1
|
Liu H, Xue H, Guo Q, Xue X, Yang L, Zhao K, Liu Y. Ferroptosis meets inflammation: A new frontier in cancer therapy. Cancer Lett 2025; 620:217696. [PMID: 40189012 DOI: 10.1016/j.canlet.2025.217696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, has emerged as a critical player in cancer pathogenesis. Concurrently, inflammation, a key biological response to tissue injury or infection, significantly influences cancer development and progression. The interplay between ferroptosis and inflammation represents a promising yet underexplored area of research. This review synthesizes recent advances in understanding the molecular mechanisms governing their interaction, emphasizing how ferroptosis triggers inflammatory responses and how inflammatory mediators, such as TNF-α, regulate ferroptosis through iron metabolism and lipid peroxidation pathways. Key molecular targets within the ferroptosis-inflammation axis, including GPX4, ACSL4, and the NF-κB signaling pathway, offer therapeutic potential for cancer treatment. By modulating these targets, it may be possible to enhance ferroptosis and fine-tune inflammatory responses, thereby improving therapeutic outcomes. Additionally, this review explores the broader implications of targeting the ferroptosis-inflammation interplay in disease treatment, highlighting opportunities for developing innovative strategies to combat cancer. By bridging the gap in current knowledge, this review provides a comprehensive resource for researchers and clinicians, offering insights into the therapeutic potential of this intricate biological relationship.
Collapse
Affiliation(s)
- Hu Liu
- Department of Oncology Surgery, Shanghai Mengchao Hospital, Shanghai University, Shanghai, 202800, China
| | - Hui Xue
- Department of Oncology Surgery, Shanghai Mengchao Hospital, Shanghai University, Shanghai, 202800, China
| | - Qian Guo
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xutong Xue
- Boston Children's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Lixue Yang
- Department of Oncology Surgery, Shanghai Mengchao Hospital, Shanghai University, Shanghai, 202800, China.
| | - Kaijun Zhao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Yu'e Liu
- Boston Children's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
2
|
Mete M, Ojha A, Dhar P, Das D. Deciphering Ferroptosis: From Molecular Pathways to Machine Learning-Guided Therapeutic Innovation. Mol Biotechnol 2025; 67:1290-1309. [PMID: 38613722 DOI: 10.1007/s12033-024-01139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/11/2024] [Indexed: 04/15/2024]
Abstract
Ferroptosis is a unique form of cell death reliant on iron and lipid peroxidation. It disrupts redox balance, causing cell death by damaging the plasma membrane, with inducers acting through enzymatic pathways or transport systems. In cancer treatment, suppressing ferroptosis or circumventing it holds significant promise. Beyond cancer, ferroptosis affects aging, organs, metabolism, and nervous system. Understanding ferroptosis mechanisms holds promise for uncovering novel therapeutic strategies across a spectrum of diseases. However, detection and regulation of this regulated cell death are still mired with challenges. The dearth of cell, tissue, or organ-specific biomarkers muted the pharmacological use of ferroptosis. This review covers recent studies on ferroptosis, detailing its properties, key genes, metabolic pathways, and regulatory networks, emphasizing the interaction between cellular signaling and ferroptotic cell death. It also summarizes recent findings on ferroptosis inducers, inhibitors, and regulators, highlighting their potential therapeutic applications across diseases. The review addresses challenges in utilizing ferroptosis therapeutically and explores the use of machine learning to uncover complex patterns in ferroptosis-related data, aiding in the discovery of biomarkers, predictive models, and therapeutic targets. Finally, it discusses emerging research areas and the importance of continued investigation to harness the full therapeutic potential of targeting ferroptosis.
