1
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 PMCID: PMC12036645 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Li Y, Wu M, Fu Y, Xue J, Yuan F, Qu T, Rissanou AN, Wang Y, Li X, Hu H. Therapeutic stapled peptides: Efficacy and molecular targets. Pharmacol Res 2024; 203:107137. [PMID: 38522761 DOI: 10.1016/j.phrs.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
Peptide stapling, by employing a stable, preformed alpha-helical conformation, results in the production of peptides with improved membrane permeability and enhanced proteolytic stability, compared to the original peptides, and provides an effective solution to accelerate the rapid development of peptide drugs. Various reviews present peptide stapling chemistries, anchoring residues and one- or two-component cyclization, however, therapeutic stapled peptides have not been systematically summarized, especially focusing on various disease-related targets. This review highlights the latest advances in therapeutic peptide drug development facilitated by the application of stapling technology, including different stapling techniques, synthetic accessibility, applicability to biological targets, potential for solving biological problems, as well as the current status of development. Stapled peptides as therapeutic drug candidates have been classified and analysed mainly by receptor- and ligand-based stapled peptide design against various diseases, including cancer, infectious diseases, inflammation, and diabetes. This review is expected to provide a comprehensive reference for the rational design of stapled peptides for different diseases and targets to facilitate the development of therapeutic peptides with enhanced pharmacokinetic and biological properties.
Collapse
Affiliation(s)
- Yulei Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Minghao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yinxue Fu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jingwen Xue
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fei Yuan
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Tianci Qu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Anastassia N Rissanou
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Yilin Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 131 Dong'an Road, Shanghai 200032, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Honggang Hu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
3
|
Ferreira A, Castanheira P, Escrevente C, Barral DC, Barona T. Membrane trafficking alterations in breast cancer progression. Front Cell Dev Biol 2024; 12:1350097. [PMID: 38533085 PMCID: PMC10963426 DOI: 10.3389/fcell.2024.1350097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 03/28/2024] Open
Abstract
Breast cancer (BC) is the most common type of cancer in women, and remains one of the major causes of death in women worldwide. It is now well established that alterations in membrane trafficking are implicated in BC progression. Indeed, membrane trafficking pathways regulate BC cell proliferation, migration, invasion, and metastasis. The 22 members of the ADP-ribosylation factor (ARF) and the >60 members of the rat sarcoma (RAS)-related in brain (RAB) families of small GTP-binding proteins (GTPases), which belong to the RAS superfamily, are master regulators of membrane trafficking pathways. ARF-like (ARL) subfamily members are involved in various processes, including vesicle budding and cargo selection. Moreover, ARFs regulate cytoskeleton organization and signal transduction. RABs are key regulators of all steps of membrane trafficking. Interestingly, the activity and/or expression of some of these proteins is found dysregulated in BC. Here, we review how the processes regulated by ARFs and RABs are subverted in BC, including secretion/exocytosis, endocytosis/recycling, autophagy/lysosome trafficking, cytoskeleton dynamics, integrin-mediated signaling, among others. Thus, we provide a comprehensive overview of the roles played by ARF and RAB family members, as well as their regulators in BC progression, aiming to lay the foundation for future research in this field. This research should focus on further dissecting the molecular mechanisms regulated by ARFs and RABs that are subverted in BC, and exploring their use as therapeutic targets or prognostic markers.
Collapse
|
4
|
Guo RJ, Cao YF, Li EM, Xu LY. Multiple functions and dual characteristics of RAB11A in cancers. Biochim Biophys Acta Rev Cancer 2023; 1878:188966. [PMID: 37657681 DOI: 10.1016/j.bbcan.2023.188966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/05/2023] [Accepted: 08/05/2023] [Indexed: 09/03/2023]
Abstract
Vesicle trafficking is an unceasing and elaborate cellular process that functions in material transport and information delivery. Recent studies have identified the small GTPase, Ras-related protein in brain 11A (RAB11A), as a key regulator in this process. Aberrant RAB11A expression has been reported in several types of cancers, suggesting the important functions and characteristics of RAB11A in cancer. These discoveries are of great significance because therapeutic strategies based on the physiological and pathological status of RAB11A might make cancer treatment more effective, as the molecular mechanisms of cancer development have not been completely revealed. However, these studies on RAB11A have not been reviewed and discussed specifically. Therefore, we summarize and discuss the recent findings of RAB11A involvement in different biological processes, including endocytic recycling regulation, receptors and adhesion molecules recycling, exosome secretion, phagophore formation and cytokinesis, as well as regulatory mechanisms in several tumor types. Moreover, contradictory effects of RAB11A have also been observed in different types of cancers, implying the dual characteristics of RAB11A in cancer, which are either oncogenic or tumor-suppressive. This review on the functions and characteristics of RAB11A highlights the value of RAB11A in inducing multiple important phenotypes based on vesicle trafficking and therefore will offer insights for future studies to reveal the molecular mechanisms, clinical significance, and therapeutic targeting of RAB11A in different cancers.
Collapse
Affiliation(s)
- Rui-Jian Guo
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Yu-Fei Cao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
5
|
Cong W, Shen H, Liao X, Zheng M, Kong X, Wang Z, Chen S, Li Y, Hu H, Li X. Discovery of an orally effective double-stapled peptide for reducing ovariectomy-induced bone loss in mice. Acta Pharm Sin B 2023; 13:3770-3781. [PMID: 37719364 PMCID: PMC10502273 DOI: 10.1016/j.apsb.2023.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/16/2023] [Accepted: 05/05/2023] [Indexed: 09/19/2023] Open
Abstract
Stapled peptides with significantly enhanced pharmacological profiles have emerged as promising therapeutic molecules due to their remarkable resistance to proteolysis and performance to penetrate cells. The all-hydrocarbon peptide stapling technique has already widely adopted with great success, yielding numerous potent peptide-based molecules. Based on our prior efforts, we conceived and prepared a double-stapled peptide in this study, termed FRNC-1, which effectively attenuated the bone resorption capacity of mature osteoclasts in vitro through specific inhibition of phosphorylated GSK-3β. The double-stapled peptide FRNC-1 displayed notably improved helical contents and resistance to proteolysis than its linear form. Additionally, FRNC-1 effectively prevented osteoclast activation and improved bone density for ovariectomized (OVX) mice after intravenous injection and importantly, after oral (intragastric) administration. The double-stapled peptide FRNC-1 is the first orally effective peptide that has been validated to date as a therapeutic candidate for postmenopausal osteoporosis (PMOP).
