1
|
Kesuma S, Raras TYM, Winarsih S, Shimosato T, Yurina V. Lactococcus lactis as an Effective Mucosal Vaccination Carrier: a Systematic Literature Review. J Microbiol Biotechnol 2025; 35:e2411036. [PMID: 40081887 PMCID: PMC11925755 DOI: 10.4014/jmb.2411.11036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/30/2024] [Accepted: 01/12/2025] [Indexed: 03/16/2025]
Abstract
Lactococcus lactis has potential as a mucosal vaccine delivery system. L. lactis can express antigens from bacteria or viruses, which are tightly controlled using nisin. Although L. lactis-based vaccine shows great promise, no product is ready for human use. Several studies have been conducted to develop L. lactis-based vaccine, and the efficacy of these vaccines has been evaluated in many scientific articles. This paper aims to review key aspects of current knowledge on the promising characteristics of L. lactis and to suggest its implications for vaccine design. Articles were obtained online using inclusion and exclusion criteria through Harzing's Publish or Perish. The article assessment used the Joanna Briggs Institute critical appraisal checklist for quasi-experimental studies. The efficacy evaluation of 24 articles showed that L. lactis-based vaccine can induce IgA and IgG as humoral immune responses; T CD4, T CD8, and B cells as cellular immune responses; and various proinflammatory cytokines such as IFN-γ, TNF-α, IL-2, IL-4, IL-8, IL-10, IL-12, IL-17. L. lactis is suitable as a vector carrier for oral or nasal mucosal vaccines targeting bacterial and viral infections. The development of L. lactis as a vaccine delivery system is promising.
Collapse
Affiliation(s)
- Suryanata Kesuma
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, East Java 65145, Indonesia
- Departement of Medical Laboratory Technology, Poltekkes Kemenkes Kalimantan Timur, Samarinda, East Borneo
| | - Tri Yudani Mardining Raras
- Departement of Biochemistry and Molecular Biology, Medical Faculty, Universitas Brawijaya, Malang 65145, Indonesia
| | - Sri Winarsih
- Department of Pharmacy, Medical Faculty, Universitas Brawijaya, Malang 65145, Indonesia
| | - Takeshi Shimosato
- Department of Pharmacy, Medical Faculty, Universitas Brawijaya, Malang 65145, Indonesia
- Institute for Aqua Regeneration, Shinshu University, Nagano, Japan
| | - Valentina Yurina
- Department of Pharmacy, Medical Faculty, Universitas Brawijaya, Malang 65145, Indonesia
| |
Collapse
|
2
|
Padh H, Yagnik B, Sharma D, Desai P. EpiMix Based Novel Vaccine Candidate for Shigella: Evidence of Prophylactic Immunity in Balb/c Mice. Int J Pept Res Ther 2021; 27:1095-1110. [PMID: 33551691 PMCID: PMC7846920 DOI: 10.1007/s10989-020-10153-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/01/2022]
Abstract
Multidrug resistant Shigella is one of the leading causes of mortality in children and infants. Availability of vaccine could prevent the Shigella infection and reduce the mortality. Conventional approaches of vaccine development against shigellosis have not resulted in desirable vaccine. As shigellosis may be caused by multiple strains and serotypes, there is a need to develop a multivalent vaccine, capable of providing protection against multiple Shigella strains. To develop broad spectrum vaccine, we had previously derived a pool of conserved epitopes against Shigella by using multiple immunoinformatic tools. In this study, the identified conserved epitopes derived from the Outer Membrane Proteins A and C of Shigella were chemically synthesized, and the EpiMix made up of 5 epitopes coupled to a carrier protein, ovalbumin was developed and validated for its immunogenicity. The intramuscular immunization with EpiMix in Balb/c mice led to increase in EpiMix specific serum IgG, and significant increase in fecal IgA as well as in IL-4, IL-2and IFN-γ levels. Further, the EpiMix immunized mice showed protection when challenged against S. flexneri ATCC 12022 using the intraperitoneal route. Moreover, the analysis of cytokine profile and IFN-γ/IL4 ratio in post Shigella challenge immunized mice suggested the high levels of IFN-γ levels and possible dominance of Th1 response, playing pivotal role in the elimination of Shigella. Collectively, the results demonstrate the immunogenic potential and protective efficacy of the EpiMix in the murine shigellosis model. However, the detailed study and further optimisation of epitopes would substantiate the prospective use of EpiMix as a prophylactic candidate for vaccination.
Collapse
Affiliation(s)
- Harish Padh
- Sardar Patel University, Vallabh Vidyanagar, Gujarat 388120 India
| | - Bhrugu Yagnik
- Department of Cell and Molecular Biology, B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat 380054 India
- BRD School of Bioscience, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388120 India
| | - Drashya Sharma
- Department of Cell and Molecular Biology, B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat 380054 India
- BRD School of Bioscience, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388120 India
| | - Priti Desai
- Department of Cell and Molecular Biology, B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat 380054 India
- Department of Biological Science and Biotechnology, Institute of Advanced Research (IAR), Institutional Area, Koba, Gandhinagar, Gujarat 382426 India
| |
Collapse
|
3
|
Coelho-Rocha ND, Barroso FAL, Tavares LM, Dos Santos ESS, Azevedo V, Drumond MM, Mancha-Agresti P. Main Features of DNA-Based Vectors for Use in Lactic Acid Bacteria and Update Protocols. Methods Mol Biol 2021; 2197:285-304. [PMID: 32827144 DOI: 10.1007/978-1-0716-0872-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
DNA vaccines have been used as a promising strategy for delivery of immunogenic and immunomodulatory molecules into the host cells. Although, there are some obstacles involving the capability of the plasmid vector to reach the cell nucleus in great number to promote the expected benefits. In order to improve the delivery and, consequently, increase the expression levels of the target proteins carried by DNA vaccines, alternative methodologies have been explored, including the use of non-pathogenic bacteria as delivery vectors to carry, deliver, and protect the DNA from degradation, enhancing plasmid expression.
