1
|
Hua N, Breitner F, Jesche A, Huang SW, Rüegg C, Gegenwart P. Structural and magnetic properties of β-Li 2IrO 3 after grazing-angle focused ion beam thinning. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2025; 81:S2052520625000587. [PMID: 40146202 PMCID: PMC11970116 DOI: 10.1107/s2052520625000587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 03/28/2025]
Abstract
Manipulating the size and orientation of quantum materials is often used to tune emergent phenomena, but precise control of these parameters is also necessary from an experimental point of view. Various synthesis techniques already exist, such as epitaxial thin film growth and chemical etching, that are capable of producing specific sample dimensions with high precision. However, certain materials exist as single crystals that are often difficult to manipulate, thereby limiting their studies to a certain subset of experimental techniques. One particular class of these materials includes lithium and sodium iridates, which are promising candidates for hosting a Kitaev quantum spin liquid state. Here a controlled method of using a focused ion beam at grazing incidence to reduce the size of a β-Li2IrO3 single crystal to a thickness of 1-2 µm is presented. Subsequent X-ray diffraction measurements show the lattice remains intact, albeit with a larger mosaic spread. The integrity of the magnetic order is also preserved as the temperature dependent magnetic diffraction peak follows the same trend as its bulk counterpart with a transition temperature at TN = 37.5 K. Our study demonstrates a technique that opens up the possibility of nonequilibrium experiments where submicron thin samples are often essential.
Collapse
Affiliation(s)
- Nelson Hua
- PSI Center for Photon Science Paul Scherrer Institute 5232 Villigen PSI Switzerland
- Institute for Quantum Electronics ETH Zürich CH-8093 Hönggerberg Switzerland
| | - Franziska Breitner
- Experimental Physics VI Center for Electronic Correlations and Magnetism University of Augsburg 86135 Augsburg Germany
| | - Anton Jesche
- Experimental Physics VI Center for Electronic Correlations and Magnetism University of Augsburg 86135 Augsburg Germany
| | - Shih-Wen Huang
- PSI Center for Photon Science Paul Scherrer Institute 5232 Villigen PSI Switzerland
| | - Christian Rüegg
- PSI Center for Photon Science Paul Scherrer Institute 5232 Villigen PSI Switzerland
- Institute for Quantum Electronics ETH Zürich CH-8093 Hönggerberg Switzerland
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department of Quantum Matter Physics University of Geneva CH-1211 Geneva Switzerland
| | - Philipp Gegenwart
- Experimental Physics VI Center for Electronic Correlations and Magnetism University of Augsburg 86135 Augsburg Germany
| |
Collapse
|
2
|
Rousochatzakis I, Perkins NB, Luo Q, Kee HY. Beyond Kitaev physics in strong spin-orbit coupled magnets. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:026502. [PMID: 38241723 DOI: 10.1088/1361-6633/ad208d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
We review the recent advances and current challenges in the field of strong spin-orbit coupled Kitaev materials, with a particular emphasis on the physics beyond the exactly-solvable Kitaev spin liquid point. To this end, we present a comprehensive overview of the key exchange interactions in candidate materials with a specific focus on systems featuring effectiveJeff=1/2magnetic moments. This includes, but not limited to,5d5iridates,4d5ruthenates and3d7cobaltates. Our exploration covers the microscopic origins of these interactions, along with a systematic attempt to map out the most intriguing correlated regimes of the multi-dimensional parameter space. Our approach is guided by robust symmetry and duality transformations as well as insights from a wide spectrum of analytical and numerical studies. We also survey higher spin Kitaev models and recent exciting results on quasi-one-dimensional models and discuss their relevance to higher-dimensional models. Finally, we highlight some of the key questions in the field as well as future directions.
Collapse
Affiliation(s)
| | - Natalia B Perkins
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, United States of America
- Technical University of Munich, Munich, Germany
- Institute for Advanced Study, D-85748 Garching, Germany
| | - Qiang Luo
- College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, People's Republic of China
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Hae-Young Kee
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Canadian Institute for Advanced Research, CIFAR Program in Quantum Materials, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
3
|
Bluschke M, Basak R, Barbour A, Warner AN, Fürsich K, Wilkins S, Roy S, Lee J, Christiani G, Logvenov G, Minola M, Keimer B, Mazzoli C, Benckiser E, Frano A. Imaging mesoscopic antiferromagnetic spin textures in the dilute limit from single-geometry resonant coherent x-ray diffraction. SCIENCE ADVANCES 2022; 8:eabn6882. [PMID: 35857841 PMCID: PMC9299548 DOI: 10.1126/sciadv.abn6882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The detection and manipulation of antiferromagnetic domains and topological antiferromagnetic textures are of central interest to solid-state physics. A fundamental step is identifying tools to probe the mesoscopic texture of an antiferromagnetic order parameter. In this work, we demonstrate that Bragg coherent diffractive imaging can be extended to study the mesoscopic texture of an antiferromagnetic order parameter using resonant magnetic x-ray scattering. We study the onset of the antiferromagnet transition in PrNiO3, focusing on a temperature regime in which the antiferromagnetic domains are dilute in the beam spot and the coherent diffraction pattern modulating the antiferromagnetic peak is greatly simplified. We demonstrate that it is possible to extract the arrangements and sizes of these domains from single diffraction patterns and show that the approach could be extended to a time-structured light source to study the motion of dilute domains or the motion of topological defects in an antiferromagnetic spin texture.