Collapse
Affiliation(s)
- Megha Mete
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, Tripura, 799046, India
| | - Amiya Ojha
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, Tripura, 799046, India
| | - Priyanka Dhar
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Deeplina Das
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, Tripura, 799046, India.
| |
Collapse
|
3
|
Bamahel AS, Sun X, Wu W, Mu C, Liu J, Bi S, Xu H. Regulatory Roles and Therapeutic Potential of miR-122-5p in Hypoxic-Ischemic Brain Injury: Comprehensive Review. Cell Biochem Biophys 2025:10.1007/s12013-025-01686-6. [PMID: 40016565 DOI: 10.1007/s12013-025-01686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
In the regulation of gene expression, epigenetic factors, including non-coding RNAs (ncRNAs) play a role in genetics. Among the ncRNA family, microRNAs (miRNAs) have gained significant attention for their involvement in post-transcriptional gene regulation, with profound implications for both normal and pathological processes including neurological diseases such as hypoxic-ischemic brain injury. A specific miRNA, called miR-122-5p, has gained attention in hypoxic-ischemic conditions, where it modulates critical pathways such as inflammation, oxidative stress, and neuronal survival. The purpose of this review is to highlight recent advances in the biogenesis, expression, and regulation of miR-122-5p, focusing on its role in hypoxic-ischemic conditions and its potential as a therapeutic target. We first studied the therapeutic strategies and potential clinical applications of miR-122-5p, our research showing it interacts with key transcription factors, such as HIF-1α and NF-κB, influencing cellular responses to low oxygen levels. Our findings revealed that miR-122-5p plays a vital role in hypoxic-ischemic brain injury, with its abnormal levels strongly associated with increased brain damage and neuroinflammation, suggesting its potential as a promising therapeutic target. Furthermore, miR-122-5p influences various biological processes in the brain, such as metabolism and blood vessel formation. The use of miR-122-5p inhibitor has been shown to increase autophagy, reduce apoptosis, and decrease oxidative stress and inflammation, thereby protecting neurons and improving outcomes in hypoxic encephalopathy by targeting multiple genes related to these processes. Conversely, miR-122-5p mimics exacerbate oxidative stress and reduce autophagy. These findings highlight the therapeutic potential of miR-122-5p inhibition in reducing brain injury and promoting recovery in hypoxic-ischemic encephalopathy through enhanced neuroprotective mechanisms and the suppression of harmful cellular processes. However, further experimental studies are needed to fully understand the therapeutic potential of targeting miR-122-5p and its related genes in hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
| | - Xun Sun
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Wei Wu
- Public Health College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Chenxi Mu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Jia Liu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Sheng Bi
- Clinical Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Hui Xu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China.
| |
Collapse
|
4
|
Liang GQ, Mu W, Jiang CB. Baicalein improves renal interstitial fibrosis by inhibiting the ferroptosis in vivo and in vitro. Heliyon 2024; 10:e28954. [PMID: 38601597 PMCID: PMC11004807 DOI: 10.1016/j.heliyon.2024.e28954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Evidence indicates that Baicalein can ameliorate renal interstitial fibrosis by inducing myofibroblast apoptosis and inhibit the RLS3-induced ferroptosis in melanocytes. However, the relationship between renal interstitial fibrosis and anti-ferroptosis affected by Baicalein remains unclear. In our study, the anti-fibrosis and anti-ferroptosis effects of Baicalein were assessed in a rat model induced by the UUO method in vivo, and the effects of Baicalein on Erastin-induced ferroptosis of renal MPC-5 cells were examined by Western blot of fibrosis-related and ferroptosis-related proteins in vitro. In the UUO-induced rat model, Baicalein decreased kidney weight loss, improved renal function assessed the biomarks of urinary albumin excretion, serum creatine, and BUN levels, and reduced renal tubular injury. Furthermore, Baicalein inhibited renal ferroptosis by reducing ROS and MDA levels and increasing SOD and GSH levels in the UUO rat model. In addition, Baicalein potently reduced the expression of fibrosis-related proteins such as TGF-β1, a-SMA, and Smad-2 to prevent renal interstitial fibrosis, and increased the expression of ferroptosis-related proteins such as SLC7A11, GPX4, and FTH to inhibit ferroptosis both in vitro and in vivo. Taken together, Baicalein exerts anti-fibrosis activity by reducing the ferroptosis response on the UUO-induced rat model and renal MPC5 cells. Therefore, Baicalein, as a novel therapeutic method on kidney diseases with strong activity in suppressing ferroptosis, could be a potential alternative treatment for renal interstitial fibrosis.
