1
|
Tsuneda T, Taketsugu T. Bridging electron and nuclear motions in chemical reactions through electrostatic forces from reactive orbitals. Commun Chem 2025; 8:158. [PMID: 40389601 PMCID: PMC12089519 DOI: 10.1038/s42004-025-01556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 05/09/2025] [Indexed: 05/21/2025] Open
Abstract
This study presents a physics-based framework for understanding chemical reactions, highlighting the critical role of the occupied reactive orbital, the most stabilized occupied orbital during a reaction, in guiding atomic nuclei via electrostatic forces. These forces, termed reactive-orbital-based electrostatic forces, arise from the negative gradient of orbital energy, creating a direct connection between orbital energy variations and nuclear motion. Through the analysis of 48 representative reactions, we identify two predominant types of force behavior: reactions that sustain reaction-direction forces either from the early stages or just before the transition state. These forces carve grooves along the intrinsic reaction coordinates on the potential energy surface, shaping the reaction pathway. This clarifies which types of electron transfer contribute to lowering the reaction barrier. This study provides a framework for understanding the driving forces behind chemical transformations, offering insights into the electronic basis of reaction mechanisms.
Collapse
Affiliation(s)
- Takao Tsuneda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
- Graduate School of System Informatics, Kobe University, Nada-ku, Kobe, Hyogo, Japan.
| | - Tetsuya Taketsugu
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Han D, Ding H, Xiong J, Qin T, Cheng X, Hu J, Xu Q, Zhu J. Unraveling the Origin of Elemental Chemical Shift and the Role of Atomic Hydrogen in a Surface Ullmann Coupling System. ACS NANO 2024; 18:28946-28955. [PMID: 39385340 DOI: 10.1021/acsnano.4c09375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The Ullmann coupling of aryl halides is a powerful method in the on-surface synthesis of functional materials. Understanding its basic aspects and influencing factors can aid in the use of this tool for the fabrication of intriguing structures. In this study, we unveil (1) the origin of the shift in the elemental binding energy (BE) and (2) the functions of atomic hydrogen (AH) in a typical Ullmann coupling system using combined spectroscopy and microscopy techniques. During debromination of the aryl halide precursor, the work function (WF) alteration is correlated with the surface Br amount. The WF change instead of C-Ag formation is proposed to play a dominant role in the shift of the molecular C 1s BE. AH dosing onto organometallic chains leads to chain decomposition and surface Br removal. In contrast, AH dosing onto covalent poly(para-phenylene) (PPP) chains results in superhydrogenation in addition to Br removal. The C 1s BE shift is attributed to both WF change and superhydrogenation effects. Thermal annealing restores the PPP chains by eliminating superhydrogenation, which causes the C 1s BE to shift to a high BE. This study provides deep insights into the mechanisms of Ullmann coupling on surfaces, highlighting the significant role of WF alterations and AH treatments in these processes.
Collapse
Affiliation(s)
- Dong Han
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Honghe Ding
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Juanjuan Xiong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Tianchen Qin
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Xingwang Cheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Jun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Qian Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
3
|
Mearini S, Baranowski D, Brandstetter D, Windischbacher A, Cojocariu I, Gargiani P, Valvidares M, Schio L, Floreano L, Puschnig P, Feyer V, Schneider CM. Band Structure Engineering in 2D Metal-Organic Frameworks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404667. [PMID: 39119845 PMCID: PMC11481395 DOI: 10.1002/advs.202404667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/12/2024] [Indexed: 08/10/2024]
Abstract
The design of 2D metal-organic frameworks (2D MOFs) takes advantage of the combination of the diverse electronic properties of simple organic ligands with different transition metal (TM) centers. The strong directional nature of the coordinative bonds is the basis for the structural stability and the periodic arrangement of the TM cores in these architectures. Here, direct and clear evidence that 2D MOFs exhibit intriguing energy-dispersive electronic bands with a hybrid character and distinct magnetic properties in the metal cores, resulting from the interactions between the TM electronic levels and the organic ligand π-molecular orbitals, is reported. Importantly, a method to effectively tune both the electronic structure of 2D MOFs and the magnetic properties of the metal cores by exploiting the electronic structure of distinct TMs is presented. Consequently, the ionization potential characteristic of selected TMs, particularly the relative energy position and symmetry of the 3d states, can be used to strategically engineer bands within specific metal-organic frameworks. These findings not only provide a rationale for band structure engineering in 2D MOFs but also offer promising opportunities for advanced material design.
Collapse
Affiliation(s)
- Simone Mearini
- Peter Grünberg Institute (PGI‐6)Jülich Research Centre52428JülichGermany
| | - Daniel Baranowski
- Peter Grünberg Institute (PGI‐6)Jülich Research Centre52428JülichGermany
| | | | | | - Iulia Cojocariu
- Department of PhysicsUniversity of TriesteTrieste34127Italy
- Elettra‐Sincrotrone Trieste S.C.p.AS.S. 14 km 163.5Trieste34149Italy
| | | | | | - Luca Schio
- TASC LaboratoryCNR–Istituto Officina dei Materiali (IOM)Trieste34149Italy
| | - Luca Floreano
- TASC LaboratoryCNR–Istituto Officina dei Materiali (IOM)Trieste34149Italy
| | | | - Vitaliy Feyer
- Peter Grünberg Institute (PGI‐6)Jülich Research Centre52428JülichGermany
- Faculty of Physics and Center for Nanointegration Duisburg‐Essen (CENIDE)University of Duisburg‐Essen47048DuisburgGermany
| | - Claus Michael Schneider
- Peter Grünberg Institute (PGI‐6)Jülich Research Centre52428JülichGermany
- Faculty of Physics and Center for Nanointegration Duisburg‐Essen (CENIDE)University of Duisburg‐Essen47048DuisburgGermany
- Department of Physics and AstronomyUC DavisDavisCA95616USA
| |
Collapse
|
4
|
Baranowski D, Thaler M, Brandstetter D, Windischbacher A, Cojocariu I, Mearini S, Chesnyak V, Schio L, Floreano L, Gutiérrez Bolaños C, Puschnig P, Patera LL, Feyer V, Schneider CM. Emergence of Band Structure in a Two-Dimensional Metal-Organic Framework upon Hierarchical Self-Assembly. ACS NANO 2024; 18. [PMID: 39016665 PMCID: PMC11295184 DOI: 10.1021/acsnano.4c04191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024]
Abstract
Two-dimensional metal-organic frameworks (2D-MOFs) represent a category of atomically thin materials that combine the structural tunability of molecular systems with the crystalline structure characteristic of solids. The strong bonding between the organic linkers and transition metal centers is expected to result in delocalized electronic states. However, it remains largely unknown how the band structure in 2D-MOFs emerges through the coupling of electronic states in the building blocks. Here, we demonstrate the on-surface synthesis of a 2D-MOF exhibiting prominent π-conjugation. Through a combined experimental and theoretical approach, we provide direct evidence of band structure formation upon hierarchical self-assembly, going from metal-organic complexes to a conjugated two-dimensional framework. Additionally, we identify the robustly dispersive nature of the emerging hybrid states, irrespective of the metallic support type, highlighting the tunability of the band structure through charge transfer from the substrate. Our findings encourage the exploration of band-structure engineering in 2D-MOFs for potential applications in electronics and photonics.
Collapse
Affiliation(s)
- Daniel Baranowski
- Peter
Grünberg Institute (PGI-6), Jülich
Research Centre, 52428 Jülich, Germany
| | - Marco Thaler
- Department
of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | | | | | - Iulia Cojocariu
- Peter
Grünberg Institute (PGI-6), Jülich
Research Centre, 52428 Jülich, Germany
- Elettra-Sincrotrone
Trieste S.C.p.A, Basovizza
S.S. 14, Km 163.5, Trieste 34149, Italy
- Physics
Department, University of Trieste, 34127 Trieste, Italy
| | - Simone Mearini
- Peter
Grünberg Institute (PGI-6), Jülich
Research Centre, 52428 Jülich, Germany
| | - Valeria Chesnyak
- Physics
Department, University of Trieste, 34127 Trieste, Italy
- CNR - Istituto
Officina dei Materiali (IOM), TASC Laboratory, 34149 Trieste, Italy
| | - Luca Schio
- CNR - Istituto
Officina dei Materiali (IOM), TASC Laboratory, 34149 Trieste, Italy
| | - Luca Floreano
- CNR - Istituto
Officina dei Materiali (IOM), TASC Laboratory, 34149 Trieste, Italy
| | | | - Peter Puschnig
- Institute
of Physics, University of Graz, 8010 Graz, Austria
| | - Laerte L. Patera
- Department
of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Vitaliy Feyer
- Peter
Grünberg Institute (PGI-6), Jülich
Research Centre, 52428 Jülich, Germany
- Faculty
of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47048 Duisburg, Germany
| | - Claus M. Schneider
- Peter
Grünberg Institute (PGI-6), Jülich
Research Centre, 52428 Jülich, Germany
- Faculty
of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47048 Duisburg, Germany
- Department
of Physics and Astronomy, UC Davis, Davis, California 95616, United States
| |
Collapse
|
5
|
Bai QQ, Fang ZJ, Wang XF, Zhang Y, Zhao XH, Zhao PD. Charge Transfer and Level Lifetime in Molecular Photon-Absorption upon the Quantum Impedance Lorentz Oscillator. ACS OMEGA 2023; 8:19950-19962. [PMID: 37305236 PMCID: PMC10249119 DOI: 10.1021/acsomega.3c01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/05/2023] [Indexed: 06/13/2023]
Abstract
On the strength of the new quantum impedance Lorentz oscillator (QILO) model, a charge-transfer method in molecular photon-absorption is proposed and imaged via the numerical simulations of 1- and 2-photon-absorption (1PA and 2PA) behaviors of the organic compounds LB3 and M4 in this paper. According to the frequencies at the peaks and the full width at half-maximums (FWHMs) of the linear absorptive spectra of the two compounds, we first calculate the effective quantum numbers before and after the electronic transitions. Thus, we obtain the molecular average dipole moments, i.e., 1.8728 × 10-29 C·m (5.6145 D) for LB3 and 1.9626 × 10-29 C·m (5.8838 D) for M4 in the ground state in the tetrahydrofuran (THF) solvent. Then, the molecular 2PA cross sections corresponding to wavelength are theoretically inferred and figured out by QILO. As a result, the theoretical cross sections turn out to be in good agreement with the experimental ones. Our results reveal such a charge-transfer image in 1PA near wavelength 425 nm, where an atomic electron of LB3 jumps from the ground-state ellipse orbit with the semimajor axis ai = 1.2492 × 10-10m = 1.2492 Å and semiminor axis bi = 0.4363 Å to the excited-state circle (aj = bj = 2.5399 Å). In addition, during its 2PA process, the same transitional electron in the ground state is excited to the elliptic orbit with aj = 2.5399 Å and bj =1.3808 Å, in which the molecular dipole moment reaches as high as 3.4109 × 10-29 C·m (10.2256 D). In addition, we obtain a level-lifetime formula with the microparticle collision idea of thermal motion, which indicates that the level lifetime is proportional (not inverse) to the damping coefficient or FWHM of an absorptive spectrum. The lifetimes of the two compounds at some excited states are calculated and presented. This formula may be used as an experimental method to verify 1PA and 2PA transition selection rules. The QILO model exhibits the advantage of simplifying the calculation complexity and reducing the high cost associated with the first principle in dealing with quantum properties of optoelectronic materials.
Collapse
Affiliation(s)
- Qi-Qi Bai
- School
of Science, Hebei University of Technology, Tianjin 300401, China
| | - Zheng-Ji Fang
- School
of Science, Hebei University of Technology, Tianjin 300401, China
| | - Xiao-Feng Wang
- School
of Science, Hebei University of Technology, Tianjin 300401, China
| | - Yong Zhang
- School
of Science, Hebei University of Technology, Tianjin 300401, China
- Hebei
Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
| | - Xing-Hua Zhao
- School
of Science, Hebei University of Technology, Tianjin 300401, China
| | - Pei-De Zhao
- School
of Science, Hebei University of Technology, Tianjin 300401, China
- Hebei
Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
| |
Collapse
|
6
|
Yao J, Li DS, Li H, Yang Y, Yang HY. Mechanisms of interfacial catalysis and mass transfer in a flow-through electro-peroxone process. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131604. [PMID: 37343407 DOI: 10.1016/j.jhazmat.2023.131604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023]
Abstract
To investigate the catalytic mechanism and mass transfer efficiency in the removal of amitriptyline using an electro-peroxide process, a CuFe2O4-modified carbon cloth cathode was prepared and utilized in a reaction unit. The results demonstrated a remarkable efficacy of the system, achieving 91.0% amitriptyline removal, 68.3% mineralization, 41.2% mineralization current efficiency, and 0.24 kWh/m3 energy consumption within just five minutes of treatment. The study revealed that the exposed Fe atoms of the ferrite nanoparticles, with a size of 22.7 nm and 89.7% crystallinity, functioned as mediators to bind the adsorbed O atoms. The 3dxy, 3dxz, and 3d2z orbitals of Fe atoms interacted with the 2pz orbital of O atoms of H2O2 and O3 to form σ and π bonds, facilitating the adsorption-activation of H2O2 and O3 into hydroxyl radicals. These hydroxyl radicals (∼ 1.15 × 1013 mol/L) were distributed at the cathode-solution interface and rapidly consumed along the direction of liquid flow. The flow-through cathode design improved the mass transfer of aqueous O3 and in-situ generated H2O2, leading to an increased yield of hydroxyl radicals, as well as the contact time and space between hydroxyl radicals and amitriptyline. Ultimately, this resulted in a higher degradation efficiency of the system.
Collapse
Affiliation(s)
- Jingjing Yao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China; Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| | - Ying Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| |
Collapse
|
7
|
Baranowski D, Cojocariu I, Sala A, Africh C, Comelli G, Schio L, Tormen M, Floreano L, Feyer V, Schneider CM. Conservation of Nickel Ion Single-Active Site Character in a Bottom-Up Constructed π-Conjugated Molecular Network. Angew Chem Int Ed Engl 2022; 61:e202210326. [PMID: 36070193 PMCID: PMC9827996 DOI: 10.1002/anie.202210326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 01/12/2023]
Abstract
On-surface chemistry holds the potential for ultimate miniaturization of functional devices. Porphyrins are promising building-blocks in exploring advanced nanoarchitecture concepts. More stable molecular materials of practical interest with improved charge transfer properties can be achieved by covalently interconnecting molecular units. On-surface synthesis allows to construct extended covalent nanostructures at interfaces not conventionally available. Here, we address the synthesis and properties of covalent molecular network composed of interconnected constituents derived from halogenated nickel tetraphenylporphyrin on Au(111). We report that the π-extended two-dimensional material exhibits dispersive electronic features. Concomitantly, the functional Ni cores retain the same single-active site character of their single-molecule counterparts. This opens new pathways when exploiting the high robustness of transition metal cores provided by bottom-up constructed covalent nanomeshes.
