1
|
Shen T, Wang W, Wang H, Zhu X, Zhu G. Mitochondrial miRNA miR-134-5p Play Oncogenic Role in Clear Cell Renal Cell Carcinoma. Biomolecules 2025; 15:445. [PMID: 40149981 PMCID: PMC11939903 DOI: 10.3390/biom15030445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Mitochondrial miRNAs (mitomiRs), which are miRNAs that located within mitochondria, have emerged as crucial regulators in a variety of human diseases, including multiple types of cancers. However, the specific role of mitomiRs in clear cell renal cell carcinoma (ccRCC) remains elusive. In this study, we employed a combination of experimental and bioinformatic approaches to uncover the diverse and abundant subcellular distribution of miRNAs within mitochondria in ccRCC. Notably, RNA sequencing after mitochondrial fractionation identified miR-134-5p as a miRNA predominantly detected in the mitochondria of 786O cells, and its expression is significantly upregulated compared to that in 293T cells. Differential expression and survival analyses from TCGA reveal that the upregulation of miR-134-5p is prevalent and closely associated with poor survival outcomes in ccRCC patients. Functionally, exogenous overexpression of miR-134-5p mimics promotes migration in both 786O and Caki-1 cells. Mechanistically, overexpressing the miR-134-5p mimic dramatically downregulates the mRNA levels of CHST6, SFXN2, and GRIK3, whereas the miR-134-5p inhibitor markedly upregulates their expression. Notably, these target mRNAs also predominantly detected in the mitochondria of 786O cells. The downregulated expression signatures of CHST6, SFXN2, and GRIK3 are also closely correlated with poor survival outcomes in ccRCC patients. Taken together, our work identifies a novel mitomiR, miR-134-5p, in ccRCC, provides potential targets that could serve as effective biomarkers for ccRCC diagnosis and prognosis, and opens new avenues for understanding the mitomiR-directed regulatory network in ccRCC progression.
Collapse
Affiliation(s)
- Tao Shen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (H.W.); (X.Z.)
- Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Wei Wang
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China;
| | - Haiyang Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (H.W.); (X.Z.)
- Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xinyi Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (H.W.); (X.Z.)
- Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (H.W.); (X.Z.)
- Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
2
|
Rishik S, Hirsch P, Grandke F, Fehlmann T, Keller A. miRNATissueAtlas 2025: an update to the uniformly processed and annotated human and mouse non-coding RNA tissue atlas. Nucleic Acids Res 2025; 53:D129-D137. [PMID: 39540421 PMCID: PMC11701691 DOI: 10.1093/nar/gkae1036] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
MiRNAs represent a non-coding RNA class that regulate gene expression and pathways. While miRNAs are evolutionary conserved most data stems from Homo sapiens and Mus musculus. As miRNA expression is highly tissue specific, we developed miRNATissueAtlas to comprehensively explore this landscape in H. sapiens. We expanded the H. sapiens tissue repertoire and included M. musculus. In past years, the number of public miRNA expression datasets has grown substantially. Our previous releases of the miRNATissueAtlas represent a great framework for a uniformly pre-processed and label-harmonized resource containing information on these datasets. We incorporate the respective data in the newest release, miRNATissueAtlas 2025, which contains expressions from 9 classes of ncRNA from 799 billion reads across 61 593 samples for H. sapiens and M. musculus. The number of organs and tissues has increased from 28 and 54 to 74 and 373, respectively. This number includes physiological tissues, cell lines and extracellular vesicles. New tissue specificity index calculations build atop the knowledge of previous iterations. Calculations from cell lines enable comparison with physiological tissues, providing a valuable resource for translational research. Finally, between H. sapiens and M. musculus, 35 organs overlap, allowing cross-species comparisons. The updated miRNATissueAtlas 2025 is available at https://www.ccb.uni-saarland.de/tissueatlas2025.