Collapse
Affiliation(s)
- Wei Cong
- School of Medicine Or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Huaxing Shen
- School of Medicine Or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xiufei Liao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Tarim University, Xinjiang Uygur Autonomous Region, Alar City 843300, China
| | - Mengjun Zheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xianglong Kong
- School of Medicine Or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Zhe Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Si Chen
- School of Medicine Or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yulei Li
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, China
| | - Honggang Hu
- School of Medicine Or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
6
|
Kawano K, Kamasaka K, Yokoyama F, Kawamoto J, Ogawa T, Kurihara T, Matsuzaki K. Structural factors governing binding of curvature-sensing peptides to bacterial extracellular vesicles covered with hydrophilic polysaccharide chains. Biophys Chem 2023; 299:107039. [PMID: 37209609 DOI: 10.1016/j.bpc.2023.107039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
Extracellular vesicles (EVs) have attracted an attention as important targets in the fields of biology and medical science because they contain physiologically active molecules. Curvature-sensing peptides are currently used as novel tools for marker-independent EV detection techniques. A structure-activity correlation study demonstrated that the α-helicity of the peptides is prominently involved in peptide binding to vesicles. However, whether a flexible structure changing from a random coil to an α-helix upon binding to vesicles or a restricted α-helical structure is an important factor in the detection of biogenic vesicles is still unclear. To address this issue, we compared the binding affinities of stapled and unstapled peptides for bacterial EVs with different surface polysaccharide chains. We found that unstapled peptides showed similar binding affinities for bacterial EVs regardless of surface polysaccharide chains, whereas stapled peptides showed substantially decreased binding affinities for bacterial EVs covered with capsular polysaccharides. This is probably because curvature-sensing peptides must pass through the layer of hydrophilic polysaccharide chains prior to binding to the hydrophobic membrane surface. While stapled peptides with restricted structures cannot easily pass through the layer of polysaccharide chains, unstapled peptides with flexible structures can easily approach the membrane surface. Therefore, we concluded that the structural flexibility of curvature-sensing peptides is a key factor for governing the highly sensitive detection of bacterial EVs.
Collapse
Affiliation(s)
- Kenichi Kawano
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kouhei Kamasaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Fumiaki Yokoyama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan; Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Takuya Ogawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
7
|
Speltz TE, Qiao Z, Swenson CS, Shangguan X, Coukos JS, Lee CW, Thomas DM, Santana J, Fanning SW, Greene GL, Moellering RE. Targeting MYC with modular synthetic transcriptional repressors derived from bHLH DNA-binding domains. Nat Biotechnol 2023; 41:541-551. [PMID: 36302987 PMCID: PMC10392954 DOI: 10.1038/s41587-022-01504-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 09/08/2022] [Indexed: 01/16/2023]
Abstract
Despite unequivocal roles in disease, transcription factors (TFs) remain largely untapped as pharmacologic targets due to the challenges in targeting protein-protein and protein-DNA interactions. Here we report a chemical strategy to generate modular synthetic transcriptional repressors (STRs) derived from the bHLH domain of MAX. Our synthetic approach yields chemically stabilized tertiary domain mimetics that cooperatively bind the MYC/MAX consensus E-box motif with nanomolar affinity, exhibit specificity that is equivalent to or beyond that of full-length TFs and directly compete with MYC/MAX protein for DNA binding. A lead STR directly inhibits MYC binding in cells, downregulates MYC-dependent expression programs at the proteome level and inhibits MYC-dependent cell proliferation. Co-crystallization and structure determination of a STR:E-box DNA complex confirms retention of DNA recognition in a near identical manner as full-length bHLH TFs. We additionally demonstrate structure-blind design of STRs derived from alternative bHLH-TFs, confirming that STRs can be used to develop highly specific mimetics of TFs targeting other gene regulatory elements.
Collapse
Affiliation(s)
- Thomas E Speltz
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Zeyu Qiao
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Colin S Swenson
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Xianghang Shangguan
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - John S Coukos
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Christopher W Lee
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Deborah M Thomas
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Jesse Santana
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Sean W Fanning
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- Department of Cancer Biology, Loyola University Chicago, Chicago, IL, USA
| | - Geoffrey L Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Raymond E Moellering
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
8
|
Placidi G, Mattu C, Ciardelli G, Campa CC. Small molecules targeting endocytic uptake and recycling pathways. Front Cell Dev Biol 2023; 11:1125801. [PMID: 36968200 PMCID: PMC10036367 DOI: 10.3389/fcell.2023.1125801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Over the past years a growing number of studies highlighted the pivotal role of intracellular trafficking in cell physiology. Among the distinct transport itineraries connecting the endocytic system, both internalization (endocytosis) and recycling (endocytic recycling) pathways were found fundamental to ensure cellular sensing, cell-to-cell communication, cellular division, and collective cell migration in tissue specific-contexts. Consistently, the dysregulation of endocytic trafficking pathways is correlated with several human diseases including both cancers and neurodegeneration. Aimed at suppress specific intracellular trafficking routes involved in disease onset and progression, huge efforts have been made to identify small molecule inhibitors with suitable pharmacological properties for in vivo administration. Here, we review most used drugs and recently discovered small molecules able to block endocytosis and endocytic recycling pathways. We characterize such pharmacological inhibitors by emphasizing their target specificity, molecular affinity, biological activity and efficacy in both in vitro and in vivo experimental models.
Collapse
Affiliation(s)
- Giampaolo Placidi
- Italian Institute for Genomic Medicine, Candiolo, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Chemical-Physical Processes, National Research Council (CNR-IPCF), Pisa, Italy
| | - Carlo C. Campa
- Italian Institute for Genomic Medicine, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
9
|
Kohil A, Amir SS, Behrens A, Khan OM. A small Rho GTPase RAB25 with a potential role in chemotherapy resistance in pancreatic cancer. Cancer Biomark 2022; 36:133-145. [PMID: 36565104 DOI: 10.3233/cbm-220214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) is one of the major human health challenges with minimal therapeutic benefits due to its late detection, and de novo - and acquired chemotherapy resistance. OBJECTIVE In this work we unravel the potential pro-survival role of RAB25 in pancreatic cancer chemotherapy resistance and aim to identify if RAB25 is a prognostic marker of patients' survival in PDA. METHODS We used RNA sequencing, shRNA mediated gene knockdown, BioGRID open repository of CRISPR screens (ORCS), GEPIA, kmplot.com, and cBioPortal.org databases to identify the role of RAB25 in PDA cell proliferation, chemotherapy response, expression in tumour versus normal tissues, and overall patients' survival. RESULTS RNA sequencing show Rab25 to be one of the top upregulated genes in gemcitabine resistance mouse PDA cells. Knockdown of Rab25 in these cells enhanced gemcitabine toxicity. In addition, re-analysis of previously published CRISPR/Cas9 data confirm RAB25 to be responsible for chemotherapy resistance in KRASG12D mutant human pancreatic cancer cell line. Finally, we used publicly available TCGA datasets and identify the upregulation of RAB25 in tumour tissues compared to the adjacent normal tissue, co-occurrence of KRASG12 mutations with RAB25 amplifications, and poor patients' survival in cohorts with higher mRNA expression of RAB25. CONCLUSION RAB25 expression is a prognostic marker for patient's survival and gemcitabine resistance in PDA.
Collapse
Affiliation(s)
- Amira Kohil
- Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Sayeda S Amir
- Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Axel Behrens
- The Francis Crick Institute, London, UK.,Cancer Stem Cell Team, Institute of Cancer Research, London, UK
| | - Omar M Khan
- Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
10
|
Wu R, Metternich JB, Tiwari P, Benzenberg LR, Harrison JA, Liu Q, Zenobi R. Structural Studies of a Stapled Peptide with Native Ion Mobility-Mass Spectrometry and Transition Metal Ion Förster Resonance Energy Transfer in the Gas Phase. J Am Chem Soc 2022; 144:14441-14445. [PMID: 35943275 DOI: 10.1021/jacs.2c02776] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Native mass spectrometry has emerged as an important tool for gas-phase structural biology. However, the conformations that a biomolecular ion adopts in the gas phase can differ from those found in solution. Herein, we report a synergistic, native ion mobility-mass spectrometry (IM-MS) and transition metal ion Förster resonance energy transfer (tmFRET)-based approach to probe the gas-phase ion structures of a nonstapled peptide (nsp; Ac-CAARAAHAAAHARARA-NH2) and a stapled peptide (sp; Ac-CXARAXHAAAHARARA-NH2). The stapled peptide contains a single hydrocarbon chain connecting the peptide backbone in the i and i + 4 positions via a Grubbs ring-closure metathesis. Fluorescence lifetime measurements indicated that the Cu-bound complexes of carboxyrhodamine 6g (crh6g)-labeled stapled peptide (sp-crh6g) had a shorter donor-acceptor distance (rDA) than the labeled nonstapled peptide (nsp-crh6g). Experimental collision cross-section (CCS) values were then determined by native IM-MS, which could separate the conformations of Cu-bound complexes of nsp-crh6g and sp-crh6g. Finally, the experimental CCS (i.e., shape) and rDA (i.e., distance) values were used as constraints for computational studies, which unambiguously revealed how a staple reduces the elongation of the peptide ions in the gas phase. This study demonstrates the superiority of combining native IM-MS, tmFRET, and computational studies to investigate the structure of biomolecular ions.
