1
|
Horti-Oravecz K, Bozsik A, Pócza T, Vereczkey I, Strausz T, Tóth E, Sedlackova T, Rusnakova D, Szemes T, Likó I, Oláh E, Butz H, Patócs A, Papp J, Grolmusz VK. Whole genome sequencing completes the molecular genetic testing workflow of patients with Lynch syndrome. NPJ Genom Med 2025; 10:5. [PMID: 39827169 PMCID: PMC11742971 DOI: 10.1038/s41525-025-00461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Multigene panel tests (MGPTs) revolutionized the diagnosis of Lynch syndrome (LS), however noncoding pathogenic variants (PVs) can only be detected by complementary methods including whole genome sequencing (WGS). Here we present a DNA-, RNA- and tumor tissue-based WGS prioritization workflow for patients with a suspicion of LS where MGPT detected no LS-related PV. Among the 100 enrolled patients, MGPT detected 28 simple PVs and an additional 3 complex PVs. Among the 69 MGPT-negative patients, the lack of somatic MLH1 promoter methylation in a patient with a distinguished MLH1 allelic imbalance selected this sample for WGS. This returned a germline deep intronic MLH1 variant, with further functional studies confirming its' pathogenicity. Interestingly, all three complex PVs and the MLH1 deep intronic PV were found to be recurrent at our center. Our straightforward and cost-effective prioritization workflow can optimally include WGS in the genetic diagnosis of LS.
Collapse
Affiliation(s)
- Klaudia Horti-Oravecz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
- National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Anikó Bozsik
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
- National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
- Hereditary Tumors Research Group, HUN-REN - Semmelweis University, Budapest, Hungary
| | - Tímea Pócza
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Ildikó Vereczkey
- Department of Surgical and Molecular Pathology, National Institute of Oncology, Budapest, Hungary
| | - Tamás Strausz
- Department of Surgical and Molecular Pathology, National Institute of Oncology, Budapest, Hungary
| | - Erika Tóth
- National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
- Department of Surgical and Molecular Pathology, National Institute of Oncology, Budapest, Hungary
| | - Tatiana Sedlackova
- Comenius University Science Park, Bratislava, Slovakia
- Geneton Ltd., Bratislava, Slovakia
| | - Diana Rusnakova
- Comenius University Science Park, Bratislava, Slovakia
- Geneton Ltd., Bratislava, Slovakia
| | - Tomas Szemes
- Comenius University Science Park, Bratislava, Slovakia
- Geneton Ltd., Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - István Likó
- Hereditary Tumors Research Group, HUN-REN - Semmelweis University, Budapest, Hungary
| | - Edit Oláh
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Henriett Butz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
- National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
- Hereditary Tumors Research Group, HUN-REN - Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
- Department of Oncology Biobank, National Institute of Oncology, Budapest, Hungary
| | - Attila Patócs
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
- National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
- Hereditary Tumors Research Group, HUN-REN - Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - János Papp
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
- National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
- Hereditary Tumors Research Group, HUN-REN - Semmelweis University, Budapest, Hungary
| | - Vince Kornél Grolmusz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.
- National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary.
- Hereditary Tumors Research Group, HUN-REN - Semmelweis University, Budapest, Hungary.
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Bozsik A, Butz H, Grolmusz VK, Pócza T, Patócs A, Papp J. Spectrum and genotyping strategies of "dark" genetic matter in germline susceptibility genes of tumor syndromes. Crit Rev Oncol Hematol 2025; 205:104549. [PMID: 39528122 DOI: 10.1016/j.critrevonc.2024.104549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE Despite the widespread use of high-throughput genotyping strategies, certain mutation types remain understudied. We provide an overview of these often overlooked mutation types, with representative examples from common hereditary cancer syndromes. METHODS We conducted a comprehensive review of the literature and locus-specific variant databases to summarize the germline pathogenic variants discovered through non-routine genotyping methods. We evaluated appropriate detection and analysis methods tailored for these specific genetic aberrations. Additionally, we performed in silico splice predictions on deep intronic variants registered in the ClinVar database. RESULTS Our study suggests that, aside from founder mutations, most cases are sporadic. However, we anticipate a relatively high likelihood of splice effects for deep intronic variants. The findings underscore the significant clinical utility of genome sequencing techniques and the importance of applying relevant analysis methods.