Collapse
Affiliation(s)
- Shusruto Rishik
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Pascal Hirsch
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Friederike Grandke
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | | | - Andreas Keller
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
- Department of Neurology and Neurobiology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
3
|
Eirin A, Siddiqi S, Hughes AG, Jiang Y, Zhu XY, Kazeminia S, Lu B, Xing L, Lu B, Tang H, Xue A, Lerman A, Textor SC, Lerman LO. Renovascular Disease and Mitochondrial Dysfunction in Human Mesenchymal Stem Cells. J Am Soc Nephrol 2024; 35:1507-1519. [PMID: 39012704 PMCID: PMC11543019 DOI: 10.1681/asn.0000000000000440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Key Points Renovascular disease impairs the capacity of human adipose tissue–derived mesenchymal stem/stromal cells to repair ischemic murine kidneys. miR-378h modulated the capacity of renovascular disease adipose tissue–derived mesenchymal stem/stromal cells to repair ischemic kidneys in vivo . Background Renovascular disease leads to renal ischemia, hypertension, and eventual kidney failure. Autologous transplantation of adipose tissue–derived mesenchymal stem/stromal cells (MSCs) improves perfusion and oxygenation in stenotic human kidneys, but associated atherosclerosis and hypertension might blunt their effectiveness. We hypothesized that renovascular disease alters the human MSC transcriptome and impairs their reparative potency. Methods MSCs were harvested from subcutaneous abdominal fat of patients with renovascular disease and healthy volunteers (n =3 each), characterized and subsequently injected (5×105/200 μ l) into mice 2 weeks after renal artery stenosis or sham surgery (n =6/group). Two weeks later, mice underwent imaging and tissue studies. MSCs from healthy volunteers and in those with renovascular disease were also characterized by mRNA/microRNA (miRNA) sequencing. Based on these, MSC proliferation and mitochondrial damage were assessed in vitro before and after miRNA modulation and in vivo in additional renal artery stenosis mice administered with MSCs from renovascular disease pretreated with miR-378h mimic (n =5) or inhibitor (n =4). Results MSCs engrafted in stenotic mouse kidneys. Healthy volunteer MSCs (but not renovascular disease MSCs) decreased BP, improved serum creatinine levels and stenotic-kidney cortical perfusion and oxygenation, and attenuated peritubular capillary loss, tubular injury, and fibrosis. Genes upregulated in renovascular disease MSCs versus healthy volunteer MSCs were mostly implicated in transcription and cell proliferation, whereas those downregulated encoded mainly mitochondrial proteins. Upregulated miRNAs, including miR-378h, primarily target nuclear-encoded mitochondrial genes, whereas downregulated miRNAs mainly target genes implicated in transcription and cell proliferation. MSC proliferation was similar, but their mitochondrial structure and reparative function both in vivo and in vitro improved after miR-378h inhibition. Conclusions Renovascular disease impaired the reparative capacity of human MSCs, possibly by dysregulating miR-378h that targets mitochondrial genes. Podcast This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2024_08_21_ASN0000000000000440.mp3
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Sarosh Siddiqi
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Autumn G. Hughes
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Yamei Jiang
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sara Kazeminia
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Bo Lu
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Li Xing
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Brandon Lu
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Hui Tang
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Ailing Xue
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Stephen C. Textor
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
4
|
Marturano G, Carli D, Cucini C, Carapelli A, Plazzi F, Frati F, Passamonti M, Nardi F. SmithHunter: a workflow for the identification of candidate smithRNAs and their targets. BMC Bioinformatics 2024; 25:286. [PMID: 39223476 PMCID: PMC11370224 DOI: 10.1186/s12859-024-05909-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND SmithRNAs (Small MITochondrial Highly-transcribed RNAs) are a novel class of small RNA molecules that are encoded in the mitochondrial genome and regulate the expression of nuclear transcripts. Initial evidence for their existence came from the Manila clam Ruditapes philippinarum, where they have been described and whose activity has been biologically validated through RNA injection experiments. Current evidence on the existence of these RNAs in other species is based only on small RNA sequencing. As a preliminary step to characterize smithRNAs across different metazoan lineages, a dedicated, unified, analytical workflow is needed. RESULTS We propose a novel workflow specifically designed for smithRNAs. Sequence data (from small RNA sequencing) uniquely mapping to the mitochondrial genome are clustered into putative smithRNAs and prefiltered based on their abundance, presence in replicate libraries and 5' and 3' transcription boundary conservation. The surviving sequences are subsequently compared to the untranslated regions of nuclear transcripts based on seed pairing, overall match and thermodynamic stability to identify possible targets. Ample collateral information and graphics are produced to help characterize these molecules in the species of choice and guide the operator through the analysis. The workflow was tested on the original Manila clam data. Under basic settings, the results of the original study are largely replicated. The effect of additional parameter customization (clustering threshold, stringency, minimum number of replicates, seed matching) was further evaluated. CONCLUSIONS The study of smithRNAs is still in its infancy and no dedicated analytical workflow is currently available. At its core, the SmithHunter workflow builds over the bioinformatic procedure originally applied to identify candidate smithRNAs in the Manila clam. In fact, this is currently the only evidence for smithRNAs that has been biologically validated and, therefore, the elective starting point for characterizing smithRNAs in other species. The original analysis was readapted using current software implementations and some minor issues were solved. Moreover, the workflow was improved by allowing the customization of different analytical parameters, mostly focusing on stringency and the possibility of accounting for a minimal level of genetic differentiation among samples.