Collapse
Affiliation(s)
- Ri Wu
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Jonas B Metternich
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Prince Tiwari
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Lukas R Benzenberg
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Julian A Harrison
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Qinlei Liu
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Renato Zenobi
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
11
|
Tian Y, Tirrell MV, LaBelle JL. Harnessing the Therapeutic Potential of Biomacromolecules through Intracellular Delivery of Nucleic Acids, Peptides, and Proteins. Adv Healthc Mater 2022; 11:e2102600. [PMID: 35285167 PMCID: PMC9232950 DOI: 10.1002/adhm.202102600] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/09/2022] [Indexed: 12/19/2022]
Abstract
Biomacromolecules have long been at the leading edge of academic and pharmaceutical drug development and clinical translation. With the clinical advances of new therapeutics, such as monoclonal antibodies and nucleic acids, the array of medical applications of biomacromolecules has broadened considerably. A major on-going effort is to expand therapeutic targets within intracellular locations. Owing to their large sizes, abundant charges, and hydrogen-bond donors and acceptors, advanced delivery technologies are required to deliver biomacromolecules effectively inside cells. In this review, strategies used for the intracellular delivery of three major forms of biomacromolecules: nucleic acids, proteins, and peptides, are highlighted. An emphasis is placed on synthetic delivery approaches and the major hurdles needed to be overcome for their ultimate clinical translation.
Collapse
Affiliation(s)
- Yu Tian
- Pritzker School of Molecular EngineeringThe University of Chicago5640 S Ellis AveChicagoIL60637USA
| | - Matthew V. Tirrell
- Pritzker School of Molecular EngineeringThe University of Chicago5640 S Ellis AveChicagoIL60637USA
| | - James L. LaBelle
- Department of Pediatrics, Section of Hematology/OncologyThe University of Chicago900 E 57th StChicagoIL60637USA
| |
Collapse
|
12
|
Buyanova M, Pei D. Targeting intracellular protein-protein interactions with macrocyclic peptides. Trends Pharmacol Sci 2022; 43:234-248. [PMID: 34911657 PMCID: PMC8840965 DOI: 10.1016/j.tips.2021.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/23/2021] [Accepted: 11/09/2021] [Indexed: 01/07/2023]
Abstract
Intracellular protein-protein interactions (PPIs) are challenging targets for traditional drug modalities. Macrocyclic peptides (MPs) prove highly effective PPI inhibitors in vitro and can be rapidly discovered against PPI targets by rational design or screening combinatorial libraries but are generally impermeable to the cell membrane. Recent advances in MP science and technology are allowing for the development of 'drug-like' MPs that potently and specifically modulate intracellular PPI targets in cell culture and animal models. In this review, we highlight recent progress in generating cell-permeable MPs that enter the mammalian cell by passive diffusion, endocytosis followed by endosomal escape, or as-yet unknown mechanisms.
Collapse
Affiliation(s)
- Marina Buyanova
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
13
|
Jamshidiha M, Lanyon-Hogg T, Sutherell CL, Craven GB, Tersa M, De Vita E, Brustur D, Pérez-Dorado I, Hassan S, Petracca R, Morgan RM, Sanz-Hernández M, Norman JC, Armstrong A, Mann DJ, Cota E, Tate EW. Identification of the first structurally validated covalent ligands of the small GTPase RAB27A. RSC Med Chem 2022; 13:150-155. [PMID: 35308027 PMCID: PMC8864489 DOI: 10.1039/d1md00225b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022] Open
Abstract
Rab27A is a small GTPase, which mediates transport and docking of secretory vesicles at the plasma membrane via protein-protein interactions (PPIs) with effector proteins. Rab27A promotes the growth and invasion of multiple cancer types such as breast, lung and pancreatic, by enhancing secretion of chemokines, metalloproteases and exosomes. The significant role of Rab27A in multiple cancer types and the minor role in adults suggest that Rab27A may be a suitable target to disrupt cancer metastasis. Similar to many GTPases, the flat topology of the Rab27A-effector PPI interface and the high affinity for GTP make it a challenging target for inhibition by small molecules. Reported co-crystal structures show that several effectors of Rab27A interact with the Rab27A SF4 pocket ('WF-binding pocket') via a conserved tryptophan-phenylalanine (WF) dipeptide motif. To obtain structural insight into the ligandability of this pocket, a novel construct was designed fusing Rab27A to part of an effector protein (fRab27A), allowing crystallisation of Rab27A in high throughput. The paradigm of KRas covalent inhibitor development highlights the challenge presented by GTPase proteins as targets. However, taking advantage of two cysteine residues, C123 and C188, that flank the WF pocket and are unique to Rab27A and Rab27B among the >60 Rab family proteins, we used the quantitative Irreversible Tethering (qIT) assay to identify the first covalent ligands for native Rab27A. The binding modes of two hits were elucidated by co-crystallisation with fRab27A, exemplifying a platform for identifying suitable lead fragments for future development of competitive inhibitors of the Rab27A-effector interaction interface, corroborating the use of covalent libraries to tackle challenging targets.
Collapse
Affiliation(s)
- Mostafa Jamshidiha
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
- Department of Chemistry, Imperial College London London W12 0BZ UK
| | - Thomas Lanyon-Hogg
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
- Department of Chemistry, Imperial College London London W12 0BZ UK
| | | | - Gregory B Craven
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
| | - Montse Tersa
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
| | - Elena De Vita
- Department of Chemistry, Imperial College London London W12 0BZ UK
| | - Delia Brustur
- Department of Chemistry, Imperial College London London W12 0BZ UK
| | | | - Sarah Hassan
- Department of Chemistry, Imperial College London London W12 0BZ UK
| | - Rita Petracca
- Department of Chemistry, Imperial College London London W12 0BZ UK
| | - Rhodri M Morgan
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
| | | | - Jim C Norman
- Beatson Institute for Cancer Research, Garscube Estate Glasgow G61 1BD UK
| | - Alan Armstrong
- Department of Chemistry, Imperial College London London W12 0BZ UK
| | - David J Mann
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
| | - Ernesto Cota
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London London W12 0BZ UK
| |
Collapse
|
14
|
Diels-Alder Cycloadditions for Peptide Macrocycle Formation. Methods Mol Biol 2021. [PMID: 34596848 DOI: 10.1007/978-1-0716-1689-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Macrocyclization can confer enhanced stability, target affinity, and membrane permeability to peptide scaffolds, all of which are desirable properties for chemical probes and therapeutics. A wide array of macrocyclization chemistries have been reported over the last few decades; however, these often have limited compatibility with each other and across chemical environments, thus restricting access to specific molecular properties. In an effort to address some of these limitations, we recently described the use of Diels-Alder [4 + 2] cycloadditions for peptide macrocyclization. Among the attributes of this chemistry, we demonstrated that Diels-Alder cyclization can template diverse peptide secondary structures, proceed in organic or aqueous environments, and endow improved pharmacologic properties on cyclized peptides. Here, we present synthetic processes and characterization methods for the synthesis of Diels-Alder cyclized peptides.
