1
|
Gaydarski L, Petrova K, Stanchev S, Pelinkov D, Iliev A, Dimitrova IN, Kirkov V, Landzhov B, Stamenov N. Morphometric and Molecular Interplay in Hypertension-Induced Cardiac Remodeling with an Emphasis on the Potential Therapeutic Implications. Int J Mol Sci 2025; 26:4022. [PMID: 40362262 PMCID: PMC12071960 DOI: 10.3390/ijms26094022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/16/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Hypertension-induced cardiac remodeling is a complex process driven by interconnected molecular and cellular mechanisms that culminate in hypertensive myocardium, characterized by ventricular hypertrophy, fibrosis, impaired angiogenesis, and myocardial dysfunction. This review discusses the histomorphometric changes in capillary density, fibrosis, and mast cells in the hypertensive myocardium and delves into the roles of key regulatory systems, including the apelinergic system, vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathways, and nitric oxide (NO)/nitric oxide synthase (NOS) signaling in the pathogenesis of hypertensive heart disease (HHD). Capillary rarefaction, a hallmark of HHD, contributes to myocardial ischemia and fibrosis, underscoring the importance of maintaining vascular integrity. Targeting capillary density (CD) through antihypertensive therapy or angiogenic interventions could significantly improve cardiac outcomes. Myocardial fibrosis, mediated by excessive collagen deposition and influenced by fibroblast growth factor-2 (FGF-2) and transforming growth factor-beta (TGF-β), plays a pivotal role in the structural remodeling of hypertensive myocardium. While renin-angiotensin-aldosterone system (RAAS) inhibitors show anti-fibrotic effects, more targeted therapies are needed to address fibrosis directly. Mast cells, though less studied in humans, emerge as critical regulators of cardiac remodeling through their release of pro-fibrotic mediators such as histamine, tryptase, and FGF-2. The apelinergic system emerges as a promising therapeutic target due to its vasodilatory, anti-fibrotic, and cardioprotective properties. The system counteracts the deleterious effects of the RAAS and has demonstrated efficacy in preclinical models of hypertension-induced cardiac damage. Despite its potential, human studies on apelin analogs remain limited, warranting further exploration to evaluate their clinical utility. VEGF signaling plays a dual role, facilitating angiogenesis and compensatory remodeling during the early stages of arterial hypertension (AH) but contributing to maladaptive changes when dysregulated. Modulating VEGF signaling through exercise or pharmacological interventions has shown promise in improving CD and mitigating hypertensive cardiac damage. However, VEGF inhibitors, commonly used in oncology, can exacerbate AH and endothelial dysfunction, highlighting the need for therapeutic caution. The NO/NOS pathway is essential for vascular homeostasis and the prevention of oxidative stress. Dysregulation of this pathway, particularly endothelial NOS (eNOS) uncoupling and inducible NOS (iNOS) overexpression, leads to endothelial dysfunction and nitrosative stress in hypertensive myocardium. Strategies to restore NO bioavailability, such as tetrahydrobiopterin (BH4) supplementation and antioxidants, hold potential for therapeutic application but require further validation. Future studies should adopt a multidisciplinary approach to integrate molecular insights with clinical applications, paving the way for more personalized and effective treatments for HHD. Addressing these challenges will not only enhance the understanding of hypertensive myocardium but also improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Lyubomir Gaydarski
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Kristina Petrova
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Stancho Stanchev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Dimitar Pelinkov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Alexandar Iliev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Iva N. Dimitrova
- Department of Cardiology, University Hospital “St. Ekaterina”, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Vidin Kirkov
- Department of Health Policy and Management, Faculty of Public Health ‘Prof. Dr. Tzekomir Vodenicharov’, Medical University of Sofia, 1527 Sofia, Bulgaria;
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Nikola Stamenov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| |
Collapse
|
2
|
Node K, Tanaka A. NEO-HYPERTENSION is coming: key messages from the 46 th annual scientific meeting of the Japanese Society of Hypertension 2024. Hypertens Res 2025; 48:451-453. [PMID: 39632999 DOI: 10.1038/s41440-024-02044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
The baton-flag of the JSH passed from Prof. Node to Prof. Ichihara. The baton-flag of the JSH has been officially passed from Prof. Node (President of the JSH 2024) to Prof. Ichihara (President of the JSH 2025). JSH, Japanese Society of Hypertension.
