrini
- Paediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital Anna Meyer-University of Florence, 50139, Florence, Italy.
| | - Elena Parrini
- Paediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital Anna Meyer-University of Florence, 50139, Florence, Italy
| | - Alessandro Esposito
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16100, Genoa, Italy; Department of Experimental Medicine, University of Genoa, 16100, Genoa, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, 16100, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, 16100, Genoa, Italy
| | - Valerio Conti
- Paediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital Anna Meyer-University of Florence, 50139, Florence, Italy
| |
Collapse
|
20
|
Montier L, Haneef Z, Gavvala J, Yoshor D, North R, Verla T, Van Ness PC, Drabek J, Goldman AM. A somatic mutation in MEN1 gene detected in periventricular nodular heterotopia tissue obtained from depth electrodes. Epilepsia 2019; 60:e104-e109. [PMID: 31489630 PMCID: PMC6852559 DOI: 10.1111/epi.16328] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Periventricular nodular heterotopia (PNH) is a common structural malformation of cortical development. Mutations in the filamin A gene are frequent in familial cases with X‐linked PNH. However, many cases with sporadic PNH remain genetically unexplained. Although medically refractory epilepsy often brings attention to the underlying PNH, patients are often not candidates for surgical resection. This limits access to neuronal tissue harboring causal mutations. We evaluated a patient with PNH and medically refractory focal epilepsy who underwent a presurgical evaluation with stereotactically placed electroencephalographic (SEEG) depth electrodes. Following SEEG explantation, we collected trace tissue adherent to the electrodes and extracted the DNA. Whole‐exome sequencing performed in a Clinical Laboratory Improvement Amendments–approved genetic diagnostic laboratory uncovered a de novo heterozygous pathogenic variant in novel candidate PNH gene MEN1 (multiple endocrine neoplasia type 1; c.1546dupC, p.R516PfsX15). The variant was absent in an earlier exome profiling of the venous blood–derived DNA. The MEN1 gene encodes the ubiquitously expressed, nuclear scaffold protein menin, a known tumor suppressor gene with an established role in the regulation of transcription, proliferation, differentiation, and genomic integrity. Our study contributes a novel candidate gene in PNH generation and a novel practical approach that integrates electrophysiological and genetic explorations of epilepsy.
Collapse
Affiliation(s)
- Laura Montier
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| | - Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| | - Jay Gavvala
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| | - Daniel Yoshor
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Robert North
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Terence Verla
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Paul C Van Ness
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| | - Janice Drabek
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| | - Alica M Goldman
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
21
|
Perenthaler E, Yousefi S, Niggl E, Barakat TS. Beyond the Exome: The Non-coding Genome and Enhancers in Neurodevelopmental Disorders and Malformations of Cortical Development. Front Cell Neurosci 2019; 13:352. [PMID: 31417368 PMCID: PMC6685065 DOI: 10.3389/fncel.2019.00352] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
The development of the human cerebral cortex is a complex and dynamic process, in which neural stem cell proliferation, neuronal migration, and post-migratory neuronal organization need to occur in a well-organized fashion. Alterations at any of these crucial stages can result in malformations of cortical development (MCDs), a group of genetically heterogeneous neurodevelopmental disorders that present with developmental delay, intellectual disability and epilepsy. Recent progress in genetic technologies, such as next generation sequencing, most often focusing on all protein-coding exons (e.g., whole exome sequencing), allowed the discovery of more than a 100 genes associated with various types of MCDs. Although this has considerably increased the diagnostic yield, most MCD cases remain unexplained. As Whole Exome Sequencing investigates only a minor part of the human genome (1-2%), it is likely that patients, in which no disease-causing mutation has been identified, could harbor mutations in genomic regions beyond the exome. Even though functional annotation of non-coding regions is still lagging behind that of protein-coding genes, tremendous progress has been made in the field of gene regulation. One group of non-coding regulatory regions are enhancers, which can be distantly located upstream or downstream of genes and which can mediate temporal and tissue-specific transcriptional control via long-distance interactions with promoter regions. Although some examples exist in literature that link alterations of enhancers to genetic disorders, a widespread appreciation of the putative roles of these sequences in MCDs is still lacking. Here, we summarize the current state of knowledge on cis-regulatory regions and discuss novel technologies such as massively-parallel reporter assay systems, CRISPR-Cas9-based screens and computational approaches that help to further elucidate the emerging role of the non-coding genome in disease. Moreover, we discuss existing literature on mutations or copy number alterations of regulatory regions involved in brain development. We foresee that the future implementation of the knowledge obtained through ongoing gene regulation studies will benefit patients and will provide an explanation to part of the missing heritability of MCDs and other genetic disorders.
Collapse
Affiliation(s)
| | | | | | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC – University Medical Center, Rotterdam, Netherlands
| |
Collapse
|