Collapse
|
15
|
Wu Y, Chau H, Thor W, Chan KHY, Ma X, Chan W, Long NJ, Wong K. Solid-Phase Peptide Macrocyclization and Multifunctionalization via Dipyrrin Construction. Angew Chem Int Ed Engl 2021; 60:20301-20307. [PMID: 34272794 PMCID: PMC8457249 DOI: 10.1002/anie.202108885] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Indexed: 11/11/2022]
Abstract
We introduce a new and highly efficient synthetic protocol towards multifunctional fluorescent cyclopeptides by solid-phase peptide macrocyclization via dipyrrin construction, with full scope of proteinogenic amino acids and different ring sizes. Various bicyclic peptides can be created by dipyrrin-based crosslinking and double dipyrrin-ring formation. The embedded dipyrrin can be either transformed to fluorescent BODIPY and then utilized as cancer-selective targeted protein imaging probe in vitro, or directly employed as a selective metal sensor in aqueous media. This work provides a valuable addition to the peptide macrocyclization toolbox, and a blueprint for the development of multifunctional dipyrrin linkers in cyclopeptides for a wide range of potential bioapplications.
Collapse
Affiliation(s)
- Yue Wu
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| | - Ho‐Fai Chau
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| | - Waygen Thor
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| | - Kaitlin Hao Yi Chan
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
- Department of Applied Biology and Chemical TechnologyHong Kong Polytechnic UniversityHung HomHong Kong SARChina
| | - Xia Ma
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| | - Wai‐Lun Chan
- Department of Applied Biology and Chemical TechnologyHong Kong Polytechnic UniversityHung HomHong Kong SARChina
| | - Nicholas J. Long
- Department of ChemistryImperial College London, Molecular Sciences Research HubLondonUK
| | - Ka‐Leung Wong
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| |
Collapse
|
16
|
Wu Y, Chau H, Thor W, Chan KHY, Ma X, Chan W, Long NJ, Wong K. Solid‐Phase Peptide Macrocyclization and Multifunctionalization via Dipyrrin Construction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yue Wu
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Ho‐Fai Chau
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Waygen Thor
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Kaitlin Hao Yi Chan
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hung Hom Hong Kong SAR China
| | - Xia Ma
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Wai‐Lun Chan
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hung Hom Hong Kong SAR China
| | - Nicholas J. Long
- Department of Chemistry Imperial College London, Molecular Sciences Research Hub London UK
| | - Ka‐Leung Wong
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| |
Collapse
|
17
|
Gendaszewska-Darmach E, Garstka MA, Błażewska KM. Targeting Small GTPases and Their Prenylation in Diabetes Mellitus. J Med Chem 2021; 64:9677-9710. [PMID: 34236862 PMCID: PMC8389838 DOI: 10.1021/acs.jmedchem.1c00410] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
A fundamental role
of pancreatic β-cells to maintain proper
blood glucose level is controlled by the Ras superfamily of small
GTPases that undergo post-translational modifications, including prenylation.
This covalent attachment with either a farnesyl or a geranylgeranyl
group controls their localization, activity, and protein–protein
interactions. Small GTPases are critical in maintaining glucose homeostasis
acting in the pancreas and metabolically active tissues such as skeletal
muscles, liver, or adipocytes. Hyperglycemia-induced upregulation
of small GTPases suggests that inhibition of these pathways deserves
to be considered as a potential therapeutic approach in treating T2D.
This Perspective presents how inhibition of various points in the
mevalonate pathway might affect protein prenylation and functioning
of diabetes-affected tissues and contribute to chronic inflammation
involved in diabetes mellitus (T2D) development. We also demonstrate
the currently available molecular tools to decipher the mechanisms
linking the mevalonate pathway’s enzymes and GTPases with diabetes.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 4/10, 90-924 Łódź, Poland
| | - Malgorzata A Garstka
- Core Research Laboratory, Department of Endocrinology, Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, School of Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, DaMingGong, Jian Qiang Road, Wei Yang district, Xi'an 710016, China
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
18
|
Brunel A, Bégaud G, Auger C, Durand S, Battu S, Bessette B, Verdier M. Autophagy and Extracellular Vesicles, Connected to rabGTPase Family, Support Aggressiveness in Cancer Stem Cells. Cells 2021; 10:1330. [PMID: 34072080 PMCID: PMC8227744 DOI: 10.3390/cells10061330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
Even though cancers have been widely studied and real advances in therapeutic care have been made in the last few decades, relapses are still frequently observed, often due to therapeutic resistance. Cancer Stem Cells (CSCs) are, in part, responsible for this resistance. They are able to survive harsh conditions such as hypoxia or nutrient deprivation. Autophagy and Extracellular Vesicles (EVs) secretion are cellular processes that help CSC survival. Autophagy is a recycling process and EVs secretion is essential for cell-to-cell communication. Their roles in stemness maintenance have been well described. A common pathway involved in these processes is vesicular trafficking, and subsequently, regulation by Rab GTPases. In this review, we analyze the role played by Rab GTPases in stemness status, either directly or through their regulation of autophagy and EVs secretion.
Collapse
|
19
|
Abstract
Osteoporosis and cancer are becoming a major public health problem. Some studies have shown that osteoporosis drugs may have anti-cancer effects. To better understand the relationship between drugs for osteoporosis and antineoplastic agents, and to better demonstrate recent developments for patents concerning drugs for osteoporosis, we conducted an analysis of US patents. The results indicated that there was a good correlation between agents for osteoporosis and antineoplastic agents, which indicated that numerous anti-osteoporosis agents displayed antineoplastic activities. Our study was the first one to provide new evidence, through comprehensive analysis, for a correlation between anti-osteoporosis agents and anticancer agents. The present study may open new avenues for developing anticancer drugs and expanding the application role of anti-osteoporosis agents.
Collapse
|
20
|
Willoughby PM, Allen M, Yu J, Korytnikov R, Chen T, Liu Y, So I, Macpherson N, Mitchell JA, Fernandez-Gonzalez R, Bruce AE. The recycling endosome protein Rab25 coordinates collective cell movements in the zebrafish surface epithelium. eLife 2021; 10:66060. [PMID: 33755014 PMCID: PMC8034978 DOI: 10.7554/elife.66060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
In emerging epithelial tissues, cells undergo dramatic rearrangements to promote tissue shape changes. Dividing cells remain interconnected via transient cytokinetic bridges. Bridges are cleaved during abscission and currently, the consequences of disrupting abscission in developing epithelia are not well understood. We show that the Rab GTPase Rab25 localizes near cytokinetic midbodies and likely coordinates abscission through endomembrane trafficking in the epithelium of the zebrafish gastrula during epiboly. In maternal-zygotic Rab25a and Rab25b mutant embryos, morphogenic activity tears open persistent apical cytokinetic bridges that failed to undergo timely abscission. Cytokinesis defects result in anisotropic cell morphologies that are associated with a reduction of contractile actomyosin networks. This slows cell rearrangements and alters the viscoelastic responses of the tissue, all of which likely contribute to delayed epiboly. We present a model in which Rab25 trafficking coordinates cytokinetic bridge abscission and cortical actin density, impacting local cell shape changes and tissue-scale forces.