Collapse
Affiliation(s)
- Anikó Bozsik
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary; Hereditary Tumours Research Group, Eötvös Loránd Research Network, Nagyvárad tér 4, Budapest H-1089, Hungary.
| | - Henriett Butz
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary; Hereditary Tumours Research Group, Eötvös Loránd Research Network, Nagyvárad tér 4, Budapest H-1089, Hungary; Department of Laboratory Medicine, Semmelweis University, Ráth György út 7-9, Budapest H-1122, Hungary; Department of Oncology Biobank, National Institute of Oncology, Budapest 1122, Hungary
| | - Vince Kornél Grolmusz
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary; Hereditary Tumours Research Group, Eötvös Loránd Research Network, Nagyvárad tér 4, Budapest H-1089, Hungary
| | - Tímea Pócza
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary
| | - Attila Patócs
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary; Hereditary Tumours Research Group, Eötvös Loránd Research Network, Nagyvárad tér 4, Budapest H-1089, Hungary; Department of Laboratory Medicine, Semmelweis University, Ráth György út 7-9, Budapest H-1122, Hungary
| | - János Papp
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary; Hereditary Tumours Research Group, Eötvös Loránd Research Network, Nagyvárad tér 4, Budapest H-1089, Hungary
| |
Collapse
|
3
|
Schwenk V, Leal Silva RM, Scharf F, Knaust K, Wendlandt M, Häusser T, Pickl JMA, Steinke-Lange V, Laner A, Morak M, Holinski-Feder E, Wolf DA. Transcript capture and ultradeep long-read RNA sequencing (CAPLRseq) to diagnose HNPCC/Lynch syndrome. J Med Genet 2023; 60:747-759. [PMID: 36593122 PMCID: PMC10423559 DOI: 10.1136/jmg-2022-108931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/10/2022] [Indexed: 01/03/2023]
Abstract
PURPOSE Whereas most human genes encode multiple mRNA isoforms with distinct function, clinical workflows for assessing this heterogeneity are not readily available. This is a substantial shortcoming, considering that up to 25% of disease-causing gene variants are suspected of disrupting mRNA splicing or mRNA abundance. Long-read sequencing can readily portray mRNA isoform diversity, but its sensitivity is relatively low due to insufficient transcriptome penetration. METHODS We developed and applied capture-based target enrichment from patient RNA samples combined with Oxford Nanopore long-read sequencing for the analysis of 123 hereditary cancer transcripts (capture and ultradeep long-read RNA sequencing (CAPLRseq)). RESULTS Validating CAPLRseq, we confirmed 17 cases of hereditary non-polyposis colorectal cancer/Lynch syndrome based on the demonstration of splicing defects and loss of allele expression of mismatch repair genes MLH1, PMS2, MSH2 and MSH6. Using CAPLRseq, we reclassified two variants of uncertain significance in MSH6 and PMS2 as either likely pathogenic or benign. CONCLUSION Our data show that CAPLRseq is an automatable and adaptable workflow for effective transcriptome-based identification of disease variants in a clinical diagnostic setting.
