1
|
Hong YJ, Jeon BJ, Ki YG, Kim SJ. A metasurface color router facilitating RGB-NIR sensing for an image sensor application. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1407-1415. [PMID: 39679236 PMCID: PMC11635924 DOI: 10.1515/nanoph-2023-0746] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/27/2023] [Indexed: 12/17/2024]
Abstract
CMOS image sensor (CIS) plays a crucial role in diverse optical applications by facilitating the capture of images in the visible and near-infrared spectra. The enhancement of image resolution in CIS by an increase in pixel density is becoming more significant and realizable with the recent progress of nanofabrication. However, as pixel size decreases towards the diffraction limit, there is an inevitable trade-off between the scale-down of pixel size and the enhancement of optical sensitivity. Recently, to overcome this, an entirely new concept of spectral sensing using a nanophotonic-based color router has been proposed. In this work, we present a metasurface-based spectral router to effectively split the spectrum from visible to near-infrared and redirect through the four optical channels to the targeted pixel surfaces. We optimize the metasurface that simultaneously controls the phases of the transmitted light of targeted spectra, i.e. red (R), green (G), blue (B), and near-infrared (NIR), which is the largest number of channels reported based on a single layered metasurface and has an optical efficiency that surpasses the efficiency of conventional color filter systems.
Collapse
Affiliation(s)
- Yoon Jin Hong
- Department of Semiconductor Systems Engineering, Korea University, Seoul, Korea
| | - Byeong Je Jeon
- School of Electrical Engineering, Korea University, Seoul, Korea
| | - Yu Geun Ki
- School of Electrical Engineering, Korea University, Seoul, Korea
| | - Soo Jin Kim
- School of Electrical Engineering, Korea University, Seoul, Korea
| |
Collapse
|
2
|
Li J, Li J, Zhou S, Yi F. Metasurface Photodetectors. MICROMACHINES 2021; 12:mi12121584. [PMID: 34945434 PMCID: PMC8704368 DOI: 10.3390/mi12121584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
Photodetectors are the essential building blocks of a wide range of optical systems. Typical photodetectors only convert the intensity of light electrical output signals, leaving other electromagnetic parameters, such as the frequencies, phases, and polarization states unresolved. Metasurfaces are arrays of subwavelength structures that can manipulate the amplitude, phase, frequency, and polarization state of light. When combined with photodetectors, metasurfaces can enhance the light-matter interaction at the pixel level and also enable the detector pixels to resolve more electromagnetic parameters. In this paper, we review recent research efforts in merging metasurfaces with photodetectors towards improved detection performances and advanced detection schemes. The impacts of merging metasurfaces with photodetectors, on the architecture of optical systems, and potential applications are also discussed.
Collapse
Affiliation(s)
- Jinzhao Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Junyu Li
- Raytron Technology Co., Ltd., Yantai 264006, China;
| | - Shudao Zhou
- College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China;
| | - Fei Yi
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China;
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence:
| |
Collapse
|
3
|
Chen Q, Nan X, Chen M, Pan D, Yang X, Wen L. Nanophotonic Color Routing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103815. [PMID: 34595789 DOI: 10.1002/adma.202103815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Recent advances in low-dimensional materials and nanofabrication technologies have stimulated many breakthroughs in the field of nanophotonics such as metamaterials and plasmonics that provide efficient ways of light manipulation at a subwavelength scale. The representative structure-induced spectral engineering techniques have demonstrated superior design of freedom compared with natural materials such as pigment/dye. In particular, the emerging spectral routing scheme enables extraordinary light manipulation in both frequency-domain and spatial-domain with high-efficiency utilization of the full spectrum, which is critically important for various applications and may open up entirely new operating paradigms. In this review, a comparative introduction on the operating mechanisms of spectral routing and spectral filtering schemes is given and recent progress on various color nanorouters based on metasurfaces, plasmonics, dielectric antennas is reviewed with a focus on the potential application in high-resolution imaging. With a thorough analysis and discussion on the advanced properties and drawbacks of various techniques, this report is expected to provide an overview and vision for the future development and application of nanophotonic color (spectral) routing techniques.
Collapse
Affiliation(s)
- Qin Chen
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xianghong Nan
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Mingjie Chen
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Dahui Pan
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xianguang Yang
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Long Wen
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
4
|
Sun M, Kik PG. Light trapping transparent electrodes with a wide-angle response. OPTