1
|
Porter VL, Ng M, O'Neill K, MacLennan S, Corbett RD, Culibrk L, Hamadeh Z, Iden M, Schmidt R, Tsaih SW, Nakisige C, Origa M, Orem J, Chang G, Fan J, Nip KM, Akbari V, Chan SK, Hopkins J, Moore RA, Chuah E, Mungall KL, Mungall AJ, Birol I, Jones SJM, Rader JS, Marra MA. Rearrangements of viral and human genomes at human papillomavirus integration events and their allele-specific impacts on cancer genome regulation. Genome Res 2025; 35:653-670. [PMID: 39638560 PMCID: PMC12047271 DOI: 10.1101/gr.279041.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Human papillomavirus (HPV) integration has been implicated in transforming HPV infection into cancer. To resolve genome dysregulation associated with HPV integration, we performed Oxford Nanopore Technologies long-read sequencing on 72 cervical cancer genomes from a Ugandan data set that was previously characterized using short-read sequencing. We find recurrent structural rearrangement patterns at HPV integration events, which we categorize as del(etion)-like, dup(lication)-like, translocation, multi-breakpoint, or repeat region integrations. Integrations involving amplified HPV-human concatemers, particularly multi-breakpoint events, frequently harbor heterogeneous forms and copy numbers of the viral genome. Transcriptionally active integrants are characterized by unmethylated regions in both the viral and human genomes downstream from the viral transcription start site, resulting in HPV-human fusion transcripts. In contrast, integrants without evidence of expression lack consistent methylation patterns. Furthermore, whereas transcriptional dysregulation is limited to genes within 200 kb of an HPV integrant, dysregulation of the human epigenome in the form of allelic differentially methylated regions affects megabase expanses of the genome, irrespective of the integrant's transcriptional status. By elucidating the structural, epigenetic, and allele-specific impacts of HPV integration, we provide insight into the role of integrated HPV in cervical cancer.
Collapse
Affiliation(s)
- Vanessa L Porter
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Michelle Ng
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Kieran O'Neill
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
| | - Signe MacLennan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Richard D Corbett
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
| | - Luka Culibrk
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
| | - Zeid Hamadeh
- Cytogenomics Laboratory, Vancouver General Hospital, Vancouver, British Columbia V5Z 1N1, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z7, Canada
| | - Marissa Iden
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Medical College of Wisconsin Cancer Center, Milwaukee, Wisconsin 53226, USA
| | - Rachel Schmidt
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Medical College of Wisconsin Cancer Center, Milwaukee, Wisconsin 53226, USA
| | - Shirng-Wern Tsaih
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Medical College of Wisconsin Cancer Center, Milwaukee, Wisconsin 53226, USA
| | | | | | | | - Glenn Chang
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
| | - Jeremy Fan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
| | - Ka Ming Nip
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
| | - Vahid Akbari
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Simon K Chan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
| | - James Hopkins
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
| | - Eric Chuah
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Janet S Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Medical College of Wisconsin Cancer Center, Milwaukee, Wisconsin 53226, USA
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4S6, Canada;
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
2
|
Li Q, Keskus AG, Wagner J, Izydorczyk MB, Timp W, Sedlazeck FJ, Klein AP, Zook JM, Kolmogorov M, Schatz MC. Unraveling the hidden complexity of cancer through long-read sequencing. Genome Res 2025; 35:599-620. [PMID: 40113261 PMCID: PMC12047254 DOI: 10.1101/gr.280041.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Cancer is fundamentally a disease of the genome, characterized by extensive genomic, transcriptomic, and epigenomic alterations. Most current studies predominantly use short-read sequencing, gene panels, or microarrays to explore these alterations; however, these technologies can systematically miss or misrepresent certain types of alterations, especially structural variants, complex rearrangements, and alterations within repetitive regions. Long-read sequencing is rapidly emerging as a transformative technology for cancer research by providing a comprehensive view across the genome, transcriptome, and epigenome, including the ability to detect alterations that previous technologies have overlooked. In this Perspective, we explore the current applications of long-read sequencing for both germline and somatic cancer analysis. We provide an overview of the computational methodologies tailored to long-read data and highlight key discoveries and resources within cancer genomics that were previously inaccessible with prior technologies. We also address future opportunities and persistent challenges, including the experimental and computational requirements needed to scale to larger sample sizes, the hurdles in sequencing and analyzing complex cancer genomes, and opportunities for leveraging machine learning and artificial intelligence technologies for cancer informatics. We further discuss how the telomere-to-telomere genome and the emerging human pangenome could enhance the resolution of cancer genome analysis, potentially revolutionizing early detection and disease monitoring in patients. Finally, we outline strategies for transitioning long-read sequencing from research applications to routine clinical practice.