Collapse
Affiliation(s)
- Guo-qiang Liang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
- Suzhou Academy of Wumen Chinese Medicine, Suzhou, China
| | - Wei Mu
- Department of Pharmacy and Clinical Pharmacy, Precision Medicine Center, 904th Hospital of PLA, Wuxi, China
| | - Chun-bo Jiang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
- Department of Nephrology, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China
| |
Collapse
|
5
|
Genaro-Mattos TC, Korade Z, Sahar NE, Angeli JPF, Mirnics K, Peeples ES. Enhancing 7-dehydrocholesterol suppresses brain ferroptosis and tissue injury after neonatal hypoxia-ischemia. Sci Rep 2024; 14:7924. [PMID: 38575644 PMCID: PMC10994918 DOI: 10.1038/s41598-024-58579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
Neonatal hypoxic-ischemic brain injury (HIBI) results in part from excess reactive oxygen species and iron-dependent lipid peroxidation (i.e. ferroptosis). The vitamin D precursor 7-dehydrocholesterol (7-DHC) may inhibit iron-dependent lipid peroxidation. Primary neurons underwent oxygen and glucose deprivation (OGD) injury and treatment with 7-DHC-elevating medications such as cariprazine (CAR) or vehicle. Postnatal day 9 mice underwent sham surgery or carotid artery ligation and hypoxia and received intraperitoneal CAR. In neurons, CAR administration resulted in significantly increased cell survival compared to vehicle controls, whether administered 48 h prior to or 30 min after OGD, and was associated with increased 7-DHC. In the mouse model, malondialdehyde and infarct area significantly increased after HIBI in the vehicle group, which were attenuated by post-treatment with CAR and were negatively correlated with tissue 7-DHC concentrations. Elevating 7-DHC concentrations with CAR was associated with improved cellular and tissue viability after hypoxic-ischemic injury, suggesting a novel therapeutic avenue.
Collapse
Affiliation(s)
- Thiago C Genaro-Mattos
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Zeljka Korade
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Child Health Research Institute, Omaha, NE, 68198, USA
| | - Namood-E Sahar
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Child Health Research Institute, Omaha, NE, 68198, USA
| | - Jose Pedro Friedmann Angeli
- Rudolf Virchow Zentrum - Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Károly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68106, USA
- Child Health Research Institute, Omaha, NE, 68198, USA
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Child Health Research Institute, Omaha, NE, 68198, USA.
- Department of Pediatrics, Children's Nebraska, Omaha, NE, 68114, USA.
| |
Collapse
|
6
|
Panczyszyn E, Saverio V, Monzani R, Gagliardi M, Petrovic J, Stojkovska J, Collavin L, Corazzari M. FSP1 is a predictive biomarker of osteosarcoma cells' susceptibility to ferroptotic cell death and a potential therapeutic target. Cell Death Discov 2024; 10:87. [PMID: 38368399 PMCID: PMC10874395 DOI: 10.1038/s41420-024-01854-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Human osteosarcoma (OS) is a relatively rare malignancy preferentially affecting long body bones which prognosis is often poor also due to the lack of effective therapies. Clinical management of this cancer basically relies on surgical removal of primary tumor coupled with radio/chemotherapy. Unfortunately, most osteosarcoma cells are resistant to conventional therapy, with the undergoing epithelial-mesenchymal transition (EMT) giving rise to gene expression reprogramming, thus increasing cancer cell invasiveness and metastatic potential. Alternative clinical approaches are thus urgently needed. In this context, the recently described ferroptotic cell death represents an attractive new strategy to efficiently kill cancer cells, since most chemoresistant and mesenchymal-shaped tumors display high susceptibility to pro-ferroptotic compounds. However, cancer cells have also evolved anti-ferroptotic strategies, which somehow sustain their survival upon ferroptosis induction. Indeed, here we show that osteosarcoma cell lines display heterogeneous sensitivity to ferroptosis execution, correlating with the mesenchymal phenotype, which is consistently affected by the expression of the well-known anti-ferroptotic factor ferroptosis suppressor protein 1 (FSP1). Interestingly, inhibiting the activity or expression of FSP1 restores cancer cell sensitivity to ferroptosis. Moreover, we also found that: i) AKRs might also contribute to resistance; ii) NRF2 enhances FSP1 expression upon ferroptosis induction; while iii) p53 contributes to the regulation of FSP1 basal expression in OS cells.In conclusion, FSP1 expression can potentially be used as a valuable predictive marker of OS sensitivity to ferroptosis and as a new potential therapeutic target.