Collapse
Affiliation(s)
- Nina D Coelho-Rocha
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda A L Barroso
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laísa M Tavares
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ester S S Dos Santos
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana M Drumond
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Center of Federal Education of Minas Gerais (CEFET-MG), Belo Horizonte, Minas Gerais, Brazil
| | - Pamela Mancha-Agresti
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Tavares LM, de Jesus LCL, da Silva TF, Barroso FAL, Batista VL, Coelho-Rocha ND, Azevedo V, Drumond MM, Mancha-Agresti P. Novel Strategies for Efficient Production and Delivery of Live Biotherapeutics and Biotechnological Uses of Lactococcus lactis: The Lactic Acid Bacterium Model. Front Bioeng Biotechnol 2020; 8:517166. [PMID: 33251190 PMCID: PMC7672206 DOI: 10.3389/fbioe.2020.517166] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Lactic acid bacteria (LAB) are traditionally used in fermentation and food preservation processes and are recognized as safe for consumption. Recently, they have attracted attention due to their health-promoting properties; many species are already widely used as probiotics for treatment or prevention of various medical conditions, including inflammatory bowel diseases, infections, and autoimmune disorders. Some LAB, especially Lactococcus lactis, have been engineered as live vehicles for delivery of DNA vaccines and for production of therapeutic biomolecules. Here, we summarize work on engineering of LAB, with emphasis on the model LAB, L. lactis. We review the various expression systems for the production of heterologous proteins in Lactococcus spp. and its use as a live delivery system of DNA vaccines and for expression of biotherapeutics using the eukaryotic cell machinery. We have included examples of molecules produced by these expression platforms and their application in clinical disorders. We also present the CRISPR-Cas approach as a novel methodology for the development and optimization of food-grade expression of useful substances, and detail methods to improve DNA delivery by LAB to the gastrointestinal tract. Finally, we discuss perspectives for the development of medical applications of recombinant LABs involving animal model studies and human clinical trials, and we touch on the main safety issues that need to be taken into account so that bioengineered versions of these generally recognized as safe organisms will be considered acceptable for medical use.
Collapse
Affiliation(s)
- Laísa M Tavares
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luís C L de Jesus
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tales F da Silva
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda A L Barroso
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Viviane L Batista
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina D Coelho-Rocha
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mariana M Drumond
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Departamento de Ciências Biológicas, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil.,FAMINAS - BH, Belo Horizonte, Brazil
| |
Collapse
|
5
|
Yagnik B, Sharma D, Padh H, Desai P. Oral immunization with LacVax® OmpA induces protective immune response against Shigella flexneri 2a ATCC 12022 in a murine model. Vaccine 2019; 37:3097-3105. [PMID: 31047673 PMCID: PMC7115592 DOI: 10.1016/j.vaccine.2019.04.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 02/05/2023]
Abstract
Shigellosis is an acute invasive disease of the lower intestine, which afflicts millions of people worldwide with an estimated one million fatalities per annum. Despite of extensive research during the last two decades, a vaccine against multi-drug resistant Shigella is not yet available in the market. To provide a safe, effective and broad-spectrum vaccine against Shigella, we explored food grade bacteria Lactococcus lactis (L. lactis) for the delivery of conserved antigenic protein; Outer membrane protein A (OmpA) to the mucosal sites for effective elicitation of systemic and mucosal immunity. We have previously confirmed the immunogenic potential of recombinant L. lactis expressing OmpA (LacVax® OmpA) in BALB/c mice. In the present study, we have characterized the humoral and cellular immune profile of LacVax® OmpA and assessed its protective efficacy using a newly developed human like murine shigellosis model. The significant increase in OmpA specific serum IgG, fecal sIgA and a Th1 dominant immune response (indicated by high INF-γ/IL-4 ratio) in LacVax® OmpA immunized mice revealed successful activation of humoral and cellular immunity. The LacVax® OmpA immunized animals were also protected from human-like shigellosis when challenged with S. flexneri 2a ATCC 12022. The antigen specific serum IgG, fecal sIgA, INF-γ and IL-10 levels were found to be the significant correlates of protection. Collectively these results suggest that the LacVax® OmpA is a promising prophylactic candidate against shigellosis. However, the protective efficacy of LacVax® OmpA in the higher animals would further strengthen its future application in humans.
Collapse
Affiliation(s)
- Bhrugu Yagnik
- Department of Cell and Molecular Biology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India; B. R. D. School of Biosciences, Sardar Patel University, Vallabh Vidhyanagar, Gujarat, India
| | - Drashya Sharma
- Department of Cell and Molecular Biology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India; B. R. D. School of Biosciences, Sardar Patel University, Vallabh Vidhyanagar, Gujarat, India
| | - Harish Padh
- Sardar Patel University, Vallabh Vidhyanagar, Gujarat, India
| | - Priti Desai
- Department of Cell and Molecular Biology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India; Department of Biological Sciences and Biotechnology, Institute of Advanced Research (IAR), Koba, Gandhinagar, Gujarat, India.
| |
Collapse
|