Collapse
Affiliation(s)
- Qiuhui Li
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Ayse G Keskus
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Justin Wagner
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Michal B Izydorczyk
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas 77030, USA
- Department of Computer Science, Rice University, Houston, Texas 77251, USA
| | - Alison P Klein
- Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins Medicine, Baltimore, Maryland 21031, USA
| | - Justin M Zook
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Mikhail Kolmogorov
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA;
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA;
- Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins Medicine, Baltimore, Maryland 21031, USA
| |
Collapse
|
3
|
Gong T, Jiang J, Uthayopas K, Bornman MSR, Gheybi K, Stricker PD, Weischenfeldt J, Mutambirwa SBA, Jaratlerdsiri W, Hayes VM. Rare pathogenic structural variants show potential to enhance prostate cancer germline testing for African men. Nat Commun 2025; 16:2400. [PMID: 40064858 PMCID: PMC11893795 DOI: 10.1038/s41467-025-57312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Prostate cancer (PCa) is highly heritable, with men of African ancestry at greatest risk and associated lethality. Lack of representation in genomic data means germline testing guidelines exclude for Africans. Established that structural variations (SVs) are major contributors to human disease and prostate tumourigenesis, their role is under-appreciated in familial and therapeutic testing. Utilising clinico-methodologically matched deep-sequenced whole-genome data for 113 African versus 57 European PCa patients, we interrogate 42,966 high-quality germline SVs using a best-fit pathogenicity prediction workflow. We identify 15 potentially pathogenic SVs representing 12.4% African and 7.0% European patients, of which 72% and 86% met germline testing standard-of-care recommendations, respectively. Notable African-specific loss-of-function gene candidates include DNA damage repair MLH1 and BARD1 and tumour suppressors FOXP1, WASF1 and RB1. Representing only a fraction of the vast African diaspora, this study raises considerations with respect to the contribution of kilo-to-mega-base rare variants to PCa pathogenicity and African-associated disparity.
Collapse
Affiliation(s)
- Tingting Gong
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jue Jiang
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Korawich Uthayopas
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
| | - M S Riana Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Kazzem Gheybi
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
| | | | - Joachim Weischenfeldt
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark
- Biotech Research & Innovation Centre, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr George Mukhari Academic Hospital, Medunsa, Ga-Rankuwa, South Africa
| | - Weerachai Jaratlerdsiri
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Vanessa M Hayes
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia.
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.
- Manchester Cancer Research Centre, University of Manchester, Manchester, M20 4GJ, UK.
| |
Collapse
|
4
|
Dyshlovoy SA, Paigin S, Afflerbach AK, Lobermeyer A, Werner S, Schüller U, Bokemeyer C, Schuh AH, Bergmann L, von Amsberg G, Joosse SA. Applications of Nanopore sequencing in precision cancer medicine. Int J Cancer 2024; 155:2129-2140. [PMID: 39031959 DOI: 10.1002/ijc.35100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/25/2024] [Accepted: 06/25/2024] [Indexed: 07/22/2024]
Abstract
Oxford Nanopore Technologies sequencing, also referred to as Nanopore sequencing, stands at the forefront of a revolution in clinical genetics, offering the potential for rapid, long read, and real-time DNA and RNA sequencing. This technology is currently making sequencing more accessible and affordable. In this comprehensive review, we explore its potential regarding precision cancer diagnostics and treatment. We encompass a critical analysis of clinical cases where Nanopore sequencing was successfully applied to identify point mutations, splice variants, gene fusions, epigenetic modifications, non-coding RNAs, and other pivotal biomarkers that defined subsequent treatment strategies. Additionally, we address the challenges of clinical applications of Nanopore sequencing and discuss the current efforts to overcome them.