Collapse
Affiliation(s)
- Daniel Baranowski
- Peter Grünberg Institute (PGI-6)Jülich Research Center52428JülichGermany
| | - Iulia Cojocariu
- Peter Grünberg Institute (PGI-6)Jülich Research Center52428JülichGermany
| | | | | | - Giovanni Comelli
- TASC LaboratoryCNR-IOM34149TriesteItaly
- Department of PhysicsUniversity of Trieste34127TriesteItaly
| | | | | | | | - Vitaliy Feyer
- Peter Grünberg Institute (PGI-6)Jülich Research Center52428JülichGermany
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-Essen47048DuisburgGermany
| | - Claus M. Schneider
- Peter Grünberg Institute (PGI-6)Jülich Research Center52428JülichGermany
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-Essen47048DuisburgGermany
- Department of Physics and AstronomyUC DavisDavisCA 95616USA
| |
Collapse
|
8
|
Baranowski D, Cojocariu I, Sala A, Africh C, Comelli G, Schio L, Tormen M, Floreano L, Feyer V, Schneider CM. Conservation of Nickel Ion Single‐Active Site Character in a Bottom‐Up Constructed π‐Conjugated Molecular Network. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel Baranowski
- Forschungszentrum Jülich GmbH: Forschungszentrum Julich GmbH PGI-6 GERMANY
| | - Iulia Cojocariu
- Forschungszentrum Jülich GmbH: Forschungszentrum Julich GmbH PGI-6 GERMANY
| | | | | | - Giovanni Comelli
- University of Trieste: Universita degli Studi di Trieste Physics ITALY
| | | | | | | | - Vitaliy Feyer
- Forschungszentrum Julich GmbH Leo brand strasse GERMANY
| | - Claus M. Schneider
- Forschungszentrum Jülich: Forschungszentrum Julich GmbH PGI-6 Leo-Brandt-Straße 52425 Jülich GERMANY
| |
Collapse
|
9
|
Yang X, Jugovac M, Zamborlini G, Feyer V, Koller G, Puschnig P, Soubatch S, Ramsey MG, Tautz FS. Momentum-selective orbital hybridisation. Nat Commun 2022; 13:5148. [PMID: 36055995 PMCID: PMC9440066 DOI: 10.1038/s41467-022-32643-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
When a molecule interacts chemically with a metal surface, the orbitals of the molecule hybridise with metal states to form the new eigenstates of the coupled system. Spatial overlap and energy matching are determining parameters of the hybridisation. However, since every molecular orbital does not only have a characteristic spatial shape, but also a specific momentum distribution, one may additionally expect a momentum matching condition; after all, each hybridising wave function of the metal has a defined wave vector, too. Here, we report photoemission orbital tomography measurements of hybrid orbitals that emerge from molecular orbitals at a molecule-on-metal interface. We find that in the hybrid orbitals only those partial waves of the original orbital survive which match the metal band structure. Moreover, we find that the conversion of the metal's surface state into a hybrid interface state is also governed by momentum matching constraints. Our experiments demonstrate the possibility to measure hybridisation momentum-selectively, thereby enabling deep insights into the complicated interplay of bulk states, surface states, and molecular orbitals in the formation of the electronic interface structure at molecule-on-metal hybrid interfaces.
Collapse
Affiliation(s)
- Xiaosheng Yang
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425, Jülich, Germany
- Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology, 52425, Jülich, Germany
- Experimental Physics IV A, RWTH Aachen University, 52074, Aachen, Germany
| | - Matteo Jugovac
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Elettra - Sincrotrone Trieste, S.S. 14 km 163.5, Basovizza, 34149, Trieste, Italy
| | - Giovanni Zamborlini
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Vitaliy Feyer
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, 47047, Duisburg, Germany
| | - Georg Koller
- Institute of Physics, University of Graz, NAWI Graz, 8010, Graz, Austria
| | - Peter Puschnig
- Institute of Physics, University of Graz, NAWI Graz, 8010, Graz, Austria
| | - Serguei Soubatch
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425, Jülich, Germany
- Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology, 52425, Jülich, Germany
| | - Michael G Ramsey
- Institute of Physics, University of Graz, NAWI Graz, 8010, Graz, Austria.
| | - F Stefan Tautz
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425, Jülich, Germany.
- Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology, 52425, Jülich, Germany.
- Experimental Physics IV A, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
10
|
Haags A, Yang X, Egger L, Brandstetter D, Kirschner H, Bocquet FC, Koller G, Gottwald A, Richter M, Gottfried JM, Ramsey MG, Puschnig P, Soubatch S, Tautz FS. Momentum space imaging of σ orbitals for chemical analysis. SCIENCE ADVANCES 2022; 8:eabn0819. [PMID: 35867796 PMCID: PMC9307240 DOI: 10.1126/sciadv.abn0819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Tracing the modifications of molecules in surface chemical reactions benefits from the possibility to image their orbitals. While delocalized frontier orbitals with π character are imaged routinely with photoemission orbital tomography, they are not always sensitive to local chemical modifications, particularly the making and breaking of bonds at the molecular periphery. For such bonds, σ orbitals would be far more revealing. Here, we show that these orbitals can indeed be imaged in a remarkably broad energy range and that the plane wave approximation, an important ingredient of photoemission orbital tomography, is also well fulfilled for these orbitals. This makes photoemission orbital tomography a unique tool for the detailed analysis of surface chemical reactions. We demonstrate this by identifying the reaction product of a dehalogenation and cyclodehydrogenation reaction.
Collapse
Affiliation(s)
- Anja Haags
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany
- Experimentalphysik IV A, RWTH Aachen University, Aachen, Germany
| | - Xiaosheng Yang
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany
- Experimentalphysik IV A, RWTH Aachen University, Aachen, Germany
| | - Larissa Egger
- Institut für Physik, Karl-Franzens-Universität Graz, NAWI Graz, Graz, Austria
| | | | - Hans Kirschner
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - François C. Bocquet
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany
| | - Georg Koller
- Institut für Physik, Karl-Franzens-Universität Graz, NAWI Graz, Graz, Austria
| | | | - Mathias Richter
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | | | - Michael G. Ramsey
- Institut für Physik, Karl-Franzens-Universität Graz, NAWI Graz, Graz, Austria
| | - Peter Puschnig
- Institut für Physik, Karl-Franzens-Universität Graz, NAWI Graz, Graz, Austria
| | - Serguei Soubatch
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany
| | - F. Stefan Tautz
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany
- Experimentalphysik IV A, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Stredansky M, Moro S, Corva M, Sturmeit H, Mischke V, Janas D, Cojocariu I, Jugovac M, Cossaro A, Verdini A, Floreano L, Feng Z, Sala A, Comelli G, Windischbacher A, Puschnig P, Hohner C, Kettner M, Libuda J, Cinchetti M, Schneider CM, Feyer V, Vesselli E, Zamborlini G. Disproportionation of Nitric Oxide at a Surface-Bound Nickel Porphyrinoid. Angew Chem Int Ed Engl 2022; 61:e202201916. [PMID: 35267236 PMCID: PMC9314816 DOI: 10.1002/anie.202201916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 11/28/2022]
Abstract
Uncommon metal oxidation states in porphyrinoid cofactors are responsible for the activity of many enzymes. The F430 and P450nor co-factors, with their reduced NiI - and FeIII -containing tetrapyrrolic cores, are prototypical examples of biological systems involved in methane formation and in the reduction of nitric oxide, respectively. Herein, using a comprehensive range of experimental and theoretical methods, we raise evidence that nickel tetraphenyl porphyrins deposited in vacuo on a copper surface are reactive towards nitric oxide disproportionation at room temperature. The interpretation of the measurements is far from being straightforward due to the high reactivity of the different nitrogen oxides species (eventually present in the residual gas background) and of the possible reaction intermediates. The picture is detailed in order to disentangle the challenging complexity of the system, where even a small fraction of contamination can change the scenario.
Collapse
Affiliation(s)
- Matus Stredansky
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | - Stefania Moro
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
| | - Manuel Corva
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | | | | | - David Janas
- Department of PhysicsTU Dortmund UniversityDortmundGermany
| | - Iulia Cojocariu
- Peter Grünberg Institute (PGI-6)Forschungszentrum Jülich GmbHJülichGermany
| | - Matteo Jugovac
- Peter Grünberg Institute (PGI-6)Forschungszentrum Jülich GmbHJülichGermany
| | - Albano Cossaro
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
- Department of Chemistry and Pharmaceutical ScienceUniversity of Triestevia L-Giorgieri 134127TriesteItaly
| | | | - Luca Floreano
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | - Zhijing Feng
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | | | - Giovanni Comelli
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | | | - Peter Puschnig
- Institut für PhysikKarl-Franzens-Universität Graz8010GrazAustria
| | - Chantal Hohner
- Erlangen Center for Interface Research and CatalysisFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Miroslav Kettner
- Erlangen Center for Interface Research and CatalysisFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Jörg Libuda
- Erlangen Center for Interface Research and CatalysisFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | | | - Claus Michael Schneider
- Peter Grünberg Institute (PGI-6)Forschungszentrum Jülich GmbHJülichGermany
- Fakultät f. Physik and Center for Nanointegration Duisburg-Essen (CENIDE)Universität Duisburg-Essen47048DuisburgGermany
| | - Vitaliy Feyer
- Peter Grünberg Institute (PGI-6)Forschungszentrum Jülich GmbHJülichGermany
- Fakultät f. Physik and Center for Nanointegration Duisburg-Essen (CENIDE)Universität Duisburg-Essen47048DuisburgGermany
| | - Erik Vesselli
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | - Giovanni Zamborlini
- Department of PhysicsTU Dortmund UniversityDortmundGermany
- Peter Grünberg Institute (PGI-6)Forschungszentrum Jülich GmbHJülichGermany
| |
Collapse
|
12
|
Stredansky M, Moro S, Corva M, Sturmeit H, Mischke V, Janas D, Cojocariu I, Jugovac M, Cossaro A, Verdini A, Floreano L, Feng Z, Sala A, Comelli G, Windischbacher A, Puschnig P, Hohner C, Kettner M, Libuda J, Cinchetti M, Schneider CM, Feyer V, Vesselli E, Zamborlini G. Disproportionation of Nitric Oxide at a Surface-Bound Nickel Porphyrinoid. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202201916. [PMID: 38505699 PMCID: PMC10947138 DOI: 10.1002/ange.202201916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 11/07/2022]
Abstract
Uncommon metal oxidation states in porphyrinoid cofactors are responsible for the activity of many enzymes. The F430 and P450nor co-factors, with their reduced NiI- and FeIII-containing tetrapyrrolic cores, are prototypical examples of biological systems involved in methane formation and in the reduction of nitric oxide, respectively. Herein, using a comprehensive range of experimental and theoretical methods, we raise evidence that nickel tetraphenyl porphyrins deposited in vacuo on a copper surface are reactive towards nitric oxide disproportionation at room temperature. The interpretation of the measurements is far from being straightforward due to the high reactivity of the different nitrogen oxides species (eventually present in the residual gas background) and of the possible reaction intermediates. The picture is detailed in order to disentangle the challenging complexity of the system, where even a small fraction of contamination can change the scenario.