Collapse
Affiliation(s)
| | | | | | | | | | - Tanja Häusser
- Medizinisch Genetisches Zentrum (MGZ), Munich, Germany
| | - Julia M A Pickl
- Medizinisch Genetisches Zentrum (MGZ), Munich, Germany
- Klinikum der Universität München, Munich, Germany
| | | | - Andreas Laner
- Medizinisch Genetisches Zentrum (MGZ), Munich, Germany
| | - Monika Morak
- Medizinisch Genetisches Zentrum (MGZ), Munich, Germany
- Klinikum der Universität München, Munich, Germany
| | - Elke Holinski-Feder
- Medizinisch Genetisches Zentrum (MGZ), Munich, Germany
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Munich, Germany
| | - Dieter A Wolf
- Medizinisch Genetisches Zentrum (MGZ), Munich, Germany
- Department of Medicine II, Technical University Munich, Munich, Germany
| |
Collapse
|
4
|
Walker R, Mahmood K, Joo JE, Clendenning M, Georgeson P, Como J, Joseland S, Preston SG, Antill Y, Austin R, Boussioutas A, Bowman M, Burke J, Campbell A, Daneshvar S, Edwards E, Gleeson M, Goodwin A, Harris MT, Henderson A, Higgins M, Hopper JL, Hutchinson RA, Ip E, Isbister J, Kasem K, Marfan H, Milnes D, Ng A, Nichols C, O'Connell S, Pachter N, Pope BJ, Poplawski N, Ragunathan A, Smyth C, Spigelman A, Storey K, Susman R, Taylor JA, Warwick L, Wilding M, Williams R, Win AK, Walsh MD, Macrae FA, Jenkins MA, Rosty C, Winship IM, Buchanan DD. A tumor focused approach to resolving the etiology of DNA mismatch repair deficient tumors classified as suspected Lynch syndrome. J Transl Med 2023; 21:282. [PMID: 37101184 PMCID: PMC10134620 DOI: 10.1186/s12967-023-04143-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
Routine screening of tumors for DNA mismatch repair (MMR) deficiency (dMMR) in colorectal (CRC), endometrial (EC) and sebaceous skin (SST) tumors leads to a significant proportion of unresolved cases classified as suspected Lynch syndrome (SLS). SLS cases (n = 135) were recruited from Family Cancer Clinics across Australia and New Zealand. Targeted panel sequencing was performed on tumor (n = 137; 80×CRCs, 33×ECs and 24xSSTs) and matched blood-derived DNA to assess for microsatellite instability status, tumor mutation burden, COSMIC tumor mutational signatures and to identify germline and somatic MMR gene variants. MMR immunohistochemistry (IHC) and MLH1 promoter methylation were repeated. In total, 86.9% of the 137 SLS tumors could be resolved into established subtypes. For 22.6% of these resolved SLS cases, primary MLH1 epimutations (2.2%) as well as previously undetected germline MMR pathogenic variants (1.5%), tumor MLH1 methylation (13.1%) or false positive dMMR IHC (5.8%) results were identified. Double somatic MMR gene mutations were the major cause of dMMR identified across each tumor type (73.9% of resolved cases, 64.2% overall, 70% of CRC, 45.5% of ECs and 70.8% of SSTs). The unresolved SLS tumors (13.1%) comprised tumors with only a single somatic (7.3%) or no somatic (5.8%) MMR gene mutations. A tumor-focused testing approach reclassified 86.9% of SLS into Lynch syndrome, sporadic dMMR or MMR-proficient cases. These findings support the incorporation of tumor sequencing and alternate MLH1 methylation assays into clinical diagnostics to reduce the number of SLS patients and provide more appropriate surveillance and screening recommendations.
Collapse
Affiliation(s)
- Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, 3051, Australia
| | - Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
| | - Susan G Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
| | - Yoland Antill
- Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia
- Familial Cancer Centre, Cabrini Health, Malvern, VIC, 3144, Australia
- Familial Cancer Centre, Monash Health, Clayton, VIC, 3168, Australia
- Faculty of Medicine, Dentistry and Health Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Rachel Austin
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia
| | - Alex Boussioutas
- Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
- Department of Gastroenterology, The Alfred Hospital, Melbourne, VIC, 3004, Australia
- Department of Medicine, The Royal Melbourne Hospital, Melbourne, VIC, 3010, Australia
- Familial Cancer Centre, Peter MacCallum Cancer Centre, Parkville, VIC, 3000, Australia
| | - Michelle Bowman
- Familial Cancer Service, Westmead Hospital, Sydney, NSW, 2145, Australia