Collapse
Affiliation(s)
- Elzbieta Panczyszyn
- Department of Health Sciences and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Valentina Saverio
- Department of Health Sciences and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Romina Monzani
- Department of Health Sciences and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Mara Gagliardi
- Department of Health Sciences and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy
| | - Jelena Petrovic
- University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
- Innovation Center of the Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Jasmina Stojkovska
- University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Licio Collavin
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Marco Corazzari
- Department of Health Sciences and Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy.
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
7
|
Gong H, Li Z, Wu Z, Lian G, Su Z. Modulation of ferroptosis by non‑coding RNAs in cancers: Potential biomarkers for cancer diagnose and therapy. Pathol Res Pract 2024; 253:155042. [PMID: 38184963 DOI: 10.1016/j.prp.2023.155042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
Ferroptosis is a recently discovered cell programmed death. Extensive researches have indicated that ferroptosis plays an essential role in tumorigenesis, development, migration and chemotherapy drugs resistance, which makes it become a new target for tumor therapy. Non-coding RNAs (ncRNAs) are considered to control a wide range of cellular processes by modulating gene expression. Recent studies have indicated that ncRNAs regulate the process of ferroptosis via various pathway to affect the development of cancer. However, the regulation network remains ambiguous. In this review, we outlined the major metabolic processes of ferroptosis and concluded the relationship between ferroptosis-related ncRNAs and cancer progression. In addition, the prospect of ncRNAs being new therapeutic targets and early diagnosis biomarkers for cancer by regulating ferroptosis were presented, and the possible obstacles were also predicted. This could help in discovering novel cancer early diagnostic methods and therapeutic approaches.
Collapse
Affiliation(s)
- Huifang Gong
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zheng Li
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhimin Wu
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Gaojian Lian
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Zehong Su
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
8
|
Yang Q, Yang B, Chen M. Partner of NOB1 homolog transcriptionally activated by E2F transcription factor 1 promotes the malignant progression and inhibits ferroptosis of pancreatic cancer. CHINESE J PHYSIOL 2023; 66:388-399. [PMID: 37929351 DOI: 10.4103/cjop.cjop-d-23-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest malignancies. Partner of NOB1 homolog (PNO1) has been reported to be involved in tumorigenesis. However, the role of PNO1 in PC remains to be elucidated. The purpose of this study was to examine the effects of PNO1 on the progression of PC and the possible mechanism related to E2F transcription factor 1 (E2F1), a transcription factor predicted by the JASPAR database to bind to the PNO1 promoter region and promoted the proliferation of pancreatic ductal adenocarcinoma. First, PNO1 expression in PC tissues and its association with survival rate were analyzed by the Gene Expression Profiling Interactive Analysis database. Western blot and reverse transcription-quantitative polymerase chain reaction were used to evaluate PNO1 expression in several PC cell lines. After PNO1 silencing, cell proliferation, migration, and invasion were measured by colony formation assay, 5-ethynyl-2'-deoxyuridine staining, wound healing, and transwell assays. Then, the lipid reactive oxygen species in PANC-1 cells was estimated by using C11-BODIPY581/591 probe. The levels of glutathione, malondialdehyde, and iron were measured. The binding between PNO1 and E2F1 was confirmed by luciferase and chromatin immunoprecipitation (ChIP) assays. Subsequently, E2F1 was overexpressed in PANC-1 cells with PNO1 knockdown to perform the rescue experiments. Results revealed that PNO1 was highly expressed in PC tissues and PNO1 expression was positively correlated with overall survival rate and disease-free survival rate. Significantly elevated PNO1 expression was also observed in PC cell lines. PNO1 knockdown inhibited the proliferation, migration, and invasion of PANC-1 cells. Moreover, ferroptosis was promoted in PNO1-silenced PANC-1 cells. Results of luciferase and ChIP assays indicated that E2F1 could bind to PNO1 promoter region. Rescue experiments suggested that E2F1 overexpression reversed the impacts of PNO1 depletion on the malignant behaviors and ferroptosis in PANC-1 cells. Summing up, PNO1 transcriptionally activated by E2F1 promotes the malignant progression and inhibits the ferroptosis of PC.