Collapse
Affiliation(s)
- Matus Stredansky
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | - Stefania Moro
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
| | - Manuel Corva
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | | | | | - David Janas
- Department of PhysicsTU Dortmund UniversityDortmundGermany
| | - Iulia Cojocariu
- Peter Grünberg Institute (PGI-6)Forschungszentrum Jülich GmbHJülichGermany
| | - Matteo Jugovac
- Peter Grünberg Institute (PGI-6)Forschungszentrum Jülich GmbHJülichGermany
| | - Albano Cossaro
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
- Department of Chemistry and Pharmaceutical ScienceUniversity of Triestevia L-Giorgieri 134127TriesteItaly
| | | | - Luca Floreano
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | - Zhijing Feng
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | | | - Giovanni Comelli
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | | | - Peter Puschnig
- Institut für PhysikKarl-Franzens-Universität Graz8010GrazAustria
| | - Chantal Hohner
- Erlangen Center for Interface Research and CatalysisFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Miroslav Kettner
- Erlangen Center for Interface Research and CatalysisFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Jörg Libuda
- Erlangen Center for Interface Research and CatalysisFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | | | - Claus Michael Schneider
- Peter Grünberg Institute (PGI-6)Forschungszentrum Jülich GmbHJülichGermany
- Fakultät f. Physik and Center for Nanointegration Duisburg-Essen (CENIDE)Universität Duisburg-Essen47048DuisburgGermany
| | - Vitaliy Feyer
- Peter Grünberg Institute (PGI-6)Forschungszentrum Jülich GmbHJülichGermany
- Fakultät f. Physik and Center for Nanointegration Duisburg-Essen (CENIDE)Universität Duisburg-Essen47048DuisburgGermany
| | - Erik Vesselli
- Physics DepartmentUniversity of Triestevia A. Valerio 234127TriesteItaly
- CNR-IOM, Area Science ParkS.S. 14 km 163,534149TriesteItaly
| | - Giovanni Zamborlini
- Department of PhysicsTU Dortmund UniversityDortmundGermany
- Peter Grünberg Institute (PGI-6)Forschungszentrum Jülich GmbHJülichGermany
| |
Collapse
|
13
|
Sturmeit HM, Cojocariu I, Windischbacher A, Puschnig P, Piamonteze C, Jugovac M, Sala A, Africh C, Comelli G, Cossaro A, Verdini A, Floreano L, Stredansky M, Vesselli E, Hohner C, Kettner M, Libuda J, Schneider CM, Zamborlini G, Cinchetti M, Feyer V. Room-Temperature On-Spin-Switching and Tuning in a Porphyrin-Based Multifunctional Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104779. [PMID: 34643036 PMCID: PMC11475682 DOI: 10.1002/smll.202104779] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Molecular interfaces formed between metals and molecular compounds offer a great potential as building blocks for future opto-electronics and spintronics devices. Here, a combined theoretical and experimental spectro-microscopy approach is used to show that the charge transfer occurring at the interface between nickel tetraphenyl porphyrins and copper changes both spin and oxidation states of the Ni ion from [Ni(II), S = 0] to [Ni(I), S = 1/2]. The chemically active Ni(I), even in a buried multilayer system, can be functionalized with nitrogen dioxide, allowing a selective tuning of the electronic properties of the Ni center that is switched to a [Ni(II), S = 1] state. While Ni acts as a reversible spin switch, it is found that the electronic structure of the macrocycle backbone, where the frontier orbitals are mainly localized, remains unaffected. These findings pave the way for using the present porphyrin-based system as a platform for the realization of multifunctional devices where the magnetism and the optical/transport properties can be controlled simultaneously by independent stimuli.
Collapse
Affiliation(s)
| | - Iulia Cojocariu
- Peter Grünberg Institute (PGI‐6)Jülich Research Centre52425JülichGermany
| | | | - Peter Puschnig
- Institute of Physics, University of GrazKarl‐Franzens‐Universität GrazGraz8010Austria
| | | | - Matteo Jugovac
- Peter Grünberg Institute (PGI‐6)Jülich Research Centre52425JülichGermany
| | - Alessandro Sala
- CNR‐IOMTASC LaboratoryTrieste34149Italy
- Department of PhysicsUniversity of TriesteTrieste34127Italy
| | | | - Giovanni Comelli
- CNR‐IOMTASC LaboratoryTrieste34149Italy
- Department of PhysicsUniversity of TriesteTrieste34127Italy
| | - Albano Cossaro
- CNR‐IOMTASC LaboratoryTrieste34149Italy
- Department of Chemical and Pharmaceutical SciencesUniversity of TriesteTrieste34127Italy
| | | | | | - Matus Stredansky
- CNR‐IOMTASC LaboratoryTrieste34149Italy
- Department of PhysicsUniversity of TriesteTrieste34127Italy
| | - Erik Vesselli
- CNR‐IOMTASC LaboratoryTrieste34149Italy
- Department of PhysicsUniversity of TriesteTrieste34127Italy
| | - Chantal Hohner
- Interface Research and CatalysisErlangen Center for Interface Research and CatalysisFriedrich‐Alexander University Erlangen‐Nuremberg91058ErlangenGermany
| | - Miroslav Kettner
- Interface Research and CatalysisErlangen Center for Interface Research and CatalysisFriedrich‐Alexander University Erlangen‐Nuremberg91058ErlangenGermany
| | - Jörg Libuda
- Interface Research and CatalysisErlangen Center for Interface Research and CatalysisFriedrich‐Alexander University Erlangen‐Nuremberg91058ErlangenGermany
| | - Claus Michael Schneider
- Peter Grünberg Institute (PGI‐6)Jülich Research Centre52425JülichGermany
- Faculty of Physics and Center for Nanointegration Duisburg‐Essen (CENIDE)University of Duisburg‐Essen47048DuisburgGermany
| | | | - Mirko Cinchetti
- TU Dortmund UniversityExperimental Physics VI44227DortmundGermany
| | - Vitaliy Feyer
- Peter Grünberg Institute (PGI‐6)Jülich Research Centre52425JülichGermany
- Faculty of Physics and Center for Nanointegration Duisburg‐Essen (CENIDE)University of Duisburg‐Essen47048DuisburgGermany
| |
Collapse
|
14
|
Boné T, Windischbacher A, Sättele MS, Greulich K, Egger L, Jauk T, Lackner F, Bettinger HF, Peisert H, Chassé T, Ramsey MG, Sterrer M, Koller G, Puschnig P. Demonstrating the Impact of the Adsorbate Orientation on the Charge Transfer at Organic-Metal Interfaces. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:9129-9137. [PMID: 34055126 PMCID: PMC8154845 DOI: 10.1021/acs.jpcc.1c01306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Charge-transfer processes at molecule-metal interfaces play a key role in tuning the charge injection properties in organic-based devices and thus, ultimately, the device performance. Here, the metal's work function and the adsorbate's electron affinity are the key factors that govern the electron transfer at the organic/metal interface. In our combined experimental and theoretical work, we demonstrate that the adsorbate's orientation may also be decisive for the charge transfer. By thermal cycloreversion of diheptacene isomers, we manage to produce highly oriented monolayers of the rodlike, electron-acceptor molecule heptacene on a Cu(110) surface with molecules oriented either along or perpendicular to the close-packed metal rows. This is confirmed by scanning tunneling microscopy (STM) images as well as by angle-resolved ultraviolet photoemission spectroscopy (ARUPS). By utilizing photoemission tomography momentum maps, we show that the lowest unoccupied molecular orbital (LUMO) is fully occupied and also, the LUMO + 1 gets significantly filled when heptacene is oriented along the Cu rows. Conversely, for perpendicularly aligned heptacene, the molecular energy levels are shifted significantly toward the Fermi energy, preventing charge transfer to the LUMO + 1. These findings are fully confirmed by our density functional calculations and demonstrate the possibility to tune the charge transfer and level alignment at organic-metal interfaces through the adjustable molecular alignment.