| | - Jo Burke
- Tasmanian Clinical Genetics Service, Royal Hobart Hospital, Hobart, TAS, 7000, Australia
- School of Medicine, University of Tasmania, Sandy Bay, TAS, 7005, Australia
| | - Ainsley Campbell
- Clinical Genetics Unit, Austin Health, Melbourne, VIC, 3084, Australia
| | - Simin Daneshvar
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
| | - Emma Edwards
- Familial Cancer Service, Westmead Hospital, Sydney, NSW, 2145, Australia
| | | | - Annabel Goodwin
- Cancer Genetics Department, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
- University of Sydney, Sydney, NSW, 2050, Australia
| | - Marion T Harris
- Monash Health Familial Cancer Centre, Clayton, VIC, 3168, Australia
| | - Alex Henderson
- Genetic Health Service, Wellington, Greater Wellington, 6242, New Zealand
- Wellington Hospital, Newtown, Greater Wellington, 6021, New Zealand
| | - Megan Higgins
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia
- University of Queensland, St Lucia, QLD, 4067, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ryan A Hutchinson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
| | - Emilia Ip
- Cancer Genetics Service, Liverpool Hospital, Liverpool, NSW, 2170, Australia
| | - Joanne Isbister
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
- Department of Medicine, The University of Melbourne, Melbourne, VIC, 3000, Australia
- Parkville Familial Cancer Centre, Peter McCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Kais Kasem
- Department of Clinical Pathology, Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Helen Marfan
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia
| | - Di Milnes
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia
- Royal Brisbane and Women's Hospital, Herston, QLD, 4029, Australia
| | - Annabelle Ng
- Cancer Genetics Department, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Cassandra Nichols
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, 6008, Australia
| | - Shona O'Connell
- Monash Health Familial Cancer Centre, Clayton, VIC, 3168, Australia
| | - Nicholas Pachter
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, 6008, Australia
- Medical School, University of Western Australia, Perth, WA, 6009, Australia
- School of Medicine, Curtin University, Perth, WA, 6845, Australia
| | - Bernard J Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, 3051, Australia
| | - Nicola Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Abiramy Ragunathan
- Familial Cancer Service, Westmead Hospital, Sydney, NSW, 2145, Australia
| | - Courtney Smyth
- Familial Cancer Centre, Monash Health, Clayton, VIC, 3168, Australia
| | - Allan Spigelman
- Hunter Family Cancer Service, Newcastle, NSW, 2298, Australia
- St Vincent's Cancer Genetics Unit, Sydney, NSW, 2290, Australia
- Surgical Professorial Unit, UNSW Clinical School of Clinical Medicine, Sydney, NSW, 2052, Australia
| | - Kirsty Storey
- Parkville Familial Cancer Centre, Peter McCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Rachel Susman
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia
| | - Jessica A Taylor
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
| | - Linda Warwick
- ACT Genetic Service, The Canberra Hospital, Woden, ACT, 2606, Australia
| | - Mathilda Wilding
- Familial Cancer Service, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Rachel Williams
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, 2052, Australia
- Prince of Wales Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | - Aung K Win
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
| | - Michael D Walsh
- Sullivan Nicolaides Pathology, Bowen Hills, QLD, 4006, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4072, Australia
| | - Finlay A Macrae
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
- Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Mark A Jenkins
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
- Envoi Specialist Pathologists, Brisbane, QLD, 4059, Australia
- University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ingrid M Winship
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
- Department of Medicine, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia.
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia.
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia.