Collapse
Affiliation(s)
| | - Molly Allen
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Jessica Yu
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Roman Korytnikov
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Tianhui Chen
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Yupeng Liu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Isis So
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Neil Macpherson
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Ashley Ee Bruce
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Ferro E, Bosia C, Campa CC. RAB11-Mediated Trafficking and Human Cancers: An Updated Review. BIOLOGY 2021; 10:biology10010026. [PMID: 33406725 PMCID: PMC7823896 DOI: 10.3390/biology10010026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/15/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
Simple Summary The small GTPase RAB11 is a master regulator of both vesicular trafficking and membrane dynamic defining the surface proteome of cellular membranes. As a consequence, the alteration of RAB11 activity induces changes in both the sensory and the transduction apparatuses of cancer cells leading to tumor progression and invasion. Here, we show that this strictly depends on RAB11′s ability to control the sorting of signaling receptors from endosomes. Therefore, RAB11 is a potential therapeutic target over which to develop future therapies aimed at dampening the acquisition of aggressive traits by cancer cells. Abstract Many disorders block and subvert basic cellular processes in order to boost their progression. One protein family that is prone to be altered in human cancers is the small GTPase RAB11 family, the master regulator of vesicular trafficking. RAB11 isoforms function as membrane organizers connecting the transport of cargoes towards the plasma membrane with the assembly of autophagic precursors and the generation of cellular protrusions. These processes dramatically impact normal cell physiology and their alteration significantly affects the survival, progression and metastatization as well as the accumulation of toxic materials of cancer cells. In this review, we discuss biological mechanisms ensuring cargo recognition and sorting through a RAB11-dependent pathway, a prerequisite to understand the effect of RAB11 alterations in human cancers.
Collapse
Affiliation(s)
- Elsi Ferro
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, 10129 Turin, Italy; (E.F.); (C.B.)
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo, Italy
| | - Carla Bosia
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, 10129 Turin, Italy; (E.F.); (C.B.)
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo, Italy
| | - Carlo C. Campa
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, 10129 Turin, Italy; (E.F.); (C.B.)
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo, Italy
- Correspondence:
| |
Collapse
|
22
|
Brito C, Barral DC, Pojo M. Subversion of Ras Small GTPases in Cutaneous Melanoma Aggressiveness. Front Cell Dev Biol 2020; 8:575223. [PMID: 33072757 PMCID: PMC7538714 DOI: 10.3389/fcell.2020.575223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022] Open
Abstract
The rising incidence and mortality rate associated with the metastatic ability of cutaneous melanoma represent a major public health concern. Cutaneous melanoma is one of the most invasive human cancers, but the molecular mechanisms are poorly understood. Moreover, currently available therapies are not efficient in avoiding melanoma lethality. In this context, new biomarkers of prognosis, metastasis, and response to therapy are necessary to better predict the disease outcome. Additionally, the knowledge about the molecular alterations and dysregulated pathways involved in melanoma metastasis may provide new therapeutic targets. Members of the Ras superfamily of small GTPases regulate various essential cellular activities, from signaling to membrane traffic and cytoskeleton dynamics. Therefore, it is not surprising that they are differentially expressed, and their functions subverted in several types of cancer, including melanoma. Indeed, Ras small GTPases were found to regulate melanoma progression and invasion. Hence, a better understanding of the mechanisms regulated by Ras small GTPases that are involved in melanoma tumorigenesis and progression may provide new therapeutic strategies to block these processes. Here, we review the current knowledge on the role of Ras small GTPases in melanoma aggressiveness and the molecular mechanisms involved. Furthermore, we summarize the known involvement of these proteins in melanoma metastasis and how these players influence the response to therapy.
Collapse
Affiliation(s)
- Cheila Brito
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Duarte C Barral
- CEDOC, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| |
Collapse
|
23
|
RAB25 confers resistance to chemotherapy by altering mitochondrial apoptosis signaling in ovarian cancer cells. Apoptosis 2020; 25:799-816. [PMID: 32901335 DOI: 10.1007/s10495-020-01635-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 01/28/2023]
Abstract
Ovarian cancer remains one of the most frequent causes of cancer-related death in women. Many patients with ovarian cancer suffer from de novo or acquired resistance to chemotherapy. Here, we report that RAB25 suppresses chemotherapy-induced mitochondrial apoptosis signaling in ovarian cancer cell lines and primary ovarian cancer cells. RAB25 blocks chemotherapy-induced apoptosis upstream of mitochondrial outer membrane permeabilization by either increasing antiapoptotic BCL-2 proteins or decreasing proapoptotic BCL-2 proteins. In particular, BAX expression negatively correlates with RAB25 expression in ovarian cancer cells. BH3 profiling assays corroborated that RAB25 decreases mitochondrial cell death priming. Suppressing RAB25 by means of RNAi or RFP14 inhibitory hydrocarbon-stapled peptide sensitizes ovarian cancer cells to chemotherapy as well as RAB25-mediated proliferation, invasion and migration. Our data suggest that RAB25 is a potential therapeutic target for ovarian cancer.
Collapse
|
24
|
O’Sullivan MJ, Lindsay AJ. The Endosomal Recycling Pathway-At the Crossroads of the Cell. Int J Mol Sci 2020; 21:ijms21176074. [PMID: 32842549 PMCID: PMC7503921 DOI: 10.3390/ijms21176074] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
The endosomal recycling pathway lies at the heart of the membrane trafficking machinery in the cell. It plays a central role in determining the composition of the plasma membrane and is thus critical for normal cellular homeostasis. However, defective endosomal recycling has been linked to a wide range of diseases, including cancer and some of the most common neurological disorders. It is also frequently subverted by many diverse human pathogens in order to successfully infect cells. Despite its importance, endosomal recycling remains relatively understudied in comparison to the endocytic and secretory transport pathways. A greater understanding of the molecular mechanisms that support transport through the endosomal recycling pathway will provide deeper insights into the pathophysiology of disease and will likely identify new approaches for their detection and treatment. This review will provide an overview of the normal physiological role of the endosomal recycling pathway, describe the consequences when it malfunctions, and discuss potential strategies for modulating its activity.
Collapse
|
25
|
Li X, Chen S, Zhang WD, Hu HG. Stapled Helical Peptides Bearing Different Anchoring Residues. Chem Rev 2020; 120:10079-10144. [DOI: 10.1021/acs.chemrev.0c00532] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Insititute of Translational Medicine, Shanghai University, Shanghai, China
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai, China
| | - Wei-Dong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Gang Hu
- Insititute of Translational Medicine, Shanghai University, Shanghai, China
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
26
|
Zhang L, Xie B, Qiu Y, Jing D, Zhang J, Duan Y, Li Z, Fan M, He J, Qiu Y, Tan R, Li JJ, Sun LQ. Rab25-Mediated EGFR Recycling Causes Tumor Acquired Radioresistance. iScience 2020; 23:100997. [PMID: 32252020 PMCID: PMC7132159 DOI: 10.1016/j.isci.2020.100997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/18/2020] [Accepted: 03/17/2020] [Indexed: 12/20/2022] Open
Abstract
Tumor acquired radioresistance remains as the major limit in cancer radiotherapy (RT). Rab25, a receptor recycling protein, has been reported to be enhanced in tumors with aggressive phenotype and chemotherapy resistance. In this study, elevated Rab25 expression was identified in an array of radioresistant human cancer cell lines, in vivo radioresistant xenograft tumors. Clinical investigation confirmed that Rab25 expression was also associated with a worse prognosis in patients with lung adenocarcinoma (LUAD) and nasopharyngeal carcinoma (NPC). Enhanced activities of EGFR were observed in both NPC and LUAD radioresistant cells. Rab25 interacts with EGFR to enhance EGFR recycling to cell surface and to decrease degradation in cytoplasm. Inhibition of Rab25 showed synergized radiosensitivity with reduced aggressive phenotype. This study provides the clinical and experimental evidence that Rab25 is a potential therapeutic target to alleviate the hyperactive EGFR signaling and to prevent RT-acquired tumor resistance in patients with LUAD and NPC.