Collapse
Affiliation(s)
| | - Diego Carli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Claudio Cucini
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
| | - Antonio Carapelli
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Francesco Frati
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.
| | - Francesco Nardi
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| |
Collapse
|
5
|
Du J, Su J, Xing Y, Zhao Y, Tian M, Dai W, Dong H. Charge-Reversal NaCl/G-Quartets for Aggregation-Induced Mitochondrial MicroRNA Imaging and Ion-Interference Therapy. Anal Chem 2024; 96:5922-5930. [PMID: 38575388 DOI: 10.1021/acs.analchem.3c05977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Mitochondrial therapy is a promising new strategy that offers the potential to achieve precise disease diagnosis or maximum therapeutic response. However, versatile mitochondrial theranostic platforms that integrate biomarker detection and therapy have rarely been exploited. Here, we report a charge-reversal nanomedicine activated by an acidic microenvironment for mitochondrial microRNA (mitomiR) detection and ion-interference therapy. The transporter liposome (DD-DC) was constructed from a pH-responsive polymer and a positively charged phospholipid, encapsulating NaCl nanoparticles with coloading of the aggregation-induced emission (AIE) fluorogens AIEgen-DNA/G-quadruplexes precursor and brequinar (NAB@DD-DC). The negatively charged nanomedicine ensured good blood stability and high tumor accumulation, while the charge-reversal to positive in response to the acidic pH in the tumor microenvironment (TME) and lysosomes enhanced the uptake by tumor cells and lysosome escape, achieving accumulation in mitochondria. The subsequently released Na+ in mitochondria not only contributed to the formation of mitomiR-494 induced G-quadruplexes for AIE imaging diagnosis but also led to an osmolarity surge that was enhanced by brequinar to achieve effective ion-interference therapy.
Collapse
Affiliation(s)
- Jinya Du
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
- Pharmaron-Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Jiaxin Su
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Yi Xing
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Yanming Zhao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Meng Tian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P. R. China
| |
Collapse
|
6
|
Gaitanou M. Mitochondrial microRNAs (mitomiRs) in human ageing and diseases. Mech Ageing Dev 2023; 215:111873. [PMID: 37708983 DOI: 10.1016/j.mad.2023.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Affiliation(s)
- Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Greece.
| |
Collapse
|
7
|
Different platforms for mitomiRs in mitochondria: Emerging facets in regulation of mitochondrial functions. Mitochondrion 2022; 66:67-73. [DOI: 10.1016/j.mito.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022]
|
8
|
Renal mitochondrial injury in the pathogenesis of CKD: mtDNA and mitomiRs. Clin Sci (Lond) 2022; 136:345-360. [PMID: 35260892 PMCID: PMC10018514 DOI: 10.1042/cs20210512] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/14/2022] [Accepted: 02/24/2022] [Indexed: 12/31/2022]
Abstract
Chronic kidney disease (CKD) is a public health concern that affects over 200 million people worldwide and is associated with a tremendous economic burden. Therefore, deciphering the mechanisms underpinning CKD is crucial to decelerate its progression towards end-stage renal disease (ESRD). Renal tubular cells are populated with a high number of mitochondria, which produce cellular energy and modulate several important cellular processes, including generation of reactive oxygen species (ROS), calcium homeostasis, proliferation, and apoptosis. Over the past few years, increasing evidence has implicated renal mitochondrial damage in the pathogenesis of common etiologies of CKD, such as diabetes, hypertension, metabolic syndrome (MetS), chronic renal ischemia, and polycystic kidney disease (PKD). However, most compelling evidence is based on preclinical studies because renal biopsies are not routinely performed in many patients with CKD. Previous studies have shown that urinary mitochondrial DNA (mtDNA) copy numbers may serve as non-invasive biomarkers of renal mitochondrial dysfunction. Emerging data also suggest that CKD is associated with altered expression of mitochondria-related microRNAs (mitomiRs), which localize in mitochondria and regulate the expression of mtDNA and nucleus-encoded mitochondrial genes. This review summarizes relevant evidence regarding the involvement of renal mitochondrial injury and dysfunction in frequent forms of CKD. We further provide an overview of non-invasive biomarkers and potential mechanisms of renal mitochondrial damage, especially focusing on mtDNA and mitomiRs.
