2
|
Méndez-Vidal C, Bravo-Gil N, Pérez-Florido J, Marcos-Luque I, Fernández RM, Fernández-Rueda JL, González-Del Pozo M, Martín-Sánchez M, Fernández-Suárez E, Mena M, Carmona R, Dopazo J, Borrego S, Antiñolo G. A genomic strategy for precision medicine in rare diseases: integrating customized algorithms into clinical practice. J Transl Med 2025; 23:86. [PMID: 39833864 PMCID: PMC11748347 DOI: 10.1186/s12967-025-06069-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Despite the use of Next-Generation Sequencing (NGS) as the gold standard for the diagnosis of rare diseases, its clinical implementation has been challenging, limiting the cost-effectiveness of NGS and the understanding, control and safety essential for decision-making in clinical applications. Here, we describe a personalized NGS-based strategy integrating precision medicine into a public healthcare system and its implementation in the routine diagnosis process during a five-year pilot program. METHODS Our approach involved customized probe designs, the generation of virtual panels and the development of a personalized medicine module (PMM) for variant prioritization. This strategy was applied to 6500 individuals including 6267 index patients and 233 NGS-based carrier screenings. RESULTS Causative variants were identified in 2061 index patients (average 32.9%, ranging from 12 to 62% by condition). Also, 131 autosomal-recessive cases could be partially genetically diagnosed. These results led to over 5000 additional studies including carrier, prenatal and preimplantational tests or pharmacological and gene therapy treatments. CONCLUSION This strategy has shown promising improvements in the diagnostic rate, facilitating timely diagnosis and gradually expanding our services portfolio for rare diseases. The steps taken towards the integration of clinical and genomic data are opening new possibilities for conducting both retrospective and prospective healthcare studies. Overall, this study represents a major milestone in the ongoing efforts to improve our understanding and clinical management of rare diseases, a crucial area of medical research and care.
Collapse
Affiliation(s)
- Cristina Méndez-Vidal
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Nereida Bravo-Gil
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Javier Pérez-Florido
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
- Platform of Computational Medicine. Fundación Progreso y Salud (FPS). CDCA, University Hospital Virgen del Rocio, Seville, Spain
| | - Irene Marcos-Luque
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
| | - Raquel M Fernández
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
| | - José Luis Fernández-Rueda
- Platform of Computational Medicine. Fundación Progreso y Salud (FPS). CDCA, University Hospital Virgen del Rocio, Seville, Spain
| | - María González-Del Pozo
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Marta Martín-Sánchez
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Elena Fernández-Suárez
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Marcela Mena
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Rosario Carmona
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
- Platform of Computational Medicine. Fundación Progreso y Salud (FPS). CDCA, University Hospital Virgen del Rocio, Seville, Spain
| | - Joaquín Dopazo
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
- Platform of Computational Medicine. Fundación Progreso y Salud (FPS). CDCA, University Hospital Virgen del Rocio, Seville, Spain
| | - Salud Borrego
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain.
| | - Guillermo Antiñolo
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain.
| |
Collapse
|
4
|
Pagnamenta AT, Yu J, Walker S, Noble AJ, Lord J, Dutta P, Hashim M, Camps C, Green H, Devaiah S, Nashef L, Parr J, Fratter C, Ibnouf Hussein R, Lindsay SJ, Lalloo F, Banos-Pinero B, Evans D, Mallin L, Waite A, Evans J, Newman A, Allen Z, Perez-Becerril C, Ryan G, Hart R, Taylor J, Bedenham T, Clement E, Blair E, Hay E, Forzano F, Higgs J, Canham N, Majumdar A, McEntagart M, Lahiri N, Stewart H, Smithson S, Calpena E, Jackson A, Banka S, Titheradge H, McGowan R, Rankin J, Shaw-Smith C, Evans DG, Burghel GJ, Smith MJ, Anderson E, Madhu R, Firth H, Ellard S, Brennan P, Anderson C, Taupin D, Rogers MT, Cook JA, Durkie M, East JE, Fowler D, Wilson L, Igbokwe R, Gardham A, Tomlinson I, Baralle D, Uhlig HH, Taylor JC. The impact of inversions across 33,924 families with rare disease from a national genome sequencing project. Am J Hum Genet 2024; 111:1140-1164. [PMID: 38776926 PMCID: PMC11179413 DOI: 10.1016/j.ajhg.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Detection of structural variants (SVs) is currently biased toward those that alter copy number. The relative contribution of inversions toward genetic disease is unclear. In this study, we analyzed genome sequencing data for 33,924 families with rare disease from the 100,000 Genomes Project. From a database hosting >500 million SVs, we focused on 351 genes where haploinsufficiency is a confirmed disease mechanism and identified 47 ultra-rare rearrangements that included an inversion (24 bp to 36.4 Mb, 20/47 de novo). Validation utilized a number of orthogonal approaches, including retrospective exome analysis. RNA-seq data supported the respective diagnoses for six participants. Phenotypic blending was apparent in four probands. Diagnostic odysseys were a common theme (>50 years for one individual), and targeted analysis for the specific gene had already been performed for 30% of these individuals but with no findings. We provide formal confirmation of a European founder origin for an intragenic MSH2 inversion. For two individuals with complex SVs involving the MECP2 mutational hotspot, ambiguous SV structures were resolved using long-read sequencing, influencing clinical interpretation. A de novo inversion of HOXD11-13 was uncovered in a family with Kantaputra-type mesomelic dysplasia. Lastly, a complex translocation disrupting APC and involving nine rearranged segments confirmed a clinical diagnosis for three family members and resolved a conundrum for a sibling with a single polyp. Overall, inversions play a small but notable role in rare disease, likely explaining the etiology in around 1/750 families across heterogeneous clinical cohorts.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Jing Yu
- Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK; Novo Nordisk Oxford Research Centre, Oxford, UK
| | | | - Alexandra J Noble
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK
| | - Jenny Lord
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| | - Prasun Dutta
- Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Mona Hashim
- Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Carme Camps
- Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hannah Green
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Smrithi Devaiah
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Lina Nashef
- Department of Neurology, King's College Hospital, London, UK
| | - Jason Parr
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Carl Fratter
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rana Ibnouf Hussein
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Sarah J Lindsay
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Fiona Lalloo
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Benito Banos-Pinero
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - David Evans
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Lucy Mallin
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Adrian Waite
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, UK
| | - Julie Evans
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, UK
| | - Andrew Newman
- The All Wales Medical Genomics Service, University Hospital of Wales, Cardiff, UK
| | - Zoe Allen
- North Thames Rare and Inherited Disease Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Cristina Perez-Becerril
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Gavin Ryan
- West Midlands Regional Genetics Laboratory, Central and South Genomic Laboratory Hub, Birmingham, UK
| | - Rachel Hart
- Liverpool Centre for Genomic Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - John Taylor
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Tina Bedenham
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Emma Clement
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ed Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Eleanor Hay
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Francesca Forzano
- Clinical Genetics Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jenny Higgs
- Liverpool Centre for Genomic Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Natalie Canham
- Liverpool Centre for Genomic Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Anirban Majumdar
- Department of Paediatric Neurology, Bristol Children's Hospital, Bristol, UK
| | - Meriel McEntagart
- SW Thames Centre for Genomic Medicine, University of London & St George's University Hospitals NHS Foundation Trust, St George's, London, UK
| | - Nayana Lahiri
- SW Thames Centre for Genomic Medicine, University of London & St George's University Hospitals NHS Foundation Trust, St George's, London, UK
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sarah Smithson
- Department of Clinical Genetics, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Unidad CIBERER (CB06/07/1030), Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Adam Jackson
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hannah Titheradge
- Department of Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Ruth McGowan
- West of Scotland Centre for Genomic Medicine, Glasgow, UK
| | - Julia Rankin
- Department of Clinical Genetics, Royal Devon University Healthcare NHS Trust, Exeter, UK
| | - Charles Shaw-Smith
- Department of Clinical Genetics, Royal Devon University Healthcare NHS Trust, Exeter, UK
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - George J Burghel
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Miriam J Smith
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Emily Anderson
- Liverpool Centre for Genomic Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Rajesh Madhu
- Paediatric Neurosciences Department, Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK
| | - Helen Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Paul Brennan
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle University, Newcastle, UK
| | - Claire Anderson
- Canberra Clinical Genomics, Canberra Health Services and The Australian National University, Canberra, ACT, Australia
| | - Doug Taupin
- Cancer Research, Canberra Hospital, Canberra, ACT, Australia
| | - Mark T Rogers
- The All Wales Medical Genomics Service, University Hospital of Wales, Cardiff, UK
| | - Jackie A Cook
- Department of Clinical Genetics, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Miranda Durkie
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, North East and Yorkshire Genomic Laboratory Hub, Sheffield, UK
| | - James E East
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK
| | - Darren Fowler
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Louise Wilson
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Rebecca Igbokwe
- Department of Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Alice Gardham
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ian Tomlinson
- Department of Oncology, University of Oxford, Oxford, UK
| | - Diana Baralle
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Holm H Uhlig
- Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK
| | - Jenny C Taylor
- Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
AlAbdi L, Maddirevula S, Shamseldin HE, Khouj E, Helaby R, Hamid H, Almulhim A, Hashem MO, Abdulwahab F, Abouyousef O, Alqahtani M, Altuwaijri N, Jaafar A, Alshidi T, Alzahrani F, Alkuraya FS. Diagnostic implications of pitfalls in causal variant identification based on 4577 molecularly characterized families. Nat Commun 2023; 14:5269. [PMID: 37644014 PMCID: PMC10465531 DOI: 10.1038/s41467-023-40909-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Despite large sequencing and data sharing efforts, previously characterized pathogenic variants only account for a fraction of Mendelian disease patients, which highlights the need for accurate identification and interpretation of novel variants. In a large Mendelian cohort of 4577 molecularly characterized families, numerous scenarios in which variant identification and interpretation can be challenging are encountered. We describe categories of challenges that cover the phenotype (e.g. novel allelic disorders), pedigree structure (e.g. imprinting disorders masquerading as autosomal recessive phenotypes), positional mapping (e.g. double recombination events abrogating candidate autozygous intervals), gene (e.g. novel gene-disease assertion) and variant (e.g. complex compound inheritance). Overall, we estimate a probability of 34.3% for encountering at least one of these challenges. Importantly, our data show that by only addressing non-sequencing-based challenges, around 71% increase in the diagnostic yield can be expected. Indeed, by applying these lessons to a cohort of 314 cases with negative clinical exome or genome reports, we could identify the likely causal variant in 54.5%. Our work highlights the need to have a thorough approach to undiagnosed diseases by considering a wide range of challenges rather than a narrow focus on sequencing technologies. It is hoped that by sharing this experience, the yield of undiagnosed disease programs globally can be improved.