Collapse
Affiliation(s)
- Qin Yang
- Department of Laboratory Medicine, General Hospital of Central Theatre Command, Wuhan, Hubei, China
| | - Bin Yang
- Department of Burn and Plastic Surgery, General Hospital of Central Theatre Command, Wuhan, Hubei, China
| | - Min Chen
- Department of Laboratory Medicine, General Hospital of Central Theatre Command, Wuhan, Hubei, China
| |
Collapse
|
9
|
Ferrer M, Mourikis N, Davidson EE, Kleeman SO, Zaccaria M, Habel J, Rubino R, Gao Q, Flint TR, Young L, Connell CM, Lukey MJ, Goncalves MD, White EP, Venkitaraman AR, Janowitz T. Ketogenic diet promotes tumor ferroptosis but induces relative corticosterone deficiency that accelerates cachexia. Cell Metab 2023; 35:1147-1162.e7. [PMID: 37311455 PMCID: PMC11037504 DOI: 10.1016/j.cmet.2023.05.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/03/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
Glucose dependency of cancer cells can be targeted with a high-fat, low-carbohydrate ketogenic diet (KD). However, in IL-6-producing cancers, suppression of the hepatic ketogenic potential hinders the utilization of KD as energy for the organism. In IL-6-associated murine models of cancer cachexia, we describe delayed tumor growth but accelerated cachexia onset and shortened survival in mice fed KD. Mechanistically, this uncoupling is a consequence of the biochemical interaction of two NADPH-dependent pathways. Within the tumor, increased lipid peroxidation and, consequently, saturation of the glutathione (GSH) system lead to the ferroptotic death of cancer cells. Systemically, redox imbalance and NADPH depletion impair corticosterone biosynthesis. Administration of dexamethasone, a potent glucocorticoid, increases food intake, normalizes glucose levels and utilization of nutritional substrates, delays cachexia onset, and extends the survival of tumor-bearing mice fed KD while preserving reduced tumor growth. Our study emphasizes the need to investigate the effects of systemic interventions on both the tumor and the host to accurately assess therapeutic potential. These findings may be relevant to clinical research efforts that investigate nutritional interventions such as KD in patients with cancer.
Collapse
Affiliation(s)
- Miriam Ferrer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; MRC Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | | | - Emma E Davidson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sam O Kleeman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Jill Habel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Rachel Rubino
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Qing Gao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Thomas R Flint
- Department of Oncology, CRUK Cambridge Institute, Cambridge Biomedical Campus, Cambridge CB2 0RE, UK
| | - Lisa Young
- Department of Oncology, CRUK Cambridge Institute, Cambridge Biomedical Campus, Cambridge CB2 0RE, UK
| | - Claire M Connell
- Department of Oncology, CRUK Cambridge Institute, Cambridge Biomedical Campus, Cambridge CB2 0RE, UK
| | - Michael J Lukey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eileen P White
- Department of Molecular Biology and Biochemistry, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Ashok R Venkitaraman
- MRC Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Institute for Molecular & Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Northwell Health Cancer Institute, Northwell Health, New Hyde Park, NY 11042, USA.
