1
|
Estrada JA, Hori A, Fukazawa A, Ishizawa R, Hotta N, Kim HK, Smith SA, Mizuno M. Abnormal cardiovascular control during exercise: Role of insulin resistance in the brain. Auton Neurosci 2025; 258:103239. [PMID: 39874739 DOI: 10.1016/j.autneu.2025.103239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
During exercise circulatory adjustments to meet oxygen demands are mediated by multiple autonomic mechanisms, the skeletal muscle exercise pressor reflex (EPR), the baroreflex (BR), and by feedforward signals from central command neurons in higher brain centers. Insulin resistance in peripheral tissues includes sensitization of skeletal muscle afferents by hyperinsulinemia which is in part responsible for the abnormally heightened EPR function observed in diabetic animal models and patients. However, the role of insulin signaling within the central nervous system (CNS) is receiving increased attention as a potential therapeutic intervention in diseases with underlying insulin resistance. This review will highlight recent advances in our understanding of how insulin resistance induces changes in central signaling. The alterations in central insulin signaling produce aberrant cardiovascular responses to exercise. In particular, we will discuss the role of insulin signaling within the medullary cardiovascular control nuclei. The nucleus tractus solitarius (NTS) and rostral ventrolateral medulla (RVLM) are key nuclei where insulin has been demonstrated to modulate cardiovascular reflexes. The first locus of integration for the EPR, BR and central command is the NTS which is high in neurons expressing insulin receptors (IRs). The IRs on these neurons are well positioned to modulate cardiovascular responses to exercise. Additionally, the differences in IR density and presence of receptor isoforms enable specificity and diversity of insulin actions within the CNS. Therefore, non-invasive delivery of insulin into the CNS may be an effective means of normalizing cardiovascular responses to exercise in patients with insulin resistance.
Collapse
Affiliation(s)
- Juan A Estrada
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amane Hori
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Japan Society for the Promotion of Science, Tokyo 102-0083, Japan; College of Life and Health Sciences, Chubu University, Kasugai 487-8501, Japan
| | - Ayumi Fukazawa
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Rie Ishizawa
- Faculty of Sports and Life Science, National Institute of Fitness and Sports in KANOYA, Kagoshima 891-2393, Japan
| | - Norio Hotta
- College of Life and Health Sciences, Chubu University, Kasugai 487-8501, Japan
| | - Han-Kyul Kim
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Scott A Smith
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Masaki Mizuno
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Camargo LL, Rios FJ, Montezano AC, Touyz RM. Reactive oxygen species in hypertension. Nat Rev Cardiol 2025; 22:20-37. [PMID: 39048744 DOI: 10.1038/s41569-024-01062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Hypertension is a leading risk factor for stroke, heart disease and chronic kidney disease. Multiple interacting factors and organ systems increase blood pressure and cause target-organ damage. Among the many molecular elements involved in the development of hypertension are reactive oxygen species (ROS), which influence cellular processes in systems that contribute to blood pressure elevation (such as the cardiovascular, renal, immune and central nervous systems, or the renin-angiotensin-aldosterone system). Dysregulated ROS production (oxidative stress) is a hallmark of hypertension in humans and experimental models. Of the many ROS-generating enzymes, NADPH oxidases are the most important in the development of hypertension. At the cellular level, ROS influence signalling pathways that define cell fate and function. Oxidative stress promotes aberrant redox signalling and cell injury, causing endothelial dysfunction, vascular damage, cardiovascular remodelling, inflammation and renal injury, which are all important in both the causes and consequences of hypertension. ROS scavengers reduce blood pressure in almost all experimental models of hypertension; however, clinical trials of antioxidants have yielded mixed results. In this Review, we highlight the latest advances in the understanding of the role and the clinical implications of ROS in hypertension. We focus on cellular sources of ROS, molecular mechanisms of oxidative stress and alterations in redox signalling in organ systems, and their contributions to hypertension.
Collapse
Affiliation(s)
- Livia L Camargo
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada.
| | - Francisco J Rios
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada.