Collapse
Affiliation(s)
- Koichi Node
- Department of Cardiovascular Medicine, Saga University, Saga, Japan.
- President of the 46th annual scientific meeting of the Japanese Society of Hypertension, Fukuoka, Japan.
| | - Atsushi Tanaka
- Department of Cardiovascular Medicine, Saga University, Saga, Japan.
- Secretary General of the 46th annual scientific meeting of the Japanese Society of Hypertension, Fukuoka, Japan.
| |
Collapse
|
3
|
Kario K, Hoshide S, Mogi M. Five special focuses of Hypertension Research: digital hypertension, home blood pressure-centered approach, renal denervation, Asians, for guidelines. Hypertens Res 2023; 46:2557-2560. [PMID: 38049635 DOI: 10.1038/s41440-023-01471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 12/06/2023]
Affiliation(s)
- Kazuomi Kario
- Division of Cardiovascular Medicine, Jichi Medical University School of Medicine, Tochigi, Japan.
| | - Satoshi Hoshide
- Division of Cardiovascular Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
4
|
Yoshida Y, Shibata H. Recent progress in the diagnosis and treatment of primary aldosteronism. Hypertens Res 2023; 46:1738-1744. [PMID: 37198444 DOI: 10.1038/s41440-023-01288-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/09/2023] [Accepted: 04/02/2023] [Indexed: 05/19/2023]
Abstract
Primary aldosteronism (PA) is caused by excessive secretion of aldosterone from the adrenal glands, with subsequent changes in the renin-angiotensin system. In Japan, chemiluminescent enzyme immunoassay is currently performed for aldosterone assay rather than the earlier method of radioimmunoassay. This change in aldosterone measurement methods has resulted in faster and more accurate measurement of blood aldosterone levels. Since 2019, esaxerenone, a mineralocorticoid receptor antagonist (MRA) with a non-steroidal skeleton, has been available in Japan for the treatment of hypertension. Esaxerenone has been reported to have various effects, such as strong antihypertensive and anti-albuminuric/proteinuric effects. Treatment of PA with MRAs has been reported to improve the patient's quality of life and to suppress the onset of cardiovascular events independent of their effects on blood pressure. Measuring renin levels is recommended for monitoring the extent of mineralocorticoid receptor blockade during MRA treatment. Patients receiving MRAs are prone to developing hyperkalemia, and combining MRAs with sodium/glucose cotransporter 2 inhibitors is expected to prevent severe hyperkalemia and provide additional cardiorenal protection. Mineralocorticoid receptor-associated hypertension is a broad concept of hypertension that includes not only PA, but also hypertension caused by borderline aldosteronism, obesity, diabetes, and sleep apnea syndrome. New findings on primary aldosteronism, which is part of MR-associated hypertension. Aldosterone measurements have been changed to the CLEIA method. Treatment of primary aldosteronism with MRAs has a variety of positive effects. CT-guided radiofrequency ablation and transarterial embolization are alternatives to surgery for aldosterone-producing adenomas. BP blood pressure, CLEIA chemiluminescent enzyme immunoassay, CT computed tomography, K serum potassium, MR mineralocorticoid receptor, MRA mineralocorticoid receptor antagonist, QOL quality of life, SGLT2i sodium/glucose cotransporter 2 inhibitor.
Collapse
Affiliation(s)
- Yuichi Yoshida
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Hirotaka Shibata
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Yufu, Japan.
