1
|
Fu XY, Yue TJ, Guo XH, Lu XB, Ren WM. Synthesis of highly effective polyester/polyacrylate compatibilizers using switchable polymerization. Nat Commun 2025; 16:2154. [PMID: 40038273 DOI: 10.1038/s41467-025-57449-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/22/2025] [Indexed: 03/06/2025] Open
Abstract
Multiblock copolymers (MBCPs) comprising polyester and polyacrylate segments offer an efficient strategy for enhancing the performance of polyester and polyolefin blends but synthesis and structural modification of these MBCPs remains challenging. Here, we propose a method for synthesizing MBCPs via the switchable polymerization of epoxides, cyclic anhydrides, and acrylates using a dinuclear Co-complex, wherein the anhydride acts as a switcher. Detailed studies on the copolymerization process reveal that the successful synthesis of MBCPs is achieved by intramolecular bimetallic synergistic catalysis, producing MBCPs with controlled molecular weights and narrow dispersities. Owing to the high compatibility of the monomers, this method allows for producing MBCPs with diverse structures and block numbers. Moreover, the resulting MBCPs effectively enhance the performance of the polyester and polyacrylate blends, improving the toughness of polyesters. Studies on microphase separation show that MBCPs can effectively compatibilize immiscible blends, highlighting their potential as compatibilizers.
Collapse
Affiliation(s)
- Xiang-Yu Fu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, China
| | - Tian-Jun Yue
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, China.
| | - Xiao-Hui Guo
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, China.
| |
Collapse
|
2
|
Zhang Z, Zhu BK, Yi ZY, Fang T, Jin Z, He L, Chen BB, Qi X, Wang CJ. Catalytic Asymmetric Synthesis and Applications of Stereogenic β'-Methyl Enones and β,β'-Dimethyl Ketones. Angew Chem Int Ed Engl 2025; 64:e202414449. [PMID: 39658841 DOI: 10.1002/anie.202414449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
The "Magic Methyl" effect has received tremendous interest in medicinal chemistry due to the significant pharmacological and physical modification of properties that have been observed upon introducing a methyl group, especially, a stereogenic methyl group into potential chiral drug candidates. The prevalence of stereogenic β-methyl ketone structural motifs in bioactive compounds and natural products has long motivated the development of enantioselective strategies toward their synthesis. Herein, we have rationally designed a Rh-catalyzed asymmetric monohydrogenation of readily-available β'-methylene conjugated enones with high efficiency and remarkable site-selectivity and enantioselectivity control for the practical construction of enantioenriched β'-methyl unsaturated enones that are difficult to access by other methods. Control experiments revealed that the conjugated C=C bond in β'-methylene conjugated enones plays a significant role in enhancing the reactivity of monohydrogenation. This methodology is applicable for the preparation of chiral β,β'-dimethyl ketones through consecutive double asymmetric hydrogenation of β,β'-dimethylene ketones. Detailed mechanistic investigation and DFT studies further provided strong support for a unique processive catalysis pathway for double asymmetric hydrogenation. The synthetic utilities have been demonstrated in the concise synthesis of several key intermediates for bioactive molecules, asymmetric total synthesis of natural products (S)-(+)-ar-Turmerone and (S)-(+)-dihydro-ar-Turmerone, and two C2-symmetric chiral spirocyclic diol frameworks.
Collapse
Affiliation(s)
- Zongpeng Zhang
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Bing-Ke Zhu
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhi-Yuan Yi
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ting Fang
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhuan Jin
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ling He
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Bo-Bin Chen
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaotian Qi
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chun-Jiang Wang
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Abstract
Chemical transformations that rapidly and efficiently construct a high level of molecular complexity in a single step are perhaps the most valuable in total synthesis. Among such transformations is the transition metal catalyzed [2 + 2 + 2] cycloisomerization reaction, which forges three new C-C bonds and one or more rings in a single synthetic operation. We report here a strategy that leverages this transformation to open de novo access to the Veratrum family of alkaloids. The highly convergent approach described herein includes (i) the enantioselective synthesis of a diyne fragment containing the steroidal A/B rings, (ii) the asymmetric synthesis of a propargyl-substituted piperidinone (F ring) unit, (iii) the high-yielding union of the above fragments, and (iv) the intramolecular [2 + 2 + 2] cycloisomerization reaction of the resulting carbon framework to construct in a single step the remaining three rings (C/D/E) of the hexacyclic cevanine skeleton. Efficient late-stage maneuvers culminated in the first total synthesis of heilonine (1), achieved in 21 steps starting from ethyl vinyl ketone.
Collapse
Affiliation(s)
- Kyle J. Cassaidy
- Department of Chemistry, University
of Chicago, Chicago, Illinois 60637, United States
| | - Viresh H. Rawal
- Department of Chemistry, University
of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|