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
- Department of Family Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Abuiessa SA, Helmy MM, El-Gowelli HM, El-Gowilly SM, El-Mas MM. Gestationally administered RAS modulators reprogram endotoxic cardiovascular and inflammatory profiles in adult male offspring of preeclamptic rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:699-713. [PMID: 39046530 DOI: 10.1007/s00210-024-03305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Previous studies showed that preeclampsia (PE) amplifies cardiovascular dysfunction induced by endotoxemia in adult male, but not female, offspring. Here, we asked if such aggravated endotoxic insult could be nullified by modulators of the renin-angiotensin system (RAS). PE was induced by gestational administration of Nω-nitro-L-arginine methyl ester(L-NAME, a nitric oxide synthase inhibitor). Adult male offspring of PE mothers treated gestationally with angiotensin 1-7 (Ang1-7, angiotensin II-derived vasodilator), losartan (AT1 receptor antagonist), pioglitazone (peroxisome proliferator-activated receptor gamma, PPARγ, agonist), or combined losartan/pioglitazone were instrumented with femoral indwelling catheters and challenged intravenously with a 5-mg/kg dose of lipopolysaccharides (LPS, 5 mg/kg). LPS caused significant decreases in blood pressure (BP) and spectral index of overall heart rate variability and increases in heart rate and left ventricular contractility (dP/dtmax). These effects were mostly reduced to similar magnitudes by individual drug therapies. In offspring born to Ang1-7-treated dams, the spectral index of cardiac sympathovagal balance showed elevated sympathetic dominance in response to LPS. Immunohistochemistry revealed that Ang1-7, but not losartan/pioglitazone, abolished the exaggerated increases in toll-like receptor 4 (TLR-4) expression caused by PE/LPS in heart tissues and neuronal circuits of brainstem rostral ventrolateral medulla (RVLM). By contrast, the losartan/pioglitazone regimen, but not Ang1-7, decreased and increased angiotensin converting enzyme (ACE) and ACE2 expression, respectively. Together, gestational fetal reprogramming of Ang II (depression) and Ang1-7 (activation) arms of RAS effectively counterbalance worsened endotoxic cardiovascular and inflammatory profiles in adult male offspring of PE rats.
Collapse
Affiliation(s)
- Salwa A Abuiessa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mai M Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hanan M El-Gowelli
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Al-Jabriyah Block 4, Hawally, Jabriya, Kuwait.
| |
Collapse
|
4
|
Zhu Y, Sun H, Wang H, Li N. Synaptic mechanisms underlying the elevated sympathetic outflow in fructose-induced hypertension. Front Physiol 2024; 15:1365594. [PMID: 38505704 PMCID: PMC10949223 DOI: 10.3389/fphys.2024.1365594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 03/21/2024] Open
Abstract
Metabolic syndrome is associated with cardiovascular dysfunction, including elevated sympathetic outflow. However, the underlying brain mechanisms are unclear. The nucleus tractus solitarius (NTS) critically regulates autonomic reflexes related to cardiovascular function and contains neurons projecting to the caudal ventrolateral medulla (CVLM). Nitric oxide (NO) is a diffusible free-radical messenger in the vascular, immune, and nervous systems. In this study, we determine if NO in the NTS is involved in the synaptic plasticity underlying the elevated sympathetic outflow in fructose-induced hypertension. We retrogradely labeled CVLM-projecting NTS neurons through the injection of FluoSpheres into the CVLM in a fructose-fed rat model to determine the cellular mechanism involved in increased sympathetic outflow. Fructose feeding increased the blood pressure and glucose levels, which represent metabolic syndrome. We found that fructose feeding reduces the NO precursor L-arginine-induced increase in the firing activity of CVLM-projecting NTS neurons. Furthermore, fructose feeding reduces the L-arginine-induced increase in presynaptic spontaneous glutamatergic synaptic inputs to NTS neurons, while NO donor DEA/NO produces an increase in glutamatergic synaptic inputs in fructose-fed rats similar to that in vehicle-treated rats. In addition, fructose feeding reduces the NO-induced depressor response and sympathoinhibition. These data suggested that fructose feeding reduced NO production and, thus, the subsequent NO-induced glutamate releases in the NTS and depressor response. The findings of this study provide new insights into the central mechanisms involved in the neural control of cardiovascular and autonomic functions in the NTS in metabolic syndrome.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiying Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjie Wang
- Department of Anesthesiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Na Li
- Department of Physiology, School of Basic Medical Sciences, Hebei University, Baoding, China
| |
Collapse
|