| |
Collapse
|
5
|
Nagai M, Dote K, Förster CY. Denervation or stimulation? Role of sympatho-vagal imbalance in HFpEF with hypertension. Hypertens Res 2023; 46:1727-1737. [PMID: 37045971 DOI: 10.1038/s41440-023-01272-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/17/2023] [Accepted: 03/12/2023] [Indexed: 04/14/2023]
Abstract
Heart failure (HF) in the elderly is an increasingly large and complex problem in modern society. Notably, the cause of HF with preserved ejection fraction (HFpEF) is multifactorial and its pathophysiology is not fully understood. Among these, hypertension has emerged as a pivotal factor in the pathophysiology and therapeutic targets of HFpEF. Neuronal elements distributed throughout the cardiac autonomic nervous system, from the level of the central autonomic network including the insular cortex to the intrinsic cardiac nervous system, regulate the human cardiovascular system. Specifically, increased sympathetic nervous system activity due to sympatho-vagal imbalance is suggested to be associated the relationship between hypertension and HFpEF. While several new pharmacological therapies, such as sodium-glucose cotransporter 2 inhibitors, have been shown to be effective in HFpEF, neuromodulatory therapies of renal denervation and vagus nerve stimulation (VNS) have received recent attention. The current review explores the pathophysiology of the brain-heart axis that underlies the relationship between hypertension and HFpEF and the rationale for therapeutic neuromodulation of HFpEF by non-invasive transcutaneous VNS.
Collapse
Affiliation(s)
- Michiaki Nagai
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan.
| | - Keigo Dote
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Carola Yvette Förster
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg, Germany
| |
Collapse
|
6
|
Kuwabara M, Kodama T, Ae R, Kanbay M, Andres-Hernando A, Borghi C, Hisatome I, Lanaspa MA. Update in uric acid, hypertension, and cardiovascular diseases. Hypertens Res 2023; 46:1714-1726. [PMID: 37072573 DOI: 10.1038/s41440-023-01273-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/18/2023] [Accepted: 03/12/2023] [Indexed: 04/20/2023]
Abstract
A direct relationship between serum uric acid levels and hypertension, cardiovascular, renal and metabolic diseases has been reported in many basic and epidemiological studies. Among these, high blood pression is one of the most common features associated with hyperuricemia. In this regard, several small-scale interventional studies have demonstrated a significant reduction in blood pressure in hypertensive or prehypertensive patients on uric acid-lowering drugs. These observation or intervention studies have led to affirm that there is a causal relationship between uric acid and hypertension. While the clinical association between uric acid and high blood pressure is notable, no clear conclusion has yet been reached as to whether lowering uric acid is beneficial to prevent cardiovascular and renal metabolic diseases. Recently, several prospective randomized controlled intervention trials using allopurinol and other uric acid-lowering drugs have been reported, and the results from these trials were almost negative, suggesting that the correlation between hyperuricemia and cardiovascular disease has no causality. However, it is important to note that in some of these recent studies there were high dropout rates and an important fraction of participants were not hyperuricemic. Therefore, we should carry caution in interpreting the results of these studies. This review article presents the results of recent clinical trials using uric acid-lowering drugs, focusing on hypertension and cardiovascular and renal metabolic diseases, and discusses the future of uric acid therapy.
Collapse
Affiliation(s)
| | | | - Ryusuke Ae
- Division of Public Health, Center for Community Medicine, Jichi Medical University, Tochigi, Japan
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ana Andres-Hernando
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Ichiro Hisatome
- Department of Cardiology, Yonago Medical Center, Yonago, Torrori, Japan
| | - Miguel A Lanaspa
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
7
|
Katsurada K, Kario K. Emerging topics on renal denervation in hypertension: anatomical and functional aspects of renal nerves. Hypertens Res 2023:10.1038/s41440-023-01266-2. [PMID: 36991064 DOI: 10.1038/s41440-023-01266-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/27/2023] [Indexed: 03/31/2023]
Abstract
Inappropriate sympathetic activation is closely associated with the development and progression of hypertension. Renal denervation (RDN) is a neuromodulation therapy performed using an intraarterial catheter in patients with hypertension. Recent randomized sham-operated controlled trials have shown that RDN has significant antihypertensive effects that last for at least 3 years. Based on this evidence, RDN is nearly ready for general clinical application. On the other hand, there are remaining issues to be addressed, including elucidation of the precise antihypertensive mechanisms of RDN, the appropriate endpoint of RDN during the procedure, and the association between reinnervation after RDN and the long-term effects of RDN. This mini review focuses on studies implicating anatomy of the renal nerves, which consist of afferent or efferent and sympathetic or parasympathetic nerves, the response of blood pressure to renal nerve stimulation, and reinnervation of renal nerves after RDN. A comprehensive understanding of the anatomical and functional aspects of the renal nerves and the antihypertensive mechanisms of RDN, including its long-term effects, will enhance our ability to incorporate RDN into strategies to treat hypertension in clinical practice. This mini review focuses on studies implicating anatomy of the renal nerves, which consist of afferent or efferent and sympathetic or parasympathetic nerves, the response of blood pressure to renal nerve stimulation, and reinnervation of renal nerves after renal denervation. Whether the ablation site is sympathetic dominant or parasympathetic dominant, and afferent dominant or efferent dominant, would in turn determine the final output of renal denervation. BP: blood pressure.