Collapse
Affiliation(s)
- Lu Zhang
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha 410008, China; Department of Radiation Oncology, University of California Davis, Sacramento, CA 95817, USA
| | - Bowen Xie
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha 410008, China; Department of Radiation Oncology, University of California Davis, Sacramento, CA 95817, USA
| | - Yanfang Qiu
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Di Jing
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Radiation Oncology, University of California Davis, Sacramento, CA 95817, USA
| | - Jing Zhang
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yumei Duan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhi Li
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha 410008, China
| | - Ming Fan
- Department of Radiation Oncology, University of California Davis, Sacramento, CA 95817, USA
| | - Jiang He
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha 410008, China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Rong Tan
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha 410008, China
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis, Sacramento, CA 95817, USA; NCI-desginaged Comprehensive Cancer Center, Sacramento, CA 95817, USA.
| | - Lun-Quan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Changsha, China 410008.
| |
Collapse
|
27
|
Montgomery JE, Donnelly JA, Fanning SW, Speltz TE, Shangguan X, Coukos JS, Greene GL, Moellering RE. Versatile Peptide Macrocyclization with Diels-Alder Cycloadditions. J Am Chem Soc 2019; 141:16374-16381. [PMID: 31523967 DOI: 10.1021/jacs.9b07578] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Macrocyclization can improve bioactive peptide ligands through preorganization of molecular topology, leading to improvement of pharmacologic properties like binding affinity, cell permeability, and metabolic stability. Here we demonstrate that Diels-Alder [4 + 2] cycloadditions can be harnessed for peptide macrocyclization and stabilization within a range of peptide scaffolds and chemical environments. Diels-Alder cyclization of diverse diene-dienophile reactive pairs proceeds rapidly, in high yield and with tunable stereochemical preferences on solid-phase or in aqueous solution. This reaction can be applied alone or in concert with other stabilization chemistries, such as ring-closing olefin metathesis, to stabilize loop, turn, and α-helical secondary structural motifs. NMR and molecular dynamics studies of model loop peptides confirmed preferential formation of endo cycloadduct stereochemistry, imparting significant structural rigidity to the peptide backbone that resulted in augmented protease resistance and increased biological activity of a Diels-Alder cyclized (DAC) RGD peptide. Separately, we demonstrated the stabilization of DAC α-helical peptides derived from the ERα-binding protein SRC2. We solved a 2.25 Å cocrystal structure of one DAC helical peptide bound to ERα, which unequivocally corroborated endo stereochemistry of the resulting Diels-Alder adduct, and confirmed that the unique architecture of stabilizing motifs formed with this chemistry can directly contribute to target binding. These data establish Diels-Alder cyclization as a versatile approach to stabilize diverse protein structural motifs under a range of chemical environments.
Collapse
|
28
|
Jeong H, Lim KM, Kim KH, Cho Y, Lee B, Knowles BC, Roland JT, Zwerner JP, Goldenring JR, Nam KT. Loss of Rab25 promotes the development of skin squamous cell carcinoma through the dysregulation of integrin trafficking. J Pathol 2019; 249:227-240. [PMID: 31144312 DOI: 10.1002/path.5311] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/22/2019] [Accepted: 05/09/2019] [Indexed: 11/09/2022]
Abstract
Rab25 can function as both a tumor suppressor and a tumor promoter across different tissues. This study sought to clarify the role of Rab25 as a tumor suppressor in skin squamous cell carcinoma (SCC). Rab25 loss was closely associated with neoplastic transition in both humans and mice. Rab25 loss was well correlated with increased cell proliferation and poor differentiation in human SCC. While Rab25 knockout (KO) in mice did not induce spontaneous tumor formation, it did significantly accelerate tumor generation and promote malignant transformation in a mouse two-stage skin carcinogenesis model. Xenografting of a Rab25-deficient human keratinocyte cell line, HaCaT, also elicited neoplastic transformation. Notably, Rab25 deficiency led to dysregulation of integrins β1, β4, and α6, which matched well with increased epidermal proliferation and impaired desmosome-tight junction formation. Rab25 deficiency induced impairment of integrin recycling, leading to the improper expression of integrins. In line with this, significant attenuation of integrin β1, β4, and α6 expression was identified in human SCCs where Rab25 was deficient. Collectively, these results suggest that loss of Rab25 promotes the development and neoplastic transition of SCC through dysregulation of integrin trafficking. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Haengdueng Jeong
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Kwang H Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Buhyun Lee
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byron C Knowles
- Epithelial Biology Center and Department of Surgery, Vanderbilt University School of Medicine and the Nashville VA Medical Center, Nashville, TN, USA
| | - Joseph T Roland
- Epithelial Biology Center and Department of Surgery, Vanderbilt University School of Medicine and the Nashville VA Medical Center, Nashville, TN, USA
| | - Jeffrey P Zwerner
- Department of Dermatology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James R Goldenring
- Epithelial Biology Center and Department of Surgery, Vanderbilt University School of Medicine and the Nashville VA Medical Center, Nashville, TN, USA
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
29
|
Ma B, Niu F, Qu X, He W, Feng C, Wang S, Ouyang Z, Yan J, Wen Y, Xu D, Shao Y, Ma PX, Lu W. A tetrameric protein scaffold as a nano-carrier of antitumor peptides for cancer therapy. Biomaterials 2019; 204:1-12. [PMID: 30861422 PMCID: PMC6441627 DOI: 10.1016/j.biomaterials.2019.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
A major pharmacological barrier to peptide therapeutics is their susceptibility to proteolytic degradation and poor membrane permeability, which, in principle, can be overcome by nanoparticle-based delivery technologies. Proteins, by definition, are nano materials and have been clinically proven as an efficient delivery vehicle for small molecule drugs. Here we describe the design of a protein-based peptide drug carrier derived from the tetramerization domain of the chimeric oncogenic protein Bcr/Abl of chronic myeloid leukemia. A dodecameric peptide inhibitor of the p53-MDM2/MDMX interaction, termed PMI, was grafted to the N-terminal helical region of Bcr/Abl tetramer. To antagonize intracellular MDM2/MDMX for p53 activation, we extended this protein, PMIBcr/Abl, by a C-terminal Arg-repeating hexapeptide to facilitate its cellular uptake. The resultant tetrameric protein PMIBcr/Abl-R6 adopted an alpha-helical conformation in solution and bound to MDM2 at an affinity of 32 nM. PMIBcr/Abl-R6 effectively induced apoptosis of HCT116 p53+/+ cells in vitro in a p53-dependent manner and potently inhibited tumor growth in a nude mouse xenograft model by stabilizing p53 in vivo. Our protein-based delivery strategy thus provides a clinically viable solution to p53-inspired anticancer therapy and is likely applicable to the development of many other peptide therapeutics to target a great variety of intracellular protein-protein interactions responsible for disease initiation and progression.