| |
Collapse
|
5
|
Walker R, Mahmood K, Joo JE, Clendenning M, Georgeson P, Como J, Joseland S, Preston SG, Antill Y, Austin R, Boussioutas A, Bowman M, Burke J, Campbell A, Daneshvar S, Edwards E, Gleeson M, Goodwin A, Harris MT, Henderson A, Higgins M, Hopper JL, Hutchinson RA, Ip E, Isbister J, Kasem K, Marfan H, Milnes D, Ng A, Nichols C, O’Connell S, Pachter N, Pope BJ, Poplawski N, Ragunathan A, Smyth C, Spigelman A, Storey K, Susman R, Taylor JA, Warwick L, Wilding M, Williams R, Win AK, Walsh MD, Macrae FA, Jenkins MA, Rosty C, Winship IM, Buchanan DD. A tumor focused approach to resolving the etiology of DNA mismatch repair deficient tumors classified as suspected Lynch syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.27.23285541. [PMID: 36909643 PMCID: PMC10002795 DOI: 10.1101/2023.02.27.23285541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Routine screening of tumors for DNA mismatch repair (MMR) deficiency (dMMR) in colorectal (CRC), endometrial (EC) and sebaceous skin (SST) tumors leads to a significant proportion of unresolved cases classified as suspected Lynch syndrome (SLS). SLS cases (n=135) were recruited from Family Cancer Clinics across Australia and New Zealand. Targeted panel sequencing was performed on tumor (n=137; 80xCRCs, 33xECs and 24xSSTs) and matched blood-derived DNA to assess for microsatellite instability status, tumor mutation burden, COSMIC tumor mutational signatures and to identify germline and somatic MMR gene variants. MMR immunohistochemistry (IHC) and MLH1 promoter methylation were repeated. In total, 86.9% of the 137 SLS tumors could be resolved into established subtypes. For 22.6% of these resolved SLS cases, primary MLH1 epimutations (2.2%) as well as previously undetected germline MMR pathogenic variants (1.5%), tumor MLH1 methylation (13.1%) or false positive dMMR IHC (5.8%) results were identified. Double somatic MMR gene mutations were the major cause of dMMR identified across each tumor type (73.9% of resolved cases, 64.2% overall, 70% of CRC, 45.5% of ECs and 70.8% of SSTs). The unresolved SLS tumors (13.1%) comprised tumors with only a single somatic (7.3%) or no somatic (5.8%) MMR gene mutations. A tumor-focused testing approach reclassified 86.9% of SLS into Lynch syndrome, sporadic dMMR or MMR-proficient cases. These findings support the incorporation of tumor sequencing and alternate MLH1 methylation assays into clinical diagnostics to reduce the number of SLS patients and provide more appropriate surveillance and screening recommendations.
Collapse
Affiliation(s)
- Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC 3051, Australia
| | - Jihoon E. Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
| | - Susan G. Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
| | - Yoland Antill
- Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
- Familial Cancer Centre, Cabrini Health, Malvern, VIC 3144, Australia
- Familial Cancer Centre, Monash Health, Clayton, VIC 3168, Australia
- Faculty of Medicine, Dentistry and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Rachel Austin
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Alex Boussioutas
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Gastroenterology, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Medicine, The Royal Melbourne Hospital, Melbourne, VIC 3010, Australia
- Familial Cancer Centre, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Michelle Bowman
- Familial Cancer Service, Westmead Hospital, Sydney, NSW 2145, Australia
| | - Jo Burke
- Tasmanian Clinical Genetics Service, Royal Hobart Hospital, Hobart, TAS 7000, Australia
- School of Medicine, University of Tasmania, Sandy Bay, TAS 7005 Australia
| | - Ainsley Campbell
- Clinical Genetics Unit, Austin Health, Melbourne, VIC 3084, Australia
| | - Simin Daneshvar
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
| | - Emma Edwards
- Familial Cancer Service, Westmead Hospital, Sydney, NSW 2145, Australia
| | | | - Annabel Goodwin
- Cancer Genetics Department, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- University of Sydney, Sydney, NSW 2050, Australia
| | - Marion T. Harris
- Monash Health Familial Cancer Centre, Clayton, VIC 3168, Australia
| | - Alex Henderson
- Genetic Health Service, Wellington, Greater Wellington, 6242, New Zealand
- Wellington Hospital, Newtown, Greater Wellington 6021, New Zealand
| | - Megan Higgins
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
- University of Queensland, St Lucia, QLD 4067, Australia
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
| | - Ryan A. Hutchinson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
| | - Emilia Ip
- Cancer Genetics service, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Joanne Isbister
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC 3000, Australia
- Department of Medicine, The University of Melbourne, VIC 3000, Australia
