1
|
Shang L, Gad K, Lenhard M. Converging on long and short: The genetics, molecular biology and evolution of heterostyly. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102731. [PMID: 40319570 DOI: 10.1016/j.pbi.2025.102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/18/2025] [Accepted: 04/07/2025] [Indexed: 05/07/2025]
Abstract
Heterostyly is a fascinating floral polymorphism that enhances outcrossing. In heterostylous species the flowers of the two or three morphs differ in multiple traits, including reciprocal reproductive-organ placement and self-incompatibility. These traits are controlled by individual genes within an S-locus supergene, whose suppressed recombination ensures the coordinated inheritance of the morph phenotypes. Recent breakthroughs about the genetic and molecular basis of heterostyly have resulted from studies on many independently evolved instances and include the following: The S-locus is a hemizygous region comprising several individual genes in multiple heterostylous taxa. In many systems, a single gene within the S-locus plays dual roles in regulating both female traits of style length and self-incompatibility type, often involving brassinosteroid signalling. The S-loci have evolved through stepwise or segmental duplication in different lineages. The frequent breakdown of heterostyly generally results from individual mutations at the S-locus and leads to a genomic selfing syndrome. These discoveries suggest convergent and genetically constrained evolution of heterostyly at the molecular level.
Collapse
Affiliation(s)
- Lele Shang
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany
| | - Karol Gad
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany
| | - Michael Lenhard
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|
2
|
Zeng ZH, Zhong L, Sun HY, Wu ZK, Wang X, Wang H, Li DZ, Barrett SCH, Zhou W. Parallel evolution of morphological and genomic selfing syndromes accompany the breakdown of heterostyly. THE NEW PHYTOLOGIST 2024; 242:302-316. [PMID: 38214455 DOI: 10.1111/nph.19522] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Evolutionary transitions from outcrossing to selfing in flowering plants have convergent morphological and genomic signatures and can involve parallel evolution within related lineages. Adaptive evolution of morphological traits is often assumed to evolve faster than nonadaptive features of the genomic selfing syndrome. We investigated phenotypic and genomic changes associated with transitions from distyly to homostyly in the Primula oreodoxa complex. We determined whether the transition to selfing occurred more than once and investigated stages in the evolution of morphological and genomic selfing syndromes using 22 floral traits and both nuclear and plastid genomic data from 25 populations. Two independent transitions were detected representing an earlier and a more recently derived selfing lineage. The older lineage exhibited classic features of the morphological and genomic selfing syndrome. Although features of both selfing syndromes were less developed in the younger selfing lineage, they exhibited parallel development with the older selfing lineage. This finding contrasts with the prediction that some genomic changes should lag behind adaptive changes to morphological traits. Our findings highlight the value of comparative studies on the timing and extent of transitions from outcrossing to selfing between related lineages for investigating the tempo of morphological and molecular evolution.
Collapse
Affiliation(s)
- Zhi-Hua Zeng
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhong
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua-Ying Sun
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Zhi-Kun Wu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550002, China
| | - Xin Wang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Wei Zhou
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, Yunnan, 674100, China
| |
Collapse
|
3
|
Jia Y, Liu C, Li Y, Xiang Y, Pan Y, Liu Q, Gao S, Yin X, Wang Z. Inheritance of distyly and homostyly in self-incompatible Primula forbesii. Heredity (Edinb) 2023; 130:259-268. [PMID: 36788365 PMCID: PMC10076296 DOI: 10.1038/s41437-023-00598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
The evolutionary transition from self-incompatible distyly to self-compatible homostyly frequently occurs in heterostylous taxa. Although the inheritance of distyly and homostyly has been deeply studied, our understanding on modifications of the classical simple Mendelian model is still lacking. Primula forbesii, a biennial herb native to southwest China, is a typical distylous species, but after about 20 years of cultivation with open pollination, self-compatible homostyly appeared, providing ideal material for the study of the inheritance of distyly and homostyly. In this study, exogenous homobrassinolide was used to break the heteromorphic incompatibility of P. forbesii. Furthermore, we performed artificial pollination and open-pollination experiments to observe the distribution of floral morphs in progeny produced by different crosses. The viability of seeds from self-pollination was always the lowest among all crosses, and the homozygous S-morph plants (S/S) occurred in artificial pollination experiments but may experience viability selection. The distyly of P. forbesii is governed by a single S-locus, with S-morph dominant hemizygotes (S/-) and L-morph recessive homozygotes (-/-). Homostylous plants have a genotype similar to L-morph plants, and homostyly may be caused by one or more unlinked modifier genes outside the S-locus. Open pollinations confirm that autonomous self-pollination occurs frequently in L-morphs and homostylous plants. This study deepens the understanding of the inheritance of distyly and details a case of homostyly that likely originated from one or more modifier genes.