Collapse
Affiliation(s)
- Martin Bluschke
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Rourav Basak
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Andi Barbour
- NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ashley N Warner
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Katrin Fürsich
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Stuart Wilkins
- NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sujoy Roy
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James Lee
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Physics, Concordia College, Moorhead, MN 56562, USA
| | - Georg Christiani
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Gennady Logvenov
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Matteo Minola
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Bernhard Keimer
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Claudio Mazzoli
- NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Eva Benckiser
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Alex Frano
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Abstract
Quantum spin liquids are an exciting playground for exotic physical phenomena and emergent many-body quantum states. The realization and discovery of quantum spin liquid candidate materials and associated phenomena lie at the intersection of solid-state chemistry, condensed matter physics, and materials science and engineering. In this review, we provide the current status of the crystal chemistry, synthetic techniques, physical properties, and research methods in the field of quantum spin liquids. We highlight a number of specific quantum spin liquid candidate materials and their structure-property relationships, elucidating their fascinating behavior and connecting it to the intricacies of their structures. Furthermore, we share our thoughts on defects and their inevitable presence in materials, of which quantum spin liquids are no exception, which can complicate the interpretation of characterization of these materials, and urge the community to extend their attention to materials preparation and data analysis, cognizant of the impact of defects. This review was written with the intention of providing guidance on improving the materials design and growth of quantum spin liquids, and to paint a picture of the beauty of the underlying chemistry of this exciting class of materials.
Collapse
Affiliation(s)
- Juan R Chamorro
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for Quantum Matter, Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tyrel M McQueen
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for Quantum Matter, Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, United States.,Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Thao T Tran
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
5
|
Khomskii DI, Streltsov SV. Orbital Effects in Solids: Basics, Recent Progress, and Opportunities. Chem Rev 2020; 121:2992-3030. [PMID: 33314912 DOI: 10.1021/acs.chemrev.0c00579] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The properties of transition metal compounds are largely determined by nontrivial interplay of different degrees of freedom: charge, spin, lattice, and also orbital ones. Especially rich and interesting effects occur in systems with orbital degeneracy. For example, they result in the famous Jahn-Teller effect, leading to a plethora of consequences for static and dynamic properties, including nontrivial quantum effects. In the present review, we discuss the main phenomena in the physics of such systems, paying central attention to the novel manifestations of those. After shortly summarizing the basic phenomena and their descriptions, we concentrate on several specific directions in this field. One of them is the reduction of effective dimensionality in many systems with orbital degrees of freedom due to the directional character of orbitals, with the concomitant appearance of some instabilities that lead in particular to the formation of dimers, trimers, and similar clusters in a material. The properties of such cluster systems, which are largely determined by their orbital structure, are discussed in detail, and many specific examples of those in different materials are presented. Another big field that has acquired special significance relatively recently is the role of the relativistic spin-orbit interaction. The mutual influence of this interaction and the more traditional Jahn-Teller physics is treated in detail in the second part of the review. In discussing all of these questions, special attention is paid to novel quantum effects.
Collapse
Affiliation(s)
- Daniel I Khomskii
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany
| | - Sergey V Streltsov
- Institute of Metal Physics, S. Kovalevskoy St. 18, 620990 Ekaterinburg, Russia.,Department of Theoretical Physics and Applied Mathematics, Ural Federal University, Mira St. 19, 620002 Ekaterinburg, Russia
| |
Collapse
|
6
|
Zhong R, Gao T, Ong NP, Cava RJ. Weak-field induced nonmagnetic state in a Co-based honeycomb. SCIENCE ADVANCES 2020; 6:eaay6953. [PMID: 32042902 PMCID: PMC6981077 DOI: 10.1126/sciadv.aay6953] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Layered honeycomb magnets are of interest as potential realizations of the Kitaev quantum spin liquid (KQSL), a quantum state with long-range spin entanglement and an exactly solvable Hamiltonian. Conventional magnetically ordered states are present for all currently known candidate materials, however, because non-Kitaev terms in the Hamiltonians obscure the Kitaev physics. Current experimental studies of the KQSL are focused on 4d or 5d transition metal-based honeycombs, in which strong spin-orbit coupling can be expected, yielding Kitaev interaction that dominates in an applied magnetic field. In contrast, for 3d-based layered honeycomb magnets, spin-orbit coupling is weak, and thus, Kitaev physics should be substantially less accessible. Here, we report our studies on BaCo2(AsO4)2, for which we find that the magnetic order associated with the non-Kitaev interactions can be fully suppressed by a relatively low magnetic field, yielding a nonmagnetic material and implying the presence of strong magnetic frustration and weak non-Kitaev interactions.