Collapse
Affiliation(s)
| | | | - Marie S. Sättele
- Institute
of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
- Institute
of Organic Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Katharina Greulich
- Institute
of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Larissa Egger
- Institute
of Physics, University of Graz, 8010 Graz, Austria
| | - Thomas Jauk
- Institute
of Experimental Physics, Graz University of Technology, 8010 Graz, Austria
| | - Florian Lackner
- Institute
of Experimental Physics, Graz University of Technology, 8010 Graz, Austria
| | - Holger F. Bettinger
- Institute
of Organic Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Heiko Peisert
- Institute
of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Chassé
- Institute
of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | | | - Martin Sterrer
- Institute
of Physics, University of Graz, 8010 Graz, Austria
| | - Georg Koller
- Institute
of Physics, University of Graz, 8010 Graz, Austria
| | - Peter Puschnig
- Institute
of Physics, University of Graz, 8010 Graz, Austria
| |
Collapse
|
15
|
Egger L, Hollerer M, Kern CS, Herrmann H, Hurdax P, Haags A, Yang X, Gottwald A, Richter M, Soubatch S, Tautz FS, Koller G, Puschnig P, Ramsey MG, Sterrer M. Ladungsunterstützte Selbstmetallierung von Porphyrinen auf Oxidoberflächen. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:5138-5142. [PMID: 38505778 PMCID: PMC10947009 DOI: 10.1002/ange.202015187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 03/21/2024]
Abstract
AbstractDas Interesse an Metallierungs‐ und Selbstmetallierungsreaktionen auf Oxidoberflächen ist in jüngster Zeit ständig gewachsen. Der Mechanismus der Selbstmetallierungsreaktion ist jedoch nicht vollständig geklärt. Hier zeigen wir mithilfe von Rastertunnelmikroskopie, Photoemissions‐Spektroskopie und Dichtefunktionaltheorie‐Rechnungen, dass die Selbstmetallierung von 2H‐Tetraphenylporphyrin auf der Oberfläche von ultradünnen MgO(001)‐Filmen durch Ladungstransfer ermöglicht wird. Es wird gezeigt, dass der Ladungszustand und dadurch der Metallierungszustand der Porphyrin‐Moleküle durch die Austrittsarbeit des MgO(001)/Ag(001)‐Substrats gezielt eingestellt werden können.
Collapse
Affiliation(s)
- Larissa Egger
- Institute of PhysicsNAWI GrazUniversity of GrazUniversitätsplatz 58010GrazÖsterreich
| | - Michael Hollerer
- Institute of PhysicsNAWI GrazUniversity of GrazUniversitätsplatz 58010GrazÖsterreich
| | - Christian S. Kern
- Institute of PhysicsNAWI GrazUniversity of GrazUniversitätsplatz 58010GrazÖsterreich
| | - Hannes Herrmann
- Institute of PhysicsNAWI GrazUniversity of GrazUniversitätsplatz 58010GrazÖsterreich
| | - Philipp Hurdax
- Institute of PhysicsNAWI GrazUniversity of GrazUniversitätsplatz 58010GrazÖsterreich
| | - Anja Haags
- Peter Grünberg Institute (PGI-3)Forschungszentrum Jülich52425JülichDeutschland
- Jülich Aachen Research Alliance (JARA)Fundamentals of Future Information Technology52425JülichDeutschland
- Experimentalphysik IV ARWTH Aachen University52074AachenDeutschland
| | - Xiaosheng Yang
- Peter Grünberg Institute (PGI-3)Forschungszentrum Jülich52425JülichDeutschland
- Jülich Aachen Research Alliance (JARA)Fundamentals of Future Information Technology52425JülichDeutschland
- Experimentalphysik IV ARWTH Aachen University52074AachenDeutschland
| | | | - Mathias Richter
- Physikalisch-Technische Bundesanstalt (PTB)10587BerlinDeutschland
| | - Serguei Soubatch
- Peter Grünberg Institute (PGI-3)Forschungszentrum Jülich52425JülichDeutschland
- Jülich Aachen Research Alliance (JARA)Fundamentals of Future Information Technology52425JülichDeutschland
| | - F. Stefan Tautz
- Peter Grünberg Institute (PGI-3)Forschungszentrum Jülich52425JülichDeutschland
- Jülich Aachen Research Alliance (JARA)Fundamentals of Future Information Technology52425JülichDeutschland
- Experimentalphysik IV ARWTH Aachen University52074AachenDeutschland
| | - Georg Koller
- Institute of PhysicsNAWI GrazUniversity of GrazUniversitätsplatz 58010GrazÖsterreich
| | - Peter Puschnig
- Institute of PhysicsNAWI GrazUniversity of GrazUniversitätsplatz 58010GrazÖsterreich
| | - Michael G. Ramsey
- Institute of PhysicsNAWI GrazUniversity of GrazUniversitätsplatz 58010GrazÖsterreich
| | - Martin Sterrer
- Institute of PhysicsNAWI GrazUniversity of GrazUniversitätsplatz 58010GrazÖsterreich
| |
Collapse
|
16
|
Egger L, Hollerer M, Kern CS, Herrmann H, Hurdax P, Haags A, Yang X, Gottwald A, Richter M, Soubatch S, Tautz FS, Koller G, Puschnig P, Ramsey MG, Sterrer M. Charge-Promoted Self-Metalation of Porphyrins on an Oxide Surface. Angew Chem Int Ed Engl 2021; 60:5078-5082. [PMID: 33245197 PMCID: PMC7986846 DOI: 10.1002/anie.202015187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 01/03/2023]
Abstract
Metalation and self-metalation reactions of porphyrins on oxide surfaces have recently gained interest. The mechanism of porphyrin self-metalation on oxides is, however, far from being understood. Herein, we show by a combination of results obtained with scanning tunneling microscopy, photoemission spectroscopy, and DFT computations, that the self-metalation of 2H-tetraphenylporphyrin on the surface of ultrathin MgO(001) films is promoted by charge transfer. By tuning the work function of the MgO(001)/Ag(001) substrate, we are able to control the charge and the metalation state of the porphyrin molecules on the surface.