Collapse
Affiliation(s)
- Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China.
| | - Cailei Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yifeng Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yuanfen Xiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Qinglin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xiancai Yin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zexun Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Liu C, Jia Y, Li Y, Xiang Y, Pan Y, Liu Q, Ma K, Yin X. The rapid appearance of homostyly in a cultivated distylous population of Primula forbesii. Ecol Evol 2022; 12:e9515. [PMID: 36415874 PMCID: PMC9674475 DOI: 10.1002/ece3.9515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/20/2022] Open
Abstract
Evolutionary breakdown from rigorous outbreeding to self-fertilization frequently occurs in angiosperms. Since the pollinators are not necessary, self-compatible populations often reduce investment in floral display characteristics and pollination reward. Primula forbesii is a biennial herb with distribution restricted to southwest China; it was initially a self-incompatible distylous species, but after 20 years of artificial domestication, homostyly appeared. This change in style provides an ideal material to explore the time required for plant mating systems to adapt to new environmental changes and test whether flower attraction has reduced following transitions to selfing. We did a survey in wild populations of P. forbesii where its seeds were originally collected 20 years ago and recorded the floral morph frequencies and morphologies. The floral morphologies, self-incompatibility, floral scent, and pollinator visitation between distyly and homostyly were compared in greenhouse. Floral morph frequencies of wild populations did not change, while the cultivated population was inclined to L-morph and produced homostyly. Evidence from stigma papillae and pollen size supports the hypothesis that the homostyly possibly originated from mutations of large effect genes in distylous linkage region. Transitions to self-compatible homostyly are accompanied by smaller corolla size, lower amounts of terpenoids, especially linalool and higher amounts of fatty acid derivatives. The main pollinators in the greenhouse were short-tongued Apis cerana. However, homostyly had reduced visiting frequency. The mating system of P. forbesii changed rapidly in just about 20 years of domestication, and our findings confirm the hypothesis that the transition to selfing is accompanied by decreased flower attraction.
Collapse
Affiliation(s)
- Cai‐Lei Liu
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Yin Jia
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Yi‐Feng Li
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Yuan‐Fen Xiang
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Yuan‐Zhi Pan
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Qing‐Lin Liu
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Ke‐Hang Ma
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Xian‐Cai Yin
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| |
Collapse
|
5
|
Abstract
In this study, distyly was clearly confirmed in Polygonum criopolitanum Hance, which exhibited strict self-incompatibility. Unlike other distylous species, style-morph ratios of P. criopolitanum often deviated obviously from 1:1, and many populations were solely composed of long or short stylous flowers; the 1:1 style-morph ratio was occasionally found in very large populations. P. criopolitanum was dimorphic for intrinsic features such as style height and anther height and ancillary features such as pollen size and number. The L-morph flowers produced a significantly smaller and higher number of pollen grains than the S-morph flowers, and the stigma papillae of both morphs were not significantly different. We nearly found no seed sets in most wild populations and very low seed sets occasionally occurred in large populations, which was different from other species of Polygonaceae. Mating experiments showed that P. criopolitanum has a strict self-incompatibility system and clonal propagation was more common than sexual propagation, which was adaptive with the unisexual wild populations. Hygrocolous habitat, 20–60% soil water content, and height gap less than 4 m to the adjacent water were the main limiting factors for the distribution of P. criopolitanum.
Collapse
|
6
|
Barrett SCH. 'A most complex marriage arrangement': recent advances on heterostyly and unresolved questions. THE NEW PHYTOLOGIST 2019; 224:1051-1067. [PMID: 31631362 DOI: 10.1111/nph.16026] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/23/2019] [Indexed: 05/09/2023]
Abstract
Heterostylous genetic polymorphisms provide paradigmatic systems for investigating adaptation and natural selection. Populations are usually comprised of two (distyly) or three (tristyly) mating types, maintained by negative frequency-dependent selection resulting from disassortative mating. Theory predicts this mating system should result in equal style-morph ratios (isoplethy) at equilibrium. Here, I review recent advances on heterostyly, focusing on examples challenging stereotypical depictions of the polymorphism and unresolved questions. Comparative analyses indicate multiple origins of heterostyly, often within lineages. Ecological studies demonstrate that structural components of heterostyly are adaptations improving the proficiency of animal-mediated cross-pollination and reducing pollen wastage. Both neutral and selective processes cause deviations from isoplethy in heterostylous populations, and, under some ecological and demographic conditions, cause breakdown of the polymorphism, resulting in either the evolution of autogamy and mixed mating, or transitions to alternative outcrossing systems, including dioecy. Earlier ideas on the genetic architecture of the S-locus supergene governing distyly have recently been overturned by discovery that the dominant S-haplotype is a hemizygous region absent from the s-haplotype. Ecological, phylogenetic and molecular genetic data have validated some features of theoretical models on the selection of the polymorphism. Although heterostyly is the best-understood floral polymorphism in angiosperms, many unanswered questions remain.