Collapse
Affiliation(s)
- Ruidan Zhong
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Tong Gao
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Nai Phuan Ong
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Robert J. Cava
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
7
|
Pressure-Tuned Interactions in Frustrated Magnets: Pathway to Quantum Spin Liquids? CRYSTALS 2019. [DOI: 10.3390/cryst10010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Quantum spin liquids are prime examples of strongly entangled phases of matter with unconventional exotic excitations. Here, strong quantum fluctuations prohibit the freezing of the spin system. On the other hand, frustrated magnets, the proper platforms to search for the quantum spin liquid candidates, still show a magnetic ground state in most of the cases. Pressure is an effective tuning parameter of structural properties and electronic correlations. Nevertheless, the ability to influence the magnetic phases should not be forgotten. We review experimental progress in the field of pressure-tuned magnetic interactions in candidate systems. Elaborating on the possibility of tuned quantum phase transitions, we further show that chemical or external pressure is a suitable parameter in these exotic states of matter.
Collapse
|
8
|
Choi W, Mizoguchi T, Kim YB. Nonsymmorphic-Symmetry-Protected Topological Magnons in Three-Dimensional Kitaev Materials. PHYSICAL REVIEW LETTERS 2019; 123:227202. [PMID: 31868413 DOI: 10.1103/physrevlett.123.227202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Indexed: 06/10/2023]
Abstract
Topological phases in magnetic materials offer novel tunability of topological properties via varying the underlying magnetism. We show that three-dimensional Kitaev materials with nonsymmorphic symmetries can provide a great opportunity for controlling symmetry-protected topological nodal magnons. These materials are originally considered as strong candidates for the Kitaev quantum spin liquid due to the bond-dependent frustrating spin-exchange interactions. As a concrete example, we consider the symmetry and topology of the magnons in the canted zigzag ordered state in the hyperhoneycomb β-Li_{2}IrO_{3}, which can be obtained by applying a magnetic field in the counter-rotating spiral state at zero field. It is shown that the magnetic glide symmetries and the non-Hermitian nature of the bosonic magnons lead to unique topological protection that is different from the case of their fermionic counterparts. We investigate how such topological magnons can be controlled by changing the symmetry of the underlying spin-exchange interactions.
Collapse
Affiliation(s)
- Wonjune Choi
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Tomonari Mizoguchi
- Department of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yong Baek Kim
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| |
Collapse
|
9
|
Janssen L, Vojta M. Heisenberg-Kitaev physics in magnetic fields. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:423002. [PMID: 31181545 DOI: 10.1088/1361-648x/ab283e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Magnetic insulators in the regime of strong spin-orbit coupling exhibit intriguing behaviors in external magnetic fields, reflecting the frustrated nature of their effective interactions. We review the recent advances in understanding the field responses of materials that are described by models with strongly bond-dependent spin exchange interactions, such as Kitaev's celebrated honeycomb model and its extensions. We discuss the field-induced phases and the complex magnetization processes found in these theories and compare with experimental results in the layered Mott insulators [Formula: see text]-RuCl3 and Na2IrO3, which are believed to realize this fascinating physics.
Collapse
Affiliation(s)
- Lukas Janssen
- Institut für Theoretische Physik and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| | | |
Collapse
|
10
|
Riedl K, Li Y, Winter SM, Valentí R. Sawtooth Torque in Anisotropic j_{eff}=1/2 Magnets: Application to α-RuCl_{3}. PHYSICAL REVIEW LETTERS 2019; 122:197202. [PMID: 31144941 DOI: 10.1103/physrevlett.122.197202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/21/2019] [Indexed: 06/09/2023]
Abstract
The so-called "Kitaev candidate" materials based on 4d^{5} and 5d^{5} metals have recently emerged as magnetic systems displaying strongly anisotropic exchange interactions reminiscent of the Kitaev's honeycomb model. Recently, these materials have been shown to commonly display a distinct sawtooth angular dependence of the magnetic torque over a wide range of magnetic fields. While higher order chiral spin interactions have been considered as a source of this observation, we show here that bilinear anisotropic interactions and/or g anisotropy are each sufficient to explain the observed torque response, which may be distinguished on the basis of high-field measurements. These findings unify the understanding of magnetic torque experiments in a variety of Kitaev candidate materials.