Collapse
|
9
|
Rencelj A, Gvozdenovic N, Cemazar M. MitomiRs: their roles in mitochondria and importance in cancer cell metabolism. Radiol Oncol 2021; 55:379-392. [PMID: 34821131 PMCID: PMC8647792 DOI: 10.2478/raon-2021-0042] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are short non-coding RNAs that play important roles in almost all biological pathways. They regulate post-transcriptional gene expression by binding to the 3'untranslated region (3'UTR) of messenger RNAs (mRNAs). MitomiRs are miRNAs of nuclear or mitochondrial origin that are localized in mitochondria and have a crucial role in regulation of mitochondrial function and metabolism. In eukaryotes, mitochondria are the major sites of oxidative metabolism of sugars, lipids, amino acids, and other bio-macromolecules. They are also the main sites of adenosine triphosphate (ATP) production. CONCLUSIONS In the review, we discuss the role of mitomiRs in mitochondria and introduce currently well studied mitomiRs, their target genes and functions. We also discuss their role in cancer initiation and progression through the regulation of mRNA expression in mitochondria. MitomiRs directly target key molecules such as transporters or enzymes in cell metabolism and regulate several oncogenic signaling pathways. They also play an important role in the Warburg effect, which is vital for cancer cells to maintain their proliferative potential. In addition, we discuss how they indirectly upregulate hexokinase 2 (HK2), an enzyme involved in glucose phosphorylation, and thus may affect energy metabolism in breast cancer cells. In tumor tissues such as breast cancer and head and neck tumors, the expression of one of the mitomiRs (miR-210) correlates with hypoxia gene signatures, suggesting a direct link between mitomiR expression and hypoxia in cancer. The miR-17/92 cluster has been shown to act as a key factor in metabolic reprogramming of tumors by regulating glycolytic and mitochondrial metabolism. This cluster is deregulated in B-cell lymphomas, B-cell chronic lymphocytic leukemia, acute myeloid leukemia, and T-cell lymphomas, and is particularly overexpressed in several other cancers. Based on the current knowledge, we can conclude that there is a large number of miRNAs present in mitochondria, termed mitomiR, and that they are important regulators of mitochondrial function. Therefore, mitomiRs are important players in the metabolism of cancer cells, which need to be further investigated in order to develop a potential new therapies for cancer.
Collapse
Affiliation(s)
- Andrej Rencelj
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nada Gvozdenovic
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| |
Collapse
|
10
|
Wang F, Zhang D, Zhang D, Li P, Gao Y. Mitochondrial Protein Translation: Emerging Roles and Clinical Significance in Disease. Front Cell Dev Biol 2021; 9:675465. [PMID: 34277617 PMCID: PMC8280776 DOI: 10.3389/fcell.2021.675465] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are one of the most important organelles in cells. Mitochondria are semi-autonomous organelles with their own genetic system, and can independently replicate, transcribe, and translate mitochondrial DNA. Translation initiation, elongation, termination, and recycling of the ribosome are four stages in the process of mitochondrial protein translation. In this process, mitochondrial protein translation factors and translation activators, mitochondrial RNA, and other regulatory factors regulate mitochondrial protein translation. Mitochondrial protein translation abnormalities are associated with a variety of diseases, including cancer, cardiovascular diseases, and nervous system diseases. Mutation or deletion of various mitochondrial protein translation factors and translation activators leads to abnormal mitochondrial protein translation. Mitochondrial tRNAs and mitochondrial ribosomal proteins are essential players during translation and mutations in genes encoding them represent a large fraction of mitochondrial diseases. Moreover, there is crosstalk between mitochondrial protein translation and cytoplasmic translation, and the imbalance between mitochondrial protein translation and cytoplasmic translation can affect some physiological and pathological processes. This review summarizes the regulation of mitochondrial protein translation factors, mitochondrial ribosomal proteins, mitochondrial tRNAs, and mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) in the mitochondrial protein translation process and its relationship with diseases. The regulation of mitochondrial protein translation and cytoplasmic translation in multiple diseases is also summarized.