Collapse
Affiliation(s)
- Larissa Egger
- Institute of PhysicsNAWI GrazUniversity of GrazUniversitätsplatz 58010GrazAustria
| | - Michael Hollerer
- Institute of PhysicsNAWI GrazUniversity of GrazUniversitätsplatz 58010GrazAustria
| | - Christian S. Kern
- Institute of PhysicsNAWI GrazUniversity of GrazUniversitätsplatz 58010GrazAustria
| | - Hannes Herrmann
- Institute of PhysicsNAWI GrazUniversity of GrazUniversitätsplatz 58010GrazAustria
| | - Philipp Hurdax
- Institute of PhysicsNAWI GrazUniversity of GrazUniversitätsplatz 58010GrazAustria
| | - Anja Haags
- Peter Grünberg Institute (PGI-3)Forschungszentrum Jülich52425JülichGermany
- Jülich Aachen Research Alliance (JARA)Fundamentals of Future Information Technology52425JülichGermany
- Experimentalphysik IV ARWTH Aachen University52074AachenGermany
| | - Xiaosheng Yang
- Peter Grünberg Institute (PGI-3)Forschungszentrum Jülich52425JülichGermany
- Jülich Aachen Research Alliance (JARA)Fundamentals of Future Information Technology52425JülichGermany
- Experimentalphysik IV ARWTH Aachen University52074AachenGermany
| | | | - Mathias Richter
- Physikalisch-Technische Bundesanstalt (PTB)10587BerlinGermany
| | - Serguei Soubatch
- Peter Grünberg Institute (PGI-3)Forschungszentrum Jülich52425JülichGermany
- Jülich Aachen Research Alliance (JARA)Fundamentals of Future Information Technology52425JülichGermany
| | - F. Stefan Tautz
- Peter Grünberg Institute (PGI-3)Forschungszentrum Jülich52425JülichGermany
- Jülich Aachen Research Alliance (JARA)Fundamentals of Future Information Technology52425JülichGermany
- Experimentalphysik IV ARWTH Aachen University52074AachenGermany
| | - Georg Koller
- Institute of PhysicsNAWI GrazUniversity of GrazUniversitätsplatz 58010GrazAustria
| | - Peter Puschnig
- Institute of PhysicsNAWI GrazUniversity of GrazUniversitätsplatz 58010GrazAustria
| | - Michael G. Ramsey
- Institute of PhysicsNAWI GrazUniversity of GrazUniversitätsplatz 58010GrazAustria
| | - Martin Sterrer
- Institute of PhysicsNAWI GrazUniversity of GrazUniversitätsplatz 58010GrazAustria
| |
Collapse
|
17
|
Cojocariu I, Carlotto S, Sturmeit HM, Zamborlini G, Cinchetti M, Cossaro A, Verdini A, Floreano L, Jugovac M, Puschnig P, Piamonteze C, Casarin M, Feyer V, Schneider CM. Ferrous to Ferric Transition in Fe-Phthalocyanine Driven by NO 2 Exposure. Chemistry 2021; 27:3526-3535. [PMID: 33264485 PMCID: PMC7898877 DOI: 10.1002/chem.202004932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 01/10/2023]
Abstract
Due to its unique magnetic properties offered by the open‐shell electronic structure of the central metal ion, and for being an effective catalyst in a wide variety of reactions, iron phthalocyanine has drawn significant interest from the scientific community. Nevertheless, upon surface deposition, the magnetic properties of the molecular layer can be significantly affected by the coupling occurring at the interface, and the more reactive the surface, the stronger is the impact on the spin state. Here, we show that on Cu(100), indeed, the strong hybridization between the Fe d‐states of FePc and the sp‐band of the copper substrate modifies the charge distribution in the molecule, significantly influencing the magnetic properties of the iron ion. The FeII ion is stabilized in the low singlet spin state (S=0), leading to the complete quenching of the molecule magnetic moment. By exploiting the FePc/Cu(100) interface, we demonstrate that NO2 dissociation can be used to gradually change the magnetic properties of the iron ion, by trimming the gas dosage. For lower doses, the FePc film is decoupled from the copper substrate, restoring the gas phase triplet spin state (S=1). A higher dose induces the transition from ferrous to ferric phthalocyanine, in its intermediate spin state, with enhanced magnetic moment due to the interaction with the atomic ligands. Remarkably, in this way, three different spin configurations have been observed within the same metalorganic/metal interface by exposing it to different doses of NO2 at room temperature.
Collapse
Affiliation(s)
- Iulia Cojocariu
- Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52428, Jülich, Germany
| | - Silvia Carlotto
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via F. Marzolo 1, 35131, Padova, Italy
| | | | - Giovanni Zamborlini
- Technische Universität Dortmund, Experimentelle Physik VI, Otto-Hahn-Straße 4, 44227, Dortmund, Germany
| | - Mirko Cinchetti
- Technische Universität Dortmund, Experimentelle Physik VI, Otto-Hahn-Straße 4, 44227, Dortmund, Germany
| | - Albano Cossaro
- CNR-IOM, Lab. TASC, S.S. 14, Km. 163,5, 34149, Trieste, Italy
| | - Alberto Verdini
- CNR-IOM, Lab. TASC, S.S. 14, Km. 163,5, 34149, Trieste, Italy
| | - Luca Floreano
- CNR-IOM, Lab. TASC, S.S. 14, Km. 163,5, 34149, Trieste, Italy
| | - Matteo Jugovac
- Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52428, Jülich, Germany.,Present address: Istituto di Struttura della Materia-CNR (ISM-CNR), S.S. 14, Km. 163,5, 34149, Trieste, Italy
| | - Peter Puschnig
- Institute of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010, Graz, Austria
| | - Cinthia Piamonteze
- Swiss Light Source, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Maurizio Casarin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via F. Marzolo 1, 35131, Padova, Italy
| | - Vitaliy Feyer
- Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52428, Jülich, Germany.,Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, Carl-Benz-Straße 199, 47047, Duisburg, Germany
| | - Claus Michael Schneider
- Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52428, Jülich, Germany.,Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, Carl-Benz-Straße 199, 47047, Duisburg, Germany
| |
Collapse
|
18
|
Ninova S, Malcıoğlu OB, Auburger P, Franke M, Lytken O, Steinrück HP, Bockstedte M. Morphology dependent interaction between Co(II)-tetraphenylporphyrin and the MgO(100) surface. Phys Chem Chem Phys 2021; 23:2105-2116. [PMID: 33437981 PMCID: PMC8431532 DOI: 10.1039/d0cp04859c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porphyrins are key elements in organic–inorganic hybrid systems for a wide range of applications. Understanding their interaction with the substrate gives a handle on structural and electronic device properties. Here we investigate a single transition-metal porphyrin, namely Co(ii)-tetraphenylporphyrin (CoTPP), on the MgO(100) surface and the effect of multilayer film formation within hybrid density-functional theory and many-body perturbation theory. We focus on the relevant adsorption sites, simulate their photoemission spectra as a key fingerprint and compare with experiments on MgO(100) films on Ag(100). While we find only weak interaction between the cobalt centre and terrace sites on the MgO(100) surface, a strong interaction manifests itself with the low-coordinated sites. This leads to distinct features in both the valence and core-level regions of the electronic structure, as observed in the ultraviolet and X-ray photoemission spectra, corroborated by simulated spectra and calculated cobalt core-level shifts. Our work thus demonstrates the relevance of morphology-related low-coordinated sites and their properties in the adsorption of CoTPP on the MgO(100) surface. The adsorption of Co-tetraphenylporphyrin at relevant low-coordinated sites on MgO(100) shows distinct features from terrace-site and multilayer films in the near-valence and corelevel regions of the electronic structure.![]()
Collapse
Affiliation(s)
- Silviya Ninova
- Chemistry and Physics of Materials, Paris-Lodron University Salzburg, Jakob-Haringer-Str. 2a, A-5020 Salzburg, Austria.
| | - Osman Barış Malcıoğlu
- Chemistry and Physics of Materials, Paris-Lodron University Salzburg, Jakob-Haringer-Str. 2a, A-5020 Salzburg, Austria.
| | - Philipp Auburger
- Theoretische Festkörperphysik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7B2, D-91058 Erlangen, Germany
| | - Matthias Franke
- Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Ole Lytken
- Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Hans-Peter Steinrück
- Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Michel Bockstedte
- Chemistry and Physics of Materials, Paris-Lodron University Salzburg, Jakob-Haringer-Str. 2a, A-5020 Salzburg, Austria. .,Theoretische Festkörperphysik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7B2, D-91058 Erlangen, Germany.,Institut für Theoretische Physik, Johannes-Kepler-Universität Linz, Altenberger Str. 68, A-4040 Linz, Austria
| |
Collapse
|
19
|
Baklanov A, Garnica M, Robert A, Bocquet ML, Seufert K, Küchle JT, Ryan PTP, Haag F, Kakavandi R, Allegretti F, Auwärter W. On-Surface Synthesis of Nonmetal Porphyrins. J Am Chem Soc 2020; 142:1871-1881. [PMID: 31944105 DOI: 10.1021/jacs.9b10711] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report the on-surface synthesis of a nonmetal porphyrin, namely, silicon tetraphenylporphyrin (Si-TPP), by the deposition of atomic silicon onto a free-base TPP layer on a Ag(100) surface under ultrahigh vacuum (UHV) conditions. Scanning tunneling microscopy provides insights into the self-assembly of the TPP molecules before and after Si insertion. Silicon coordinates with all four nitrogen atoms of the TPP macrocycle and interacts with a silver atom of the substrate as confirmed by scanning tunneling spectroscopy, X-ray photoelectron spectroscopy, and complementary density functional theory calculations. The Si-TPP complex presents a saddle-shaped conformation that is stable under STM manipulation. Our study shows how protocols established for the on-surface metalation of tetrapyrroles can be adopted to achieve nonmetal porphyrins. Complementary experiments yielding Si-TPP and Ge-TPP on Ag(111) highlight the applicability to different main group elements and supports. The success of our nonmetal porphyrin synthesis procedure is further corroborated by a temperature-programmed desorption experiment, revealing the desorption of Ge-TPP. This extension of interfacial complex formation beyond metal elements opens promising prospects for new tetrapyrrole architectures with distinct properties and functionalities.