- Parkville Familial Cancer Centre, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Kais Kasem
- Department of Clinical Pathology, Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Helen Marfan
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Di Milnes
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
- Royal Brisbane and Women’s Hospital, Herston, QLD 4029, Australia
| | - Annabelle Ng
- Cancer Genetics Department, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Cassandra Nichols
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA 6008, Australia
| | - Shona O’Connell
- Monash Health Familial Cancer Centre, Clayton, VIC 3168, Australia
| | - Nicholas Pachter
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA 6008, Australia
- Medical School, University of Western Australia, Perth, WA 6009, Australia
- School of Medicine, Curtin University, Perth, WA 6845, Australia
| | - Bernard J. Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC 3051, Australia
| | - Nicola Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | | | - Courtney Smyth
- Familial Cancer Centre, Monash Health, Clayton, VIC 3168, Australia
| | - Allan Spigelman
- Hunter Family Cancer Service, Newcastle, NSW 2298, Australia
- St Vincent’s Cancer Genetics Unit, Sydney, NSW 2290, Australia
- Surgical Professorial Unit, UNSW Clinical School of Clinical Medicine, Sydney, NSW 2052, Australia
| | - Kirsty Storey
- Parkville Familial Cancer Centre, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Rachel Susman
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Jessica A. Taylor
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC 3000, Australia
| | - Linda Warwick
- ACT Genetic Service, The Canberra Hospital, Woden, ACT 2606, Australia
| | - Mathilda Wilding
- Familial Cancer Service, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Rachel Williams
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW 2052, Australia
- Prince of Wales Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Aung K. Win
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC 3000, Australia
| | - Michael D. Walsh
- Sullivan Nicolaides Pathology, Bowen Hills, QLD 4006, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4072, Australia
| | - Finlay A. Macrae
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC 3000, Australia
- Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Mark A. Jenkins
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
- Envoi Specialist Pathologists, Brisbane, QLD 4059, Australia
- University of Queensland, Brisbane, QLD 4072, Australia
| | - Ingrid M. Winship
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC 3000, Australia
- Department of Medicine, The University of Melbourne, VIC 3000, Australia
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC 3000, Australia
| | | |
Collapse
|
6
|
Eikenboom EL, Moen S, van Leeuwen L, Geurts-Giele WR, Tops CM, van Ham TJ, Dinjens WN, Dubbink HJ, Spaander MC, Wagner A. Unexplained mismatch repair deficiency: Case closed. HGG ADVANCES 2022; 4:100167. [PMID: 36624813 PMCID: PMC9823207 DOI: 10.1016/j.xhgg.2022.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
To identify Lynch syndrome (LS) carriers, DNA mismatch repair (MMR) immunohistochemistry (IHC) is performed on colorectal cancers (CRCs). Upon subsequent LS diagnostics, MMR deficiency (MMRd) sometimes remains unexplained (UMMRd). Recently, the importance of complete LS diagnostics to explain UMMRd, involving MMR methylation, germline, and somatic analyses, was stressed. To explore why some MMRd CRCs remain unsolved, we performed a systematic review of the literature and mapped patients with UMMRd diagnosed in our center. A systematic literature search was performed in Ovid Medline, Embase, Web of Science, Cochrane CENTRAL, and Google Scholar for articles on UMMRd CRCs after complete LS diagnostics published until December 15, 2021. Additionally, UMMRd CRCs diagnosed in our center since 1993 were mapped. Of 754 identified articles, 17 were included, covering 74 patients with UMMRd. Five CRCs were microsatellite stable. Upon complete diagnostics, 39 patients had single somatic MMR hits, and six an MMR germline variant of unknown significance (VUS). Ten had somatic pathogenic variants (PVs) in POLD1, MLH3, MSH3, and APC. The remaining 14 patients were the only identifiable cases in the literature without a plausible identified cause of the UMMRd. Of those, nine were suspected to have LS. In our center, complete LS diagnostics in approximately 5,000 CRCs left seven MMRd CRCs unexplained. All had a somatic MMR hit or MMR germline VUS, indicative of a missed second MMR hit. In vitually all patients with UMMRd, complete LS diagnostics suggest MMR gene involvement. Optimizing detection of currently undetectable PVs and VUS interpretation might explain all UMMRd CRCs, considering UMMRd a case closed.