Collapse
Affiliation(s)
- Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Deyu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.,Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| |
Collapse
|
11
|
Paul S, Bravo Vázquez LA, Uribe SP, Manzanero Cárdenas LA, Ruíz Aguilar MF, Chakraborty S, Sharma A. Roles of microRNAs in carbohydrate and lipid metabolism disorders and their therapeutic potential. Biochimie 2021; 187:83-93. [PMID: 34082043 DOI: 10.1016/j.biochi.2021.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are small (∼21 nucleotides), endogenous, non-coding RNA molecules implicated in the post-transcriptional gene regulation performed through target mRNA cleavage or translational inhibition. In recent years, several investigations have demonstrated that miRNAs are involved in regulating both carbohydrate and lipid homeostasis in humans and other organisms. Moreover, it has been observed that the dysregulation of these metabolism-related miRNAs leads to the development of several metabolic disorders, such as type 2 diabetes, obesity, nonalcoholic fatty liver, insulin resistance, and hyperlipidemia. Hence, in this current review, with the aim to impulse the research arena of the micro-transcriptome implications in vital metabolic pathways as well as to highlight the remarkable potential of miRNAs as therapeutic targets for metabolic disorders in humans, we provide an overview of the regulatory roles of metabolism-associated miRNAs in humans and murine models.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico.
| | - Luis Alberto Bravo Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico
| | - Samantha Pérez Uribe
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico
| | - Luis Aarón Manzanero Cárdenas
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Ciudad de Mexico, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, CP 14380, Mexico City, Mexico
| | - María Fernanda Ruíz Aguilar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Ciudad de Mexico, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, CP 14380, Mexico City, Mexico
| | - Samik Chakraborty
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, MA, 02115, USA
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico.
| |
Collapse
|
12
|
Shemiakova T, Ivanova E, Wu WK, Kirichenko TV, Starodubova AV, Orekhov AN. Atherosclerosis as Mitochondriopathy: Repositioning the Disease to Help Finding New Therapies. Front Cardiovasc Med 2021; 8:660473. [PMID: 34017868 PMCID: PMC8129197 DOI: 10.3389/fcvm.2021.660473] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis is a complex pathology that involves both metabolic dysfunction and chronic inflammatory process. During the last decade, a considerable progress was achieved in describing the pathophysiological features of atherosclerosis and developing approaches that target the abnormal lipid metabolism and chronic inflammation. However, early events in the arterial wall that initiate the disease development still remain obscure. Finding effective therapeutic targets in these early processes would allow developing methods for disease prevention and, possibly, atherosclerotic plaque regression. Currently, these early events are being actively studied by several research groups. One of the processes that are being investigated is the development of mitochondrial dysfunction, which was demonstrated to be present in the affected areas of the arterial wall. Detection and characterization of mitochondrial dysfunction associated with several chronic human disorders was made possible by the improved methods of studying mitochondrial biology and detecting mitochondrial DNA (mtDNA) mutations. It was found to be involved in several key atherogenic processes, such as oxidative stress, chronic inflammation, and intracellular lipid accumulation. Mitochondrial dysfunction can occur in all types of cells involved in the pathogenesis of atherosclerosis: monocytes and macrophages, smooth muscle cells, lymphocytes, and the endothelial cells. However, therapies that would specifically target the mitochondria to correct mitochondrial dysfunction and neutralize the defective organelles are still remain to be developed and characterized. The aim of this review is to outline the prospects for mitochondrial therapy for atherosclerosis. We discuss mechanisms of mitochondria-mediated atherogenic processes, known mitochondria-targeting therapy strategies, and novel mitochondria-targeting drugs in the context of atherosclerosis.
Collapse
Affiliation(s)
- Taisiia Shemiakova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Wei-Kai Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Tatiana V Kirichenko
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Moscow, Russia.,Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia
| | - Antonina V Starodubova
- Federal Research Center for Nutrition, Biotechnology and Food Safety, Moscow, Russia.,Faculty of Therapy, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|