Collapse
Affiliation(s)
- Kira Riedl
- Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Ying Li
- Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Stephen M Winter
- Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Roser Valentí
- Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Majumder M, Manna RS, Simutis G, Orain JC, Dey T, Freund F, Jesche A, Khasanov R, Biswas PK, Bykova E, Dubrovinskaia N, Dubrovinsky LS, Yadav R, Hozoi L, Nishimoto S, Tsirlin AA, Gegenwart P. Breakdown of Magnetic Order in the Pressurized Kitaev Iridate β-Li_{2}IrO_{3}. PHYSICAL REVIEW LETTERS 2018; 120:237202. [PMID: 29932706 DOI: 10.1103/physrevlett.120.237202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Indexed: 06/08/2023]
Abstract
Temperature-pressure phase diagram of the Kitaev hyperhoneycomb iridate β-Li_{2}IrO_{3} is explored using magnetization, thermal expansion, magnetostriction, and muon spin rotation measurements, as well as single-crystal x-ray diffraction under pressure and ab initio calculations. The Néel temperature of β-Li_{2}IrO_{3} increases with the slope of 0.9 K/GPa upon initial compression, but the reduction in the polarization field H_{c} reflects a growing instability of the incommensurate order. At 1.4 GPa, the ordered state breaks down upon a first-order transition, giving way to a new ground state marked by the coexistence of dynamically correlated and frozen spins. This partial freezing in the absence of any conspicuous structural defects may indicate the classical nature of the resulting pressure-induced spin liquid, an observation paralleled to the increase in the nearest-neighbor off-diagonal exchange Γ under pressure.
Collapse
Affiliation(s)
- M Majumder
- Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - R S Manna
- Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
- Department of Physics, IIT Tirupati, Tirupati 517506, India
| | - G Simutis
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - J C Orain
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - T Dey
- Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - F Freund
- Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - A Jesche
- Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - R Khasanov
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - P K Biswas
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - E Bykova
- Laboratory of Crystallography, Material Physics and Technology at Extreme Conditions, Universität Bayreuth, 95440 Bayreuth, Germany
| | - N Dubrovinskaia
- Laboratory of Crystallography, Material Physics and Technology at Extreme Conditions, Universität Bayreuth, 95440 Bayreuth, Germany
| | - L S Dubrovinsky
- Bayerisches Geoinstitut, Universität Bayreuth, 95440 Bayreuth, Germany
| | - R Yadav
- Institute for Theoretical Physics, IFW Dresden, 01069 Dresden, Germany
| | - L Hozoi
- Institute for Theoretical Physics, IFW Dresden, 01069 Dresden, Germany
| | - S Nishimoto
- Institute for Theoretical Physics, IFW Dresden, 01069 Dresden, Germany
| | - A A Tsirlin
- Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - P Gegenwart
- Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| |
Collapse
|
12
|
Willa K, Diao Z, Campanini D, Welp U, Divan R, Hudl M, Islam Z, Kwok WK, Rydh A. Nanocalorimeter platform for in situ specific heat measurements and x-ray diffraction at low temperature. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:125108. [PMID: 29289216 DOI: 10.1063/1.5016592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent advances in electronics and nanofabrication have enabled membrane-based nanocalorimetry for measurements of the specific heat of microgram-sized samples. We have integrated a nanocalorimeter platform into a 4.5 T split-pair vertical-field magnet to allow for the simultaneous measurement of the specific heat and x-ray scattering in magnetic fields and at temperatures as low as 4 K. This multi-modal approach empowers researchers to directly correlate scattering experiments with insights from thermodynamic properties including structural, electronic, orbital, and magnetic phase transitions. The use of a nanocalorimeter sample platform enables numerous technical advantages: precise measurement and control of the sample temperature, quantification of beam heating effects, fast and precise positioning of the sample in the x-ray beam, and fast acquisition of x-ray scans over a wide temperature range without the need for time-consuming re-centering and re-alignment. Furthermore, on an YBa2Cu3O7-δ crystal and a copper foil, we demonstrate a novel approach to x-ray absorption spectroscopy by monitoring the change in sample temperature as a function of incident photon energy. Finally, we illustrate the new insights that can be gained from in situ structural and thermodynamic measurements by investigating the superheated state occurring at the first-order magneto-elastic phase transition of Fe2P, a material that is of interest for magnetocaloric applications.
Collapse
Affiliation(s)
- K Willa
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Z Diao
- Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - D Campanini
- Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - U Welp
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - R Divan
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - M Hudl
- Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Z Islam
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - W-K Kwok
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - A Rydh
- Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|