Collapse
Affiliation(s)
- Bohan Ma
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Fan Niu
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xiaoyan Qu
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wangxiao He
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Chao Feng
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Simeng Wang
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenlin Ouyang
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jin Yan
- Center for Bioengineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Biologic and Materials Sciences, Department of Biomedical Engineering, Macromolecular Science and Engineering Center, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yurong Wen
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dan Xu
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yongping Shao
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peter X Ma
- Department of Biologic and Materials Sciences, Department of Biomedical Engineering, Macromolecular Science and Engineering Center, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
30
|
Gallagher EE, Song JM, Menon A, Mishra LD, Chmiel AF, Garner AL. Consideration of Binding Kinetics in the Design of Stapled Peptide Mimics of the Disordered Proteins Eukaryotic Translation Initiation Factor 4E-Binding Protein 1 and Eukaryotic Translation Initiation Factor 4G. J Med Chem 2019; 62:4967-4978. [PMID: 31033289 PMCID: PMC6679956 DOI: 10.1021/acs.jmedchem.9b00068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein disorder plays a crucial role in signal transduction and is key for many cellular processes including transcription, translation, and cell cycle. Within the intrinsically disordered protein interactome, the α-helix is commonly used for binding, which is induced via a disorder-to-order transition. Because the targeting of protein-protein interactions (PPIs) remains an important challenge in medicinal chemistry, efforts have been made to mimic this secondary structure for rational inhibitor design through the use of stapled peptides. Cap-dependent mRNA translation is regulated by two disordered proteins, 4E-BP1 and eIF4G, that inhibit or stimulate the activity of the m7G cap-binding translation initiation factor, eIF4E, respectively. Both use an α-helical motif for eIF4E binding, warranting the investigation of stapled peptide mimics for manipulating eIF4E PPIs. Herein, we describe our efforts toward this goal, resulting in the synthesis of a cell-active stapled peptide for further development in manipulating aberrant cap-dependent translation in human diseases.
Collapse
Affiliation(s)
- Erin E Gallagher
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
| | - James M Song
- Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , United States
| | - Arya Menon
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
| | - Lauren D Mishra
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
| | - Alyah F Chmiel
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
| | - Amanda L Garner
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
- Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
31
|
Rab25 and RCP in cancer progression. Arch Pharm Res 2019; 42:101-112. [DOI: 10.1007/s12272-019-01129-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/29/2019] [Indexed: 01/10/2023]
|
32
|
Tsuchie R, Shimosato M, Hamasaki K. Hydrophobic Association of a Side Chains Induces Reversible Helix Folding in a Dual Aromatic Ring Tagged Short Peptide. CHEM LETT 2018. [DOI: 10.1246/cl.180601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ryusuke Tsuchie
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-5-7 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Mayu Shimosato
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-5-7 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Keita Hamasaki
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-5-7 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| |
Collapse
|
33
|
Structural determinants of Rab11 activation by the guanine nucleotide exchange factor SH3BP5. Nat Commun 2018; 9:3772. [PMID: 30217979 PMCID: PMC6138693 DOI: 10.1038/s41467-018-06196-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022] Open
Abstract
The GTPase Rab11 plays key roles in receptor recycling, oogenesis, autophagosome formation, and ciliogenesis. However, investigating Rab11 regulation has been hindered by limited molecular detail describing activation by cognate guanine nucleotide exchange factors (GEFs). Here, we present the structure of Rab11 bound to the GEF SH3BP5, along with detailed characterization of Rab-GEF specificity. The structure of SH3BP5 shows a coiled-coil architecture that mediates exchange through a unique Rab-GEF interaction. Furthermore, it reveals a rearrangement of the switch I region of Rab11 compared with solved Rab-GEF structures, with a constrained conformation when bound to SH3BP5. Mutation of switch I provides insights into the molecular determinants that allow for Rab11 selectivity over evolutionarily similar Rab GTPases present on Rab11-positive organelles. Moreover, we show that GEF-deficient mutants of SH3BP5 show greatly decreased Rab11 activation in cellular assays of active Rab11. Overall, our results give molecular insight into Rab11 regulation, and how Rab-GEF specificity is achieved.
Collapse
|
34
|
Peraro L, Kritzer JA. Emerging Methods and Design Principles for Cell-Penetrant Peptides. Angew Chem Int Ed Engl 2018; 57:11868-11881. [PMID: 29740917 PMCID: PMC7184558 DOI: 10.1002/anie.201801361] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/24/2018] [Indexed: 12/12/2022]
Abstract
Biomolecules such as antibodies, proteins, and peptides are important tools for chemical biology and leads for drug development. They have been used to inhibit a variety of extracellular proteins, but accessing intracellular proteins has been much more challenging. In this review, we discuss diverse chemical approaches that have yielded cell-penetrant peptides and identify three distinct strategies: masking backbone amides, guanidinium group patterning, and amphipathic patterning. We summarize a growing number of large data sets, which are starting to reveal more specific design guidelines for each strategy. We also discuss advantages and disadvantages of current methods for quantifying cell penetration. Finally, we provide an overview of best-odds approaches for applying these new methods and design principles to optimize cytosolic penetration for a given bioactive peptide.
Collapse
Affiliation(s)
- Leila Peraro
- Department of Chemistry, Tufts University, Medford, Massachusetts, 02155, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts, 02155, USA
| |
Collapse
|
35
|
Peraro L, Kritzer JA. Neue Methoden und Designprinzipien für zellgängige Peptide. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801361] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Leila Peraro
- Department of Chemistry Tufts University Medford Massachusetts 02155 USA
| | - Joshua A. Kritzer
- Department of Chemistry Tufts University Medford Massachusetts 02155 USA
| |
Collapse
|
36
|
Abe H, Sato C, Ohishi Y, Inouye M. Metathesis‐Based Stapling of a Pyridine–Acetylene–Phenol Oligomer Having Alkenyl Side Chains after Intermolecular Templation by Native Saccharides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hajime Abe
- Graduate School of Pharmaceutical Sciences University of Toyama Sugitani 2630 930‐0194 Toyama Japan
- Faculty of Pharmaceutical Sciences Himeji Dokkyo University Kami‐ono 7‐2‐1 670‐8524 Himeji Hyogo Japan
| | - Chihiro Sato
- Graduate School of Pharmaceutical Sciences University of Toyama Sugitani 2630 930‐0194 Toyama Japan
| | - Yuki Ohishi
- Graduate School of Pharmaceutical Sciences University of Toyama Sugitani 2630 930‐0194 Toyama Japan
| | - Masahiko Inouye
- Graduate School of Pharmaceutical Sciences University of Toyama Sugitani 2630 930‐0194 Toyama Japan
| |
Collapse
|
37
|
Kumar AP, Lukman S. Allosteric binding sites in Rab11 for potential drug candidates. PLoS One 2018; 13:e0198632. [PMID: 29874286 PMCID: PMC5991966 DOI: 10.1371/journal.pone.0198632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022] Open
Abstract
Rab11 is an important protein subfamily in the RabGTPase family. These proteins physiologically function as key regulators of intracellular membrane trafficking processes. Pathologically, Rab11 proteins are implicated in many diseases including cancers, neurodegenerative diseases and type 2 diabetes. Although they are medically important, no previous study has found Rab11 allosteric binding sites where potential drug candidates can bind to. In this study, by employing multiple clustering approaches integrating principal component analysis, independent component analysis and locally linear embedding, we performed structural analyses of Rab11 and identified eight representative structures. Using these representatives to perform binding site mapping and virtual screening, we identified two novel binding sites in Rab11 and small molecules that can preferentially bind to different conformations of these sites with high affinities. After identifying the binding sites and the residue interaction networks in the representatives, we computationally showed that these binding sites may allosterically regulate Rab11, as these sites communicate with switch 2 region that binds to GTP/GDP. These two allosteric binding sites in Rab11 are also similar to two allosteric pockets in Ras that we discovered previously.