Collapse
Affiliation(s)
- Ellis L. Eikenboom
- Department of Clinical Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, the Netherlands,Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, the Netherlands
| | - Sarah Moen
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, the Netherlands
| | - Lotte van Leeuwen
- Department of Clinical Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, the Netherlands
| | - Willemina R.R. Geurts-Giele
- Department of Clinical Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, the Netherlands
| | - Carli M.J. Tops
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, the Netherlands
| | - Winand N.M. Dinjens
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, the Netherlands
| | - Hendrikus J. Dubbink
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, the Netherlands
| | - Manon C.W. Spaander
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, the Netherlands
| | - Anja Wagner
- Department of Clinical Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, the Netherlands,Corresponding author
| |
Collapse
|
7
|
Te Paske IBAW, Mensenkamp AR, Neveling K, Hoogerbrugge N, Ligtenberg MJL, De Voer RM. Noncoding Aberrations in Mismatch Repair Genes Underlie a Substantial Part of the Missing Heritability in Lynch Syndrome. Gastroenterology 2022; 163:1691-1694.e7. [PMID: 36037994 DOI: 10.1053/j.gastro.2022.08.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Iris B A W Te Paske
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | | | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Department of Pathology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Richarda M De Voer
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Leite Rocha D, Ashton-Prolla P, Rosset C. Reviewing the occurrence of large genomic rearrangements in patients with inherited cancer predisposing syndromes: importance of a comprehensive molecular diagnosis. Expert Rev Mol Diagn 2022; 22:319-346. [PMID: 35234551 DOI: 10.1080/14737159.2022.2049247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hereditary cancer predisposition syndromes are caused by germline pathogenic or likely pathogenic variants in cancer predisposition genes (CPG). The majority of pathogenic variants in CPGs are point mutations, but large gene rearrangements (LGRs) are present in several CPGs. LGRs can be much more difficult to characterize and perhaps they may have been neglected in molecular diagnoses. AREAS COVERED We aimed to evaluate the frequencies of germline LGRs in studies conducted in different populations worldwide through a qualitative systematic review based on an online literature research in PubMed. Two reviewers independently extracted data from published studies between 2009 and 2020. In total, 126 studies from 37 countries and 5 continents were included in the analysis. The number of studies in different continents ranged from 3 to 48 and for several countries there was an absolute lack of information. Asia and Europe represented most of the studies, and LGR frequencies varied from 3.04 to 15.06% in different continents. MLPA was one of the methods of choice in most studies (93%). EXPERT OPINION The LGR frequencies found in this review reinforce the need for comprehensive molecular testing regardless of the population of origin and should be considered by genetic counseling providers.
Collapse
Affiliation(s)
- Débora Leite Rocha
- Laboratório de Medicina Genômica, Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patrícia Ashton-Prolla
- Laboratório de Medicina Genômica, Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil. Av. Bento Gonçalves, 9500 - Prédio 43312 M, CEP: 91501-970, Caixa Postal 1505, Porto Alegre, Rio Grande do Sul, Brazil.,Serviço de Genética Médica, HCPA, Rio Grande do Sul, Brazil. Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil
| | - Clévia Rosset
- Laboratório de Medicina Genômica, Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Morak M, Steinke-Lange V, Massdorf T, Benet-Pages A, Locher M, Laner A, Kayser K, Aretz S, Holinski-Feder E. Prevalence of CNV-neutral structural genomic rearrangements in MLH1, MSH2, and PMS2 not detectable in routine NGS diagnostics. Fam Cancer 2021; 19:161-167. [PMID: 32002723 DOI: 10.1007/s10689-020-00159-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Routine diagnostics for colorectal cancer patients suspected of having Lynch-Syndrome (LS) currently uses Next-Generation-Sequencing (NGS) of targeted regions within the DNA mismatch repair (MMR) genes. This analysis can reliably detect nucleotide alterations and copy-number variations (CNVs); however, CNV-neutral rearrangements comprising gene inversions or large intronic insertions remain undetected because their breakpoints are usually not covered. As several founder mutations exist for LS, we established PCR-based screening methods for five known rearrangements in MLH1, MSH2, or PMS2, and investigated their prevalence in 98 German patients with suspicion of LS without a causative germline variant or CNV detectable in the four MMR genes. We found no recurrence of CNV-neutral structural rearrangements previously described: Neither for two inversions in MLH1 (exon 1 and exon 16-19) within 33 MLH1-deficient patients, nor for two inversions in MSH2 (exon 1-7 and exon 2-6) within 48 MSH2-deficient patients. The PMS2 insertion in intron 7 was detected in one of 17 PMS2-deficient patients. None of the four genomic inversions constitutes a founder event within the German population, but we advise to test the rare cases with unsolved PMS2-deficiency upon the known insertion. As a next diagnostic step, tumour tissue of the unsolved patients should be sequenced for somatic variants, and germline analysis of additional genes with an overlapping clinical phenotype should be considered. Alternatively, full-length cDNA analyses may detect concealed MMR-defects in cases with family history.