Collapse
Affiliation(s)
- Sergey A Dyshlovoy
- Department of Oncology, Oxford Molecular Diagnostics Centre, University of Oxford, Level 4, John Radcliffe Hospital, Oxford, UK
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefanie Paigin
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Ann-Kristin Afflerbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annabelle Lobermeyer
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Institute for Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Paediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna H Schuh
- Department of Oncology, Oxford Molecular Diagnostics Centre, University of Oxford, Level 4, John Radcliffe Hospital, Oxford, UK
| | - Lina Bergmann
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon A Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Hayes V, Gong T, Jiang J, Bornman R, Gheybi K, Stricker P, Weischenfeldt J, Mutambirwa S. Rare pathogenic structural variants show potential to enhance prostate cancer germline testing for African men. RESEARCH SQUARE 2024:rs.3.rs-4531885. [PMID: 38947031 PMCID: PMC11213160 DOI: 10.21203/rs.3.rs-4531885/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Prostate cancer (PCa) is highly heritable, with men of African ancestry at greatest risk and associated lethality. Lack of representation in genomic data means germline testing guidelines exclude for African men. Established that structural variations (SVs) are major contributors to human disease and prostate tumourigenesis, their role is under-appreciated in familial and therapeutic testing. Utilising a clinico-methodologically matched African (n = 113) versus European (n = 57) deep-sequenced PCa resource, we interrogated 42,966 high-quality germline SVs using a best-fit pathogenicity prediction workflow. We identified 15 potentially pathogenic SVs representing 12.4% African and 7.0% European patients, of which 72% and 86% met germline testing standard-of-care recommendations, respectively. Notable African-specific loss-of-function gene candidates include DNA damage repair MLH1 and BARD1 and tumour suppressors FOXP1, WASF1 and RB1. Representing only a fraction of the vast African diaspora, this study raises considerations with respect to the contribution of kilo-to-mega-base rare variants to PCa pathogenicity and African associated disparity.
Collapse
Affiliation(s)
| | | | - Jue Jiang
- Garvan Institute of Medical Research
| | | | | | | | | | | |
Collapse
|
6
|
Olivucci G, Iovino E, Innella G, Turchetti D, Pippucci T, Magini P. Long read sequencing on its way to the routine diagnostics of genetic diseases. Front Genet 2024; 15:1374860. [PMID: 38510277 PMCID: PMC10951082 DOI: 10.3389/fgene.2024.1374860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The clinical application of technological progress in the identification of DNA alterations has always led to improvements of diagnostic yields in genetic medicine. At chromosome side, from cytogenetic techniques evaluating number and gross structural defects to genomic microarrays detecting cryptic copy number variants, and at molecular level, from Sanger method studying the nucleotide sequence of single genes to the high-throughput next-generation sequencing (NGS) technologies, resolution and sensitivity progressively increased expanding considerably the range of detectable DNA anomalies and alongside of Mendelian disorders with known genetic causes. However, particular genomic regions (i.e., repetitive and GC-rich sequences) are inefficiently analyzed by standard genetic tests, still relying on laborious, time-consuming and low-sensitive approaches (i.e., southern-blot for repeat expansion or long-PCR for genes with highly homologous pseudogenes), accounting for at least part of the patients with undiagnosed genetic disorders. Third generation sequencing, generating long reads with improved mappability, is more suitable for the detection of structural alterations and defects in hardly accessible genomic regions. Although recently implemented and not yet clinically available, long read sequencing (LRS) technologies have already shown their potential in genetic medicine research that might greatly impact on diagnostic yield and reporting times, through their translation to clinical settings. The main investigated LRS application concerns the identification of structural variants and repeat expansions, probably because techniques for their detection have not evolved as rapidly as those dedicated to single nucleotide variants (SNV) identification: gold standard analyses are karyotyping and microarrays for balanced and unbalanced chromosome rearrangements, respectively, and southern blot and repeat-primed PCR for the amplification and sizing of expanded alleles, impaired by limited resolution and sensitivity that have not been significantly improved by the advent of NGS. Nevertheless, more recently, with the increased accuracy provided by the latest product releases, LRS has been tested also for SNV detection, especially in genes with highly homologous pseudogenes and for haplotype reconstruction to assess the parental origin of alleles with de novo pathogenic variants. We provide a review of relevant recent scientific papers exploring LRS potential in the diagnosis of genetic diseases and its potential future applications in routine genetic testing.