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ebtissal Khouj
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rana Helaby
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Halima Hamid
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Aisha Almulhim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Omar Abouyousef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mashael Alqahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Norah Altuwaijri
- Department of Clinical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amal Jaafar
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tarfa Alshidi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fatema Alzahrani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Balciuniene J, Liu R, Bean L, Guo F, Nallamilli BRR, Guruju N, Chen-Deutsch X, Yousaf R, Fura K, Chin E, Mathur A, Ma Z, Carmichael J, da Silva C, Collins C, Hegde M. At-Risk Genomic Findings for Pediatric-Onset Disorders From Genome Sequencing vs Medically Actionable Gene Panel in Proactive Screening of Newborns and Children. JAMA Netw Open 2023; 6:e2326445. [PMID: 37523181 PMCID: PMC10391308 DOI: 10.1001/jamanetworkopen.2023.26445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Importance Although the clinical utility of genome sequencing for critically ill children is well recognized, its utility for proactive pediatric screening is not well explored. Objective To evaluate molecular findings from screening ostensibly healthy children with genome sequencing compared with a gene panel for medically actionable pediatric conditions. Design, Setting, and Participants This case series study was conducted among consecutive, apparently healthy children undergoing proactive genetic screening for pediatric disorders by genome sequencing (n = 562) or an exome-based panel of 268 genes (n = 606) from March 1, 2018, through July 31, 2022. Exposures Genetic screening for pediatric-onset disorders using genome sequencing or an exome-based panel of 268 genes. Main Outcomes and Measures Molecular findings indicative of genetic disease risk. Results Of 562 apparently healthy children (286 girls [50.9%]; median age, 29 days [IQR, 9-117 days]) undergoing screening by genome sequencing, 46 (8.2%; 95% CI, 5.9%-10.5%) were found to be at risk for pediatric-onset disease, including 22 children (3.9%) at risk for high-penetrance disorders. Sequence analysis uncovered molecular diagnoses among 32 individuals (5.7%), while copy number variant analysis uncovered molecular diagnoses among 14 individuals (2.5%), including 4 individuals (0.7%) with chromosome scale abnormalities. Overall, there were 47 molecular diagnoses, with 1 individual receiving 2 diagnoses; of the 47 potential diagnoses, 22 (46.8%) were associated with high-penetrance conditions. Pathogenic variants in medically actionable pediatric genes were found in 6 individuals (1.1%), constituting 12.8% (6 of 47) of all diagnoses. At least 1 pharmacogenomic variant was reported for 89.0% (500 of 562) of the cohort. In contrast, of 606 children (293 girls [48.3%]; median age, 26 days [IQR, 10-67 days]) undergoing gene panel screening, only 13 (2.1%; 95% CI, 1.0%-3.3%) resulted in potential childhood-onset diagnoses, a significantly lower rate than those screened by genome sequencing (P < .001). Conclusions and Relevance In this case series study, genome sequencing as a proactive screening approach for children, due to its unrestrictive gene content and technical advantages in comparison with an exome-based gene panel for medically actionable childhood conditions, uncovered a wide range of heterogeneous high-penetrance pediatric conditions that could guide early interventions and medical management.
Collapse
Affiliation(s)
| | - Ruby Liu
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Lora Bean
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Fen Guo
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | | | - Naga Guruju
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | | | - Rizwan Yousaf
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Kristina Fura
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Ephrem Chin
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Abhinav Mathur
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Zeqiang Ma
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | | | | | | | - Madhuri Hegde
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| |
Collapse
|