Collapse
Affiliation(s)
- Ammu Prasanna Kumar
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Suryani Lukman
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
38
|
Speltz TE, Danes JM, Stender JD, Frasor J, Moore TW. A Cell-Permeable Stapled Peptide Inhibitor of the Estrogen Receptor/Coactivator Interaction. ACS Chem Biol 2018; 13:676-684. [PMID: 29309722 DOI: 10.1021/acschembio.7b01016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We and others have proposed that coactivator binding inhibitors, which block the interaction of estrogen receptor and steroid receptor coactivators, may represent a potential class of new breast cancer therapeutics. The development of coactivator binding inhibitors has been limited, however, because many of the current molecules which are active in in vitro and biochemical assays are not active in cell-based assays. Our goal in this work was to prepare a coactivator binding inhibitor active in cellular models of breast cancer. To accomplish this, we used molecular dynamics simulations to convert a high-affinity stapled peptide with poor cell permeability into R4K1, a cell-penetrating stapled peptide. R4K1 displays high binding affinity for estrogen receptor α, inhibits the formation of estrogen receptor/coactivator complexes, and distributes throughout the cell with a high percentage of nuclear localization. R4K1 represses native gene transcription mediated by estrogen receptor α and inhibits proliferation of estradiol-stimulated MCF-7 cells. Using RNA-Seq, we demonstrate that almost all of the effects of R4K1 on global gene transcription are estrogen-receptor-associated. This chemical probe provides a significant proof-of-concept for preparing cell-permeable stapled peptide inhibitors of the estrogen receptor/coactivator interaction.
Collapse
Affiliation(s)
- Thomas E. Speltz
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Jeanne M. Danes
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1835 W Polk St, Chicago, Illinois 60612, United States
| | - Joshua D. Stender
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Jonna Frasor
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1835 W Polk St, Chicago, Illinois 60612, United States
- University of Illinois Cancer Center, 1801 W Taylor St., Chicago, Illinois 60612, United States
| | - Terry W. Moore
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, Illinois 60612, United States
- University of Illinois Cancer Center, 1801 W Taylor St., Chicago, Illinois 60612, United States
| |
Collapse
|
39
|
McWhinnie FS, Sepp K, Wilson C, Kunath T, Hupp TR, Baker TS, Houston DR, Hulme AN. Mono-Substituted Hydrocarbon Diastereomer Combinations Reveal Stapled Peptides with High Structural Fidelity. Chemistry 2018; 24:2094-2097. [DOI: 10.1002/chem.201705983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Fergus S. McWhinnie
- EaStChem School of Chemistry; University of Edinburgh; David Brewster Road Edinburgh EH9 3FJ UK
- MRC Centre for Regenerative Medicine, ISCR; University of Edinburgh; Edinburgh EH16 4UU UK
| | - Kristel Sepp
- EaStChem School of Chemistry; University of Edinburgh; David Brewster Road Edinburgh EH9 3FJ UK
| | - Charlotte Wilson
- EaStChem School of Chemistry; University of Edinburgh; David Brewster Road Edinburgh EH9 3FJ UK
| | - Tilo Kunath
- MRC Centre for Regenerative Medicine, ISCR; University of Edinburgh; Edinburgh EH16 4UU UK
| | - Ted R. Hupp
- Institute of Genetics and Molecular Medicine; University of Edinburgh; Edinburgh EH4 2XR UK
| | | | - Douglas R. Houston
- Institute of Quantitative Biology, Biochemistry and Biotechnology; University of Edinburgh; Edinburgh EH9 3BF UK
| | - Alison N. Hulme
- EaStChem School of Chemistry; University of Edinburgh; David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
40
|
Mott HR, Owen D. Bioblockades join the assault on small G protein signalling. Semin Cancer Biol 2018; 54:149-161. [PMID: 29307570 DOI: 10.1016/j.semcancer.2018.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/04/2018] [Indexed: 01/06/2023]
Abstract
Inhibition of Ras signalling has been a goal almost since its central role in cell signalling and its deregulation in disease were discovered. Early attempts at inhibiting its post-translational modification using peptidomimetics were successful in cell culture but failed spectacularly in clinical trials, making industry wary of targeting this critical oncoprotein. Small molecule inhibition of the protein-protein interactions involving Ras has also been difficult due to the nature of the interaction interface. Recent improvements in design, synthesis and selection of stabilised peptides, peptidomimetics and macrocycles have suggested that these biologics may represent a new hope in Ras inhibition. Here we review the various ways in which Ras has been targeted with these molecules. We also describe work on related small G proteins of the Ras superfamily, since many of the principles may be applicable to Ras, and these also provide inhibition of pathways downstream of Ras.
Collapse
Affiliation(s)
- Helen R Mott
- Department of Biochemistry, 80, Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Darerca Owen
- Department of Biochemistry, 80, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
41
|
Hu X, He Y, Wu L, Hao Y, Wang Z, Zheng W. Novel all-hydrocarbon stapled p110α[E545K] peptides as blockers of the oncogenic p110α[E545K]-IRS1 interaction. Bioorg Med Chem Lett 2017; 27:5446-5449. [PMID: 29138025 DOI: 10.1016/j.bmcl.2017.10.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/23/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
Abstract
To follow up on our recent discovery of the 18-amino acid all-hydrocarbon [i, i + 4]-stapled p110α[E545K] peptide 1 that was shown to potently block the intracellular p110α[E545K]-IRS1 interaction (a protein-protein interaction uniquely present in cancer cells expressing p110α[E545K]) and the growth of the xenograft tumors formed by cancers harboring this mutation, in the current study we prepared and examined six derivatives of 1, i.e. stapled peptides 2-A, 2-B, 3-A, 3-B, 4-A, 4-B. We found that 2-A, 2-B, 4-A, and 4-B had higher % α-helicity than 1; moreover, the enhanced % α-helicity also led to an enhanced proteolytic stability. When compared with 1, the structurally simplified 14-amino acid 4-A and 4-B were found to more potently deactivate the AKT phosphorylation at Ser473 in the p110α[E545K]-expressing colon cancer cells, whose activation was previously demonstrated by us to be specifically derived from the p110α[E545K]-IRS1 interaction. The preliminary findings from the current study have laid a foundation for future more extensive studies on the stapled p110α[E545K] peptides newly identified in the current study.
Collapse
Affiliation(s)
- Xiao Hu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | - Yanhua He
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | - Liping Wu
- Department of Genetics & Genome Sciences and Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Yujun Hao
- Department of Genetics & Genome Sciences and Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zhenghe Wang
- Department of Genetics & Genome Sciences and Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Weiping Zheng
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China.
| |
Collapse
|