| |
Collapse
|
10
|
Hu M, Huang J, Chen L, Sun XR, Yao ZM, Tong XH, Jin WJ, Zhang YX, Dong SY. Upregulation of CDGSH iron sulfur domain 2 attenuates cerebral ischemia/reperfusion injury. Neural Regen Res 2023; 18:1512-1520. [PMID: 36571356 PMCID: PMC10075131 DOI: 10.4103/1673-5374.355766] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
CDGSH iron sulfur domain 2 can inhibit ferroptosis, which has been associated with cerebral ischemia/reperfusion, in individuals with head and neck cancer. Therefore, CDGSH iron sulfur domain 2 may be implicated in cerebral ischemia/reperfusion injury. To validate this hypothesis in the present study, we established mouse models of occlusion of the middle cerebral artery and HT22 cell models of oxygen-glucose deprivation and reoxygenation to mimic cerebral ischemia/reperfusion injury in vivo and in vitro, respectively. We found remarkably decreased CDGSH iron sulfur domain 2 expression in the mouse brain tissue and HT22 cells. When we used adeno-associated virus and plasmid to up-regulate CDGSH iron sulfur domain 2 expression in the brain tissue and HT22 cell models separately, mouse neurological dysfunction was greatly improved; the cerebral infarct volume was reduced; the survival rate of HT22 cells was increased; HT22 cell injury was alleviated; the expression of ferroptosis-related glutathione peroxidase 4, cystine-glutamate antiporter, and glutathione was increased; the levels of malondialdehyde, iron ions, and the expression of transferrin receptor 1 were decreased; and the expression of nuclear-factor E2-related factor 2/heme oxygenase 1 was increased. Inhibition of CDGSH iron sulfur domain 2 upregulation via the nuclear-factor E2-related factor 2 inhibitor ML385 in oxygen-glucose deprived and reoxygenated HT22 cells blocked the neuroprotective effects of CDGSH iron sulfur domain 2 up-regulation and the activation of the nuclear-factor E2-related factor 2/heme oxygenase 1 pathway. Our data indicate that the up-regulation of CDGSH iron sulfur domain 2 can attenuate cerebral ischemia/reperfusion injury, thus providing theoretical support from the perspectives of cytology and experimental zoology for the use of this protein as a therapeutic target in patients with cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Miao Hu
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Lei Chen
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Xiao-Rong Sun
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Zi-Meng Yao
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Xu-Hui Tong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Wen-Jing Jin
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Yu-Xin Zhang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Shu-Ying Dong
- Department of Pharmacology, School of Pharmacy; Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, Anhui Province, China
| |
Collapse
|
11
|
Velkova I, Pasino M, Khalid Z, Menichini P, Martorana E, Izzotti A, Pulliero A. Modulation of Ferroptosis by microRNAs in Human Cancer. J Pers Med 2023; 13:jpm13050719. [PMID: 37240889 DOI: 10.3390/jpm13050719] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Ferroptosis is a cell death pathway triggered by an imbalance between the production of oxidants and antioxidants, which plays an emerging role in tumorigenesis. It is mainly regulated at three different levels including iron metabolism, the antioxidant response, and lipid metabolism. Epigenetic dysregulation is a "hallmark" of human cancer, with nearly half of all human cancers harboring mutations in epigenetic regulators such as microRNA. While being the crucial player in controlling gene expression at the mRNA level, microRNAs have recently been shown to modulate cancer growth and development via the ferroptosis pathway. In this scenario, some miRNAs have a function in upregulating, while others play a role in inhibiting ferroptosis activity. The investigation of validated targets using the miRBase, miRTarBase, and miRecords platforms identified 13 genes that appeared enriched for iron metabolism, lipid peroxidation, and antioxidant defense; all are recognized contributors of tumoral suppression or progression phenotypes. This review summarizes and discuss the mechanism by which ferroptosis is initiated through an imbalance in the three pathways, the potential function of microRNAs in the control of this process, and a description of the treatments that have been shown to have an impact on the ferroptosis in cancer along with potential novel effects.
Collapse
Affiliation(s)
- Irena Velkova
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Martina Pasino
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Zumama Khalid
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | | | | | - Alberto Izzotti
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | | |
Collapse
|
12
|
Ji Y, Zheng K, Li S, Ren C, Shen Y, Tian L, Zhu H, Zhou Z, Jiang Y. Insight into the potential role of ferroptosis in neurodegenerative diseases. Front Cell Neurosci 2022; 16:1005182. [PMID: 36385946 PMCID: PMC9647641 DOI: 10.3389/fncel.2022.1005182] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Ferroptosis is a newly discovered way of programmed cell death, mainly caused by the accumulation of iron-dependent lipid peroxides in cells, which is morphologically, biochemically and genetically different from the previously reported apoptosis, necrosis and autophagy. Studies have found that ferroptosis plays a key role in the occurrence and development of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and vascular dementia, which suggest that ferroptosis may be involved in regulating the progression of neurodegenerative diseases. At present, on the underlying mechanism of ferroptosis in neurodegenerative diseases is still unclear, and relevant research is urgently needed to clarify the regulatory mechanism and provide the possibility for the development of agents targeting ferroptosis. This review focused on the regulatory mechanism of ferroptosis and its various effects in neurodegenerative diseases, in order to provide reference for the research on ferroptosis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yingying Ji
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Kai Zheng
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Shiming Li
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Caili Ren
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Tian
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Haohao Zhu
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
- *Correspondence: Haohao Zhu
| | - Zhenhe Zhou
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
- Zhenhe Zhou
| | - Ying Jiang
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
- Ying Jiang
| |
Collapse
|
13
|
Zhao J, Wu Y, Liang S, Piao X. Activation of SSAT1/ALOX15 axis aggravates cerebral ischemia/reperfusion injury via triggering neuronal ferroptosis. Neuroscience 2022; 485:78-90. [DOI: 10.1016/j.neuroscience.2022.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/20/2022]
|
14
|
Wang Y, Fan J, Chen T, Xu L, Liu P, Xiao L, Wu T, Zhou Q, Zheng Q, Liu C, Chan FL, Wu D. A novel ferroptosis-related gene prognostic index for prognosis and response to immunotherapy in patients with prostate cancer. Front Endocrinol (Lausanne) 2022; 13:975623. [PMID: 36034466 PMCID: PMC9399637 DOI: 10.3389/fendo.2022.975623] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) is among the leading causes of cancer death worldwide. Ferroptosis refers to an iron-dependent form of regulated cell death and is involved in prostate tumorigenesis. A few ferroptosis-related gene signatures have been developed to predict the prognosis for PCa patients. However, previous signatures were typically established based on biochemical recurrence-free survival, which has proven not to be a good surrogate for overall survival (OS). This study aimed to construct a novel ferroptosis-related gene prognostic index (FRGPI) to predict disease-free survival (DFS) and response to immunotherapy for PCa patients after radical prostatectomy. METHODS Gene expression and clinicopathological data on PCa patients were obtained from the TCGA database. Ferroptosis-related hub genes associated with DFS of PCa patients were identified by an in-depth bioinformatics analysis using a novel and comprehensive algorithm based on functional enrichment, consensus clustering, weighted gene co-expression network analysis (WGCNA), and protein-protein interaction (PPI) network construction. The FRGPI was established on the basis of the genes selected using multivariate cox regression analysis and further validated in two additional PCa cohorts. Next, the clinicopathological, molecular, and immune profiles were characterized and compared between FRGPI-high and FRGPI-low subgroups. Finally, the predictive role of the FRGPI in response to immunotherapy was estimated using a metastatic urothelial cancer cohort treated with an anti-PD-L1 agent. RESULTS The FRGPI was constructed based on four genes (E2F1, CDC20, TYMS, and NUP85), and FRGPI-high patients had worse DFS than FRGPI-low patients. Multivariate cox regression analysis revealed that FRGPI could act as an independent prognostic factor for PCa patients after radical prostatectomy. A prognostic nomogram comprising the FRGPI and other clinicopathological parameters was established to predict the DFS for PCa patients quantitatively. In addition, comprehensive results demonstrated that high FRGPI scores showed a significantly positive correlation with worse clinicopathological features, higher mutation counts, increased frequency of copy number variations (CNVs), higher homologous recombination deficiency (HRD) and immune scores, higher mRNAsi, and more importantly, enhanced sensitivity to immunotherapy. CONCLUSIONS FRGPI is not only a promising and robust prognostic biomarker, but also a potential indicator of immunotherapeutic outcomes for PCa patients after radical prostatectomy.
Collapse
Affiliation(s)
- Yuliang Wang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiaqi Fan
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Tao Chen
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Lele Xu
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Pengyu Liu
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Lijia Xiao
- Department of Clinical Laboratory Medicine Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Tao Wu
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Qingchun Zhou
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Qingyou Zheng
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Chunxiao Liu, ; Franky Leung Chan, ; Dinglan Wu,
| | - Franky Leung Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- *Correspondence: Chunxiao Liu, ; Franky Leung Chan, ; Dinglan Wu,
| | - Dinglan Wu
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, China
- *Correspondence: Chunxiao Liu, ; Franky Leung Chan, ; Dinglan Wu,
| |
Collapse
|