Collapse
Affiliation(s)
- Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
| |
Collapse
|
7
|
Zhong L, Barrett SCH, Wang XJ, Wu ZK, Sun HY, Li DZ, Wang H, Zhou W. Phylogenomic analysis reveals multiple evolutionary origins of selfing from outcrossing in a lineage of heterostylous plants. THE NEW PHYTOLOGIST 2019; 224:1290-1303. [PMID: 31077611 DOI: 10.1111/nph.15905] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Evolutionary transitions from outcrossing to selfing often occur in heterostylous plants. Selfing homostyles originate within distylous populations and frequently evolve to become reproductively isolated species. We investigated this process in 10 species of Primula section Obconicolisteri using phylogenomic approaches and inferred how often homostyly originated from distyly and its consequences for population genetic diversity and floral trait evolution. We estimated phylogenetic relationships and reconstructed character evolution using the whole plastome comprised of 76 protein-coding genes. To investigate mating patterns and genetic diversity we screened 15 microsatellite loci in 40 populations. We compared floral traits among distylous and homostylous populations to determine how phenotypically differentiated homostyles were from their distylous ancestors. Section Obconicolisteri was monophyletic and we estimated multiple independent transitions from distyly to homostyly. High selfing rates characterised homostylous populations and this was associated with reduced genetic diversity. Flower size and pollen production were reduced in homostylous populations, but pollen size was significantly larger in some homostyles than in distylous morphs. Repeated transitions to selfing in section Obconicolisteri are likely to have been fostered by the complex montane environments that species occupy. Unsatisfactory pollinator service is likely to have promoted reproductive assurance in homostyles leading to subsequent population divergence through isolation.
Collapse
Affiliation(s)
- Li Zhong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Xin-Jia Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Zhi-Kun Wu
- Department of Pharmacy, Guiyang University of Traditional Chinese Medicine, Guiyang, Guizhou, 550002, China
| | - Hua-Ying Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China
| | - De-Zhu Li
- Plant Germplasm and Genomics Centre, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China
| | - Wei Zhou
- Plant Germplasm and Genomics Centre, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China
| |
Collapse
|
8
|
Global transcriptome and gene co-expression network analyses on the development of distyly in Primula oreodoxa. Heredity (Edinb) 2019; 123:784-794. [PMID: 31308492 DOI: 10.1038/s41437-019-0250-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022] Open
Abstract
Distyly is a genetically controlled flower polymorphism that has intrigued both botanists and evolutionary biologists ever since Darwin's time. Despite extensive reports on the pollination and evolution of distylous systems, the genetic basis and mechanism of molecular regulation remain unclear. In the present study, comparative transcriptome profiling was conducted in primrose (Primula oreodoxa), the prime research model for heterostyly. Thirty-six transcriptomes were sequenced for styles at different stages and corolla tube in the three morphs of P. oreodoxa. Large numbers of differentially expressed genes (DEGs) were detected in the transcriptomes of styles across different morphs. Several transcription factors (TFs) and phytohormone metabolism-related genes were highlighted in S-morphs. A growing number of genes showed differential expression patterns along with the development of styles, suggesting that the genetic control of distyly may be more complicated than ever expected. Analysis of co-expression networks and module-trait relationships identified modules significantly associated with style development. CYP734A50, a key S-locus gene whose products degrade brassinosteroids, was co-expressed with many genes in the module and showed significant negative association with style length. In addition, crucial TFs involved in phytohormone signaling pathways were found to be connected with CYP734A50 in the co-expression module. Our global transcriptomic analysis has identified DEGs that are potentially involved in regulation of style length in P. oreodoxa, and may shed light on the evolution and broad biological processes of heterostyly.
Collapse
|