Collapse
Affiliation(s)
- Aleksandr Baklanov
- Physics Department E20 , Technical University of Munich , James-Franck-Str. 1 , D-85748 Garching , Germany
| | - Manuela Garnica
- Physics Department E20 , Technical University of Munich , James-Franck-Str. 1 , D-85748 Garching , Germany
| | - Anton Robert
- PASTEUR, Département de Chimie, École Normale Supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Marie-Laure Bocquet
- PASTEUR, Département de Chimie, École Normale Supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Knud Seufert
- Physics Department E20 , Technical University of Munich , James-Franck-Str. 1 , D-85748 Garching , Germany
| | - Johannes T Küchle
- Physics Department E20 , Technical University of Munich , James-Franck-Str. 1 , D-85748 Garching , Germany
| | - Paul T P Ryan
- Diamond Light Source , Harwell Science and Innovation Campus , Didcot OX11 0DE , U.K.,Department of Materials , Imperial College London , South Kensington, London , SW7 2AZ , U.K
| | - Felix Haag
- Physics Department E20 , Technical University of Munich , James-Franck-Str. 1 , D-85748 Garching , Germany
| | - Reza Kakavandi
- Physics Department E20 , Technical University of Munich , James-Franck-Str. 1 , D-85748 Garching , Germany
| | - Francesco Allegretti
- Physics Department E20 , Technical University of Munich , James-Franck-Str. 1 , D-85748 Garching , Germany
| | - Willi Auwärter
- Physics Department E20 , Technical University of Munich , James-Franck-Str. 1 , D-85748 Garching , Germany
| |
Collapse
|
20
|
Combined orbital tomography study of multi-configurational molecular adsorbate systems. Nat Commun 2019; 10:5255. [PMID: 31748503 PMCID: PMC6868194 DOI: 10.1038/s41467-019-13254-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/31/2019] [Indexed: 11/16/2022] Open
Abstract
Molecular reactivity is determined by the energy levels and spatial extent of the frontier orbitals. Orbital tomography based on angle-resolved photoelectron spectroscopy is an elegant method to study the electronic structure of organic adsorbates, however, it is conventionally restricted to systems with one single rotational domain. In this work, we extend orbital tomography to systems with multiple rotational domains. We characterise the hydrogen evolution catalyst Co-pyrphyrin on an Ag(110) substrate and compare it with the empty pyrphyrin ligand. In combination with low-energy electron diffraction and DFT simulations, we fully determine adsorption geometry and both energetics and spatial distributions of the valence electronic states. We find two states close to the Fermi level in Co-pyrphyrin with Co \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3d$$\end{document}3d character that are not present in the empty ligand. In addition, we identify several energetically nearly equivalent adsorption geometries that are important for the understanding of the electronic structure. The ability to disentangle and fully elucidate multi-configurational systems renders orbital tomography much more useful to study realistic catalytic systems. The shape and energy of frontier orbitals determine the reactivity of molecular systems. Combining orbital tomography based on photoelectron spectroscopy with electron diffraction and DFT, the authors investigate a complex multi-configurational adsorbate system revealing adsorptions geometries and hierarchy and geometry of molecular orbitals.
Collapse
|
21
|
Yang X, Egger L, Fuchsberger J, Unzog M, Lüftner D, Hajek F, Hurdax P, Jugovac M, Zamborlini G, Feyer V, Koller G, Puschnig P, Tautz FS, Ramsey MG, Soubatch S. Coexisting Charge States in a Unary Organic Monolayer Film on a Metal. J Phys Chem Lett 2019; 10:6438-6445. [PMID: 31573816 DOI: 10.1021/acs.jpclett.9b02231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The electronic and geometric structures of tetracene films on Ag(110) and Cu(110) have been studied with photoemission tomography and compared to that of pentacene. Despite similar energy level alignment of the two oligoacenes on these surfaces revealed by conventional ultraviolet photoelectron spectroscopy, the momentum-space resolved photoemission tomography reveals a significant difference in both structural and electronic properties of tetracene and pentacene films. Particularly, the saturated monolayer of tetracene on Ag(110) is found to consist of two molecular species that, despite having the same orientation, are electronically very different-while one molecule remains neutral, another is charged because of electron donation from the substrate.
Collapse
Affiliation(s)
- Xiaosheng Yang
- Peter Grünberg Institut (PGI-3) , Forschungszentrum Jülich , 52425 Jülich , Germany
- Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology , 52425 Jülich , Germany
- Experimental Physics IV A , RWTH Aachen University , 52074 Aachen , Germany
| | - Larissa Egger
- Institute of Physics , University of Graz , NAWI Graz, 8010 Graz , Austria
| | - Jana Fuchsberger
- Institute of Physics , University of Graz , NAWI Graz, 8010 Graz , Austria
| | - Martin Unzog
- Institute of Physics , University of Graz , NAWI Graz, 8010 Graz , Austria
| | - Daniel Lüftner
- Institute of Physics , University of Graz , NAWI Graz, 8010 Graz , Austria
| | - Felix Hajek
- Institute of Physics , University of Graz , NAWI Graz, 8010 Graz , Austria
| | - Philipp Hurdax
- Institute of Physics , University of Graz , NAWI Graz, 8010 Graz , Austria
| | - Matteo Jugovac
- Peter Grünberg Institut (PGI-6) , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Giovanni Zamborlini
- Peter Grünberg Institut (PGI-6) , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Vitaliy Feyer
- Peter Grünberg Institut (PGI-6) , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Georg Koller
- Institute of Physics , University of Graz , NAWI Graz, 8010 Graz , Austria
| | - Peter Puschnig
- Institute of Physics , University of Graz , NAWI Graz, 8010 Graz , Austria
| | - F Stefan Tautz
- Peter Grünberg Institut (PGI-3) , Forschungszentrum Jülich , 52425 Jülich , Germany
- Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology , 52425 Jülich , Germany
- Experimental Physics IV A , RWTH Aachen University , 52074 Aachen , Germany
| | - Michael G Ramsey
- Institute of Physics , University of Graz , NAWI Graz, 8010 Graz , Austria
| | - Serguei Soubatch
- Peter Grünberg Institut (PGI-3) , Forschungszentrum Jülich , 52425 Jülich , Germany
- Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology , 52425 Jülich , Germany
| |
Collapse
|
22
|
Li J, Yang S, Ren JC, Su G, Li S, Butch CJ, Ding Z, Liu W. Deep Molecular Orbital Driven High-Temperature Hydrogen Tautomerization Switching. J Phys Chem Lett 2019; 10:6755-6761. [PMID: 31613631 DOI: 10.1021/acs.jpclett.9b02671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrogen tautomerization molecular switches, a promising class of molecular components for the construction of complex nanocircuits, have been extensively studied using low-temperature scanning tunneling microscopy. However, these molecules are generally only reliably controllable in cryogenic environments, obstructing their utility in real devices. Here, we use dispersion-inclusive density functional theory and systematically investigate the adsorption and tautomerization behaviors of porphycene on six transition-metal surfaces. Among these surfaces, we found that hydrogen tautomerization on the Pt(110) surface corresponds to the largest switching barrier, allowing a controllable transition at high temperature. The switching behavior is closely related to the exceptional degree of charge transfer in the HOMO-2 orbital, illustrating the important role of deep orbital-surface interactions in porphycene molecular switching. Our work provides an in-depth understanding of the porphycene tautomerization mechanism and highlights new research avenues toward the practical application of molecular switches.