Collapse
Affiliation(s)
- Giulia Olivucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - Emanuela Iovino
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Innella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Daniela Turchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pamela Magini
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
7
|
McNeill A. 2023 in the European Journal of Human Genetics. Eur J Hum Genet 2024; 32:135-137. [PMID: 38332347 PMCID: PMC10853252 DOI: 10.1038/s41431-024-01540-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Affiliation(s)
- Alisdair McNeill
- Division of Neuroscience and Neuroscience Institute, The University of Sheffield, Sheffield, UK.
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK.
| |
Collapse
|
8
|
Levkova M, Chervenkov T, Angelova L, Dzenkov D. Oxford Nanopore Technology and its Application in Liquid Biopsies. Curr Genomics 2023; 24:337-344. [PMID: 38327653 PMCID: PMC10845067 DOI: 10.2174/0113892029286632231127055733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 02/09/2024] Open
Abstract
Advanced medical technologies are transforming the future of healthcare, in particular, the screening and detection of molecular-genetic changes in patients suspected of having a neoplasm. They are based on the assumption that neoplasms release small amounts of various neoplasm-specific molecules, such as tumor DNA, called circulating DNA (cirDNA), into the extracellular space and subsequently into the blood. The detection of tumor-specific molecules and specific molecular changes in body fluids in a noninvasive or minimally invasive approach is known as "liquid biopsy." The aim of this review is to summarize the current knowledge of the application of ONT for analyzing circulating DNA in the field of liquid biopsies among cancer patients. Databases were searched using the keywords "nanopore" and "liquid biopsy" and by applying strict inclusion criteria. This technique can be used for the detection of neoplastic disease, including metastases, guiding precision therapy, and monitoring its effects. There are many challenges, however, for the successful implementation of this technology into the clinical practice. The first one is the low amount of tumor-specific molecules in the body fluids. Secondly, a tumor molecular signature should be discriminated from benign conditions like clonal hematopoiesis of unknown significance. Oxford Nanopore Technology (ONT) is a third-generation sequencing technology that seems particularly promising to complete these tasks. It offers rapid sequencing thanks to its ability to detect changes in the density of the electric current passing through nanopores. Even though ONT still needs validation technology, it is a promising approach for early diagnosis, therapy guidance, and monitoring of different neoplasms based on analyzing the cirDNA.
Collapse
Affiliation(s)
- Mariya Levkova
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, Varna, 9000, Bulgaria
- Laboratory of Medical Genetics, St. Marina Hospital, Hristo Smirnenski Blv 1, Varna, 9000, Bulgaria
| | - Trifon Chervenkov
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, Varna, 9000, Bulgaria
- Laboratory of Clinical immunology, St. Marina Hospital, Hristo Smirnenski Blv 1, Varna, 9000, Bulgaria
| | - Lyudmila Angelova
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, Varna, 9000, Bulgaria
| | - Deyan Dzenkov
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Division of General and Clinical Pathology, Medical University Varna, Marin Drinov Str 55, Varna, 9000, Bulgaria
| |
Collapse
|
9
|
McNeill A. Molecular explanations for variability of clinical phenotypes. Eur J Hum Genet 2023; 31:491-492. [PMID: 37165068 PMCID: PMC10172189 DOI: 10.1038/s41431-023-01365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Affiliation(s)
- Alisdair McNeill
- Department of Neuroscience, The University of Sheffield, Sheffield, UK.
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK.
| |
Collapse
|