Collapse
Affiliation(s)
- Monika Morak
- Medizinische Klinik Und Poliklinik IV, Campus Innenstadt, Klinikum Der Universität München, Ziemssenstr. 1, 80336, Munich, Germany. .,MGZ - Medizinisch Genetisches Zentrum, Bayerstr. 3-5, 80335, Munich, Germany.
| | - Verena Steinke-Lange
- Medizinische Klinik Und Poliklinik IV, Campus Innenstadt, Klinikum Der Universität München, Ziemssenstr. 1, 80336, Munich, Germany.,MGZ - Medizinisch Genetisches Zentrum, Bayerstr. 3-5, 80335, Munich, Germany
| | - Trisari Massdorf
- Medizinische Klinik Und Poliklinik IV, Campus Innenstadt, Klinikum Der Universität München, Ziemssenstr. 1, 80336, Munich, Germany.,MGZ - Medizinisch Genetisches Zentrum, Bayerstr. 3-5, 80335, Munich, Germany
| | - Anna Benet-Pages
- Medizinische Klinik Und Poliklinik IV, Campus Innenstadt, Klinikum Der Universität München, Ziemssenstr. 1, 80336, Munich, Germany
| | - Melanie Locher
- Medizinische Klinik Und Poliklinik IV, Campus Innenstadt, Klinikum Der Universität München, Ziemssenstr. 1, 80336, Munich, Germany
| | - Andreas Laner
- Medizinische Klinik Und Poliklinik IV, Campus Innenstadt, Klinikum Der Universität München, Ziemssenstr. 1, 80336, Munich, Germany
| | - Katrin Kayser
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Stefan Aretz
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Center for Hereditary Tumour Syndromes, University Hospital Bonn, Bonn, Germany
| | - Elke Holinski-Feder
- Medizinische Klinik Und Poliklinik IV, Campus Innenstadt, Klinikum Der Universität München, Ziemssenstr. 1, 80336, Munich, Germany. .,MGZ - Medizinisch Genetisches Zentrum, Bayerstr. 3-5, 80335, Munich, Germany.
| |
Collapse
|
10
|
Diagnosis of Lynch Syndrome and Strategies to Distinguish Lynch-Related Tumors from Sporadic MSI/dMMR Tumors. Cancers (Basel) 2021; 13:cancers13030467. [PMID: 33530449 PMCID: PMC7865821 DOI: 10.3390/cancers13030467] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Microsatellite instability (MSI) is a hallmark of Lynch syndrome (LS)-related tumors but is not specific, as most of MSI/mismatch repair-deficient (dMMR) tumors are sporadic. Therefore, the identification of MSI/dMMR requires additional diagnostic tools to identify LS. In this review, we address the hallmarks of LS and present recent advances in diagnostic and screening strategies to identify LS patients. We also discuss the pitfalls associated with current strategies, which should be taken into account in order to improve the diagnosis of LS. Abstract Microsatellite instability (MSI) is a hallmark of Lynch syndrome (LS)-related tumors but is not specific to it, as approximately 80% of MSI/mismatch repair-deficient (dMMR) tumors are sporadic. Methods leading to the diagnosis of LS have considerably evolved in recent years and so have tumoral tests for LS screening and for the discrimination of LS-related to MSI-sporadic tumors. In this review, we address the hallmarks of LS, including the clinical, histopathological, and molecular features. We present recent advances in diagnostic and screening strategies to identify LS patients. We also discuss the pitfalls associated with the current strategies, which should be taken into account to improve the diagnosis of LS and avoid inappropriate clinical management.
Collapse
|