Collapse
Affiliation(s)
- Jingtai Li
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , Jiangsu , China
| | - Sha Yang
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , Jiangsu , China
| | - Ji-Chang Ren
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , Jiangsu , China
| | - Guirong Su
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , Jiangsu , China
| | - Shuang Li
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , Jiangsu , China
| | - Christopher J Butch
- Department of Biomedical Engineering , Nanjing University , Nanjing , China
- Blue Marble Space Institute of Science , Seattle , Washington 98154 , United States
| | - Zhigang Ding
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , Jiangsu , China
| | - Wei Liu
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , Jiangsu , China
| |
Collapse
|
23
|
Chen MT, Hofmann OT, Gerlach A, Bröker B, Bürker C, Niederhausen J, Hosokai T, Zegenhagen J, Vollmer A, Rieger R, Müllen K, Schreiber F, Salzmann I, Koch N, Zojer E, Duhm S. Energy-level alignment at strongly coupled organic-metal interfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:194002. [PMID: 30673641 DOI: 10.1088/1361-648x/ab0171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Energy-level alignment at organic-metal interfaces plays a crucial role for the performance of organic electronic devices. However, reliable models to predict energetics at strongly coupled interfaces are still lacking. We elucidate contact formation of 1,2,5,6,9,10-coronenehexone (COHON) to the (1 1 1)-surfaces of coinage metals by means of ultraviolet photoelectron spectroscopy, x-ray photoelectron spectroscopy, the x-ray standing wave technique, and density functional theory calculations. While for low COHON thicknesses, the work-functions of the systems vary considerably, for thicker organic films Fermi-level pinning leads to identical work functions of 5.2 eV for all COHON-covered metals irrespective of the pristine substrate work function and the interfacial interaction strength.
Collapse
Affiliation(s)
- Meng-Ting Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Barcaro G, Fortunelli A. 2D oxides on metal materials: concepts, status, and perspectives. Phys Chem Chem Phys 2019; 21:11510-11536. [DOI: 10.1039/c9cp00972h] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional oxide-on-metal materials: concepts, methods, and link to technological applications, with 5 subtopics: structural motifs, robustness, catalysis, ternaries, and nanopatterning.
Collapse
|
25
|
Zamborlini G, Jugovac M, Cossaro A, Verdini A, Floreano L, Lüftner D, Puschnig P, Feyer V, Schneider CM. On-surface nickel porphyrin mimics the reactive center of an enzyme cofactor. Chem Commun (Camb) 2018; 54:13423-13426. [PMID: 30427327 DOI: 10.1039/c8cc06739b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Metal-containing enzyme cofactors achieve their unusual reactivity by stabilizing uncommon metal oxidation states with structurally complex ligands. In particular, the specific cofactor promoting both methanogenesis and anaerobic methane oxidation is a porphyrinoid chelated to a nickel(i) atom via a multi-step biosynthetic path, where nickel reduction is achieved through extensive molecular hydrogenation. Here, we demonstrate an alternative route to porphyrin reduction by charge transfer from a selected copper substrate to commercially available 5,10,15,20-tetraphenyl-porphyrin nickel(ii). X-ray absorption measurements at the Ni L3-edge unequivocally show that NiTPP species adsorbed on Cu(100) are stabilized in the highly reactive Ni(i) oxidation state by electron transfer to the molecular orbitals. Our approach highlights how some fundamental properties of synthetically inaccessible biological cofactors may be reproduced by hybridization of simple metalloporphyrins with metal surfaces, with implications towards novel approaches to heterogenous catalysis.
Collapse
Affiliation(s)
- Giovanni Zamborlini
- Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ruiz del Árbol N, Palacio I, Otero‐Irurueta G, Martínez JI, de Andrés PL, Stetsovych O, Moro‐Lagares M, Mutombo P, Svec M, Jelínek P, Cossaro A, Floreano L, Ellis GJ, López MF, Martín‐Gago JA. On-Surface Bottom-Up Synthesis of Azine Derivatives Displaying Strong Acceptor Behavior. Angew Chem Int Ed Engl 2018; 57:8582-8586. [PMID: 29931817 PMCID: PMC6055674 DOI: 10.1002/anie.201804110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 11/10/2022]
Abstract
On-surface synthesis is an emerging approach to obtain, in a single step, precisely defined chemical species that cannot be obtained by other synthetic routes. The control of the electronic structure of organic/metal interfaces is crucial for defining the performance of many optoelectronic devices. A facile on-surface chemistry route has now been used to synthesize the strong electron-acceptor organic molecule quinoneazine directly on a Cu(110) surface, via thermally activated covalent coupling of para-aminophenol precursors. The mechanism is described using a combination of in situ surface characterization techniques and theoretical methods. Owing to a strong surface-molecule interaction, the quinoneazine molecule accommodates 1.2 electrons at its carbonyl ends, inducing an intramolecular charge redistribution and leading to partial conjugation of the rings, conferring azo-character at the nitrogen sites.
Collapse
Affiliation(s)
- Nerea Ruiz del Árbol
- ESISNA Group, Materials Science Factory.Institute of Materials Science of Madrid (ICMM-CSIC)Sor Juana Inés de la Cruz 328049MadridSpain
| | - Irene Palacio
- ESISNA Group, Materials Science Factory.Institute of Materials Science of Madrid (ICMM-CSIC)Sor Juana Inés de la Cruz 328049MadridSpain
| | - Gonzalo Otero‐Irurueta
- Centre for Mechanical Technology and Automation (TEMA)University of Aveiro3810-193AveiroPortugal
| | - José I. Martínez
- ESISNA Group, Materials Science Factory.Institute of Materials Science of Madrid (ICMM-CSIC)Sor Juana Inés de la Cruz 328049MadridSpain
| | - Pedro L. de Andrés
- ESISNA Group, Materials Science Factory.Institute of Materials Science of Madrid (ICMM-CSIC)Sor Juana Inés de la Cruz 328049MadridSpain
| | - Oleksander Stetsovych
- Institute of PhysicsAcademy of Sciences of the Czech RepublicCukrovarnicka 101862 53PragueCzech Republic
| | - María Moro‐Lagares
- Institute of PhysicsAcademy of Sciences of the Czech RepublicCukrovarnicka 101862 53PragueCzech Republic
| | - Pingo Mutombo
- Institute of PhysicsAcademy of Sciences of the Czech RepublicCukrovarnicka 101862 53PragueCzech Republic
| | - Martin Svec
- Institute of PhysicsAcademy of Sciences of the Czech RepublicCukrovarnicka 101862 53PragueCzech Republic
| | - Pavel Jelínek
- Institute of PhysicsAcademy of Sciences of the Czech RepublicCukrovarnicka 101862 53PragueCzech Republic
| | - Albano Cossaro
- Laboratorio TASC, CNR-IOMBasovizza SS-14, Km 163.534149TriesteItaly
| | - Luca Floreano
- Laboratorio TASC, CNR-IOMBasovizza SS-14, Km 163.534149TriesteItaly
| | - Gary J. Ellis
- Polymer Physics GroupInstitute of Polymer Science and Technology (ICTP-CSIC)Juan de la Cierva 328006MadridSpain
| | - María F. López
- ESISNA Group, Materials Science Factory.Institute of Materials Science of Madrid (ICMM-CSIC)Sor Juana Inés de la Cruz 328049MadridSpain
| | - José A. Martín‐Gago
- ESISNA Group, Materials Science Factory.Institute of Materials Science of Madrid (ICMM-CSIC)Sor Juana Inés de la Cruz 328049MadridSpain
| |
Collapse
|
27
|
Tsuneda T, Singh RK, Chattaraj PK. Diagrams for comprehensive molecular orbital-based chemical reaction analyses: reactive orbital energy diagrams. Phys Chem Chem Phys 2018; 20:14211-14222. [DOI: 10.1039/c8cp00461g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactive orbital energy diagrams resting on the reactive orbital energy theory correct conventional frontier orbital diagrams and make it possible to perform comprehensive orbital-based analyses of reactions.
Collapse
Affiliation(s)
- Takao Tsuneda
- Fuel Cell Nanomaterials Center
- University of Yamanashi
- Kofu 400-0021
- Japan
| | - Raman Kumar Singh
- Department of Chemistry
- Jagdam College
- Jai Prakash University
- Chapra
- Bihar-841301
| | - Pratim Kumar Chattaraj
- Department of Chemistry and Centre for Theoretical Studies
- Indian Institute of Technology Kharagpur
- India
| |
Collapse
|