Collapse
Affiliation(s)
- Kenichi Katsurada
- Division of Cardiovascular Medicine, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan.
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan.
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| |
Collapse
|
8
|
Visceral fat: a bad companion for mineralocorticoid receptor overactivation. Hypertens Res 2023; 46:1168-1170. [PMID: 36854727 DOI: 10.1038/s41440-023-01238-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/02/2023]
|
9
|
Time in therapeutic range: timely in hypertension therapeutics? J Hum Hypertens 2023; 37:244-247. [PMID: 36609471 DOI: 10.1038/s41371-022-00800-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023]
Abstract
Elevated blood pressure ranks among the most important modifiable risk factors for premature death, and disability from hypertension mediated organ damage in the world. Many studies attest to the value of lifestyle adjustments and pharmacologic therapy in improving outcomes in patients with hypertension. Since blood pressure is a dynamic vitals sign, variability in visit-to-visit measurements is expected. While guidelines recommend a goal blood pressure, increasing attention is centered on how often a patient's blood pressure is found to be not only below the recommended goal value, but also how much of the time the blood pressure is below what is considered a safe lower goal threshold for blood pressure. In this Perspective we review a relatively new technique in addressing adequacy of blood pressure treatment, the time in therapeutic range, and provide examples supporting the clinical relevance of this novel metric.
Collapse
|
10
|
Fluid homeostasis induced by sodium-glucose cotransporter 2 inhibitors: novel insight for better cardio-renal outcomes in chronic kidney disease. Hypertens Res 2023; 46:1195-1201. [PMID: 36849579 DOI: 10.1038/s41440-023-01220-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/07/2023] [Accepted: 02/02/2023] [Indexed: 03/01/2023]
Abstract
Hypertension in chronic kidney disease (CKD) patients is a risk factor for end-stage renal disease, cardiovascular events, and mortality. Thus, the prevention and appropriate management of hypertension in these patients are essential strategies for better cardio-renal outcomes. In this review, we show novel risk factors for hypertension with CKD, several promising prognostic markers and treatment for cardio-renal outcomes. Of note, the clinical use of sodium-glucose cotransporter 2 (SGLT2) inhibitors has recently expanded to non-diabetic patients with CKD and heart failure as well as diabetic patients. SGLT2 inhibitors have an antihypertensive effect, but are also associated with a low risk of hypotension. This unique mechanism of blood pressure regulation by SGLT2 inhibitors may partially depend on body fluid homeostasis, which is mediated by the autoregulation property between "accelerator" (diuretic action) and "brake" (increase in anti-diuretic hormone vasopressin and fluid intake). Mineralocorticoid receptor (MR) blockers are used in the treatment of essential hypertension and hyperaldosteronism. Recently, a new MR blocker, finerenone, has been launched as a treatment for CKD with type 2 diabetes. These advances in relation to hypertension in CKD may contribute to the reduction of renal and cardiovascular events.
Collapse
|
11
|
Short- to long-term blood pressure variability: Current evidence and new evaluations. Hypertens Res 2023; 46:950-958. [PMID: 36759660 DOI: 10.1038/s41440-023-01199-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 02/11/2023]
Abstract
Increased blood pressure (BP) variability and the BP surge have been reported to be associated with increased cardiovascular risk independently of BP levels and can also be a trigger of cardiovascular events. There are multiple types of BP variation: beat-to-beat variations related to breathing and the autonomic nervous system, diurnal BP variation and nocturnal dipping related to sleep and physical activity over a 24-hr period, day-to-day BP variability with anomalous readings within a several-day period, visit-to-visit BP variability between outpatient visits, and seasonal variations. BP variability is also associated with the progression to hypertension from prehypertension and the progression of chronic kidney disease and cognitive impairments. Our research group proposed the "resonance hypothesis of blood pressure surge" as a new etiological hypothesis of BP variability and surges; i.e., the concept that when the time phases of surges and hypertension-inducing environmental influences coincide, resonance occurs and is amplified into a larger "dynamic surge" that triggers the onset of cardiovascular disease. New devices to assess BP variability as well as new therapeutic interventions to reduce BP variability are being developed. Although there are still issues to be addressed (including measurement accuracy), cuffless devices and information and communication technology (ICT)-based BP monitoring devices have been developed and validated. These new devices will be useful for the individualized optimal management of BP. However, evidence regarding the usefulness of therapeutic interventions to control BP variability is still lacking.
Collapse
|
12
|
Preface-this month's Asian perspectives. Hypertens Res 2023; 46:343-344. [PMID: 36740605 DOI: 10.1038/s41440-022-01122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 02/07/2023]
|
13
|
Contribution of afferent renal nerve signals to acute and chronic blood pressure regulation in stroke-prone spontaneously hypertensive rats. Hypertens Res 2023; 46:268-279. [PMID: 36369375 DOI: 10.1038/s41440-022-01091-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
The activation of sympathetic nervous system plays a critical role in the development of hypertension. The input from afferent renal nerves may affect central sympathetic outflow; however, its contribution to the development of hypertension remains unclear. We investigated the role of afferent renal nerves in acute and chronic blood pressure regulation using normotensive Wistar-Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP). Acute chemical stimulation of afferent renal nerves elicited larger increases in blood pressure and renal sympathetic nerve activity in young 9-week-old SHRSP compared to WKY. Selective afferent renal denervation (ARDN) and conventional total renal denervation (TRDN) ablating both afferent and efferent nerves in young SHRSP revealed that only TRDN, but not ARDN, chronically attenuated blood pressure elevation. ARDN did not affect plasma renin activity or plasma angiotensin II levels, whereas TRDN decreased both. Neither TRDN nor ARDN affected central sympathetic outflow and systemic sympathetic activity determined by neuronal activity in the parvocellular region of hypothalamic paraventricular nucleus and rostral ventrolateral medulla and by plasma and urinary norepinephrine levels, respectively. Renal injury was not apparent in young SHRSP compared with WKY, suggesting that renal afferent input might not be activated in young SHRSP. In conclusion, the chronic input from afferent renal nerves does not contribute to the development of hypertension in SHRSP despite the increased blood pressure response to the acute stimulation of afferent renal nerves. Efferent renal nerves may be involved in the development of hypertension via activation of the renin-angiotensin system in SHRSP.
Collapse
|
14
|
Narita K, Hoshide S, Kario K. The role of blood pressure management in stroke prevention: current status and future prospects. Expert Rev Cardiovasc Ther 2022; 20:829-838. [PMID: 36245101 DOI: 10.1080/14779072.2022.2137490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/14/2022] [Indexed: 10/31/2022]
Abstract
INTRODUCTION Stroke is the second-leading cause of death worldwide and the second-leading cause of disability-adjusted life-years. It is well known that hypertension is a significant risk factor for cardiovascular events, including stroke. AREAS COVERED Recent interventional trials have demonstrated the superiority of intensive blood pressure (BP) control for prevention of cardiovascular events compared to standard BP control. Notably, in the Strategy of Blood Pressure Intervention in Elderly Hypertensive Patients (STEP) trial, intensive BP control showed superiority in the prevention of stroke events in elderly hypertensive patients. Novel medications such as angiotensin receptor-neprilysin inhibitors and sodium glucose cotransporter 2 inhibitors have the potential to suppress various CVD events including stroke. Non-pharmacological antihypertensive therapies such as renal denervation have demonstrated BP-lowering effects and may be useful for stroke prevention. Additionally, new methods and systems of BP monitoring including various kinds of nighttime BP measurement devices, wearable devices, and methods using information and communication technology can be used to assess the pathophysiology of BP variability as a risk factor and an event trigger of stroke incidence. EXPERT OPINION Novel therapies and new technologies for BP evaluation strongly support the development of individualized anticipatory medicine, which should be useful for the prevention of stroke.
Collapse
Affiliation(s)
- Keisuke Narita
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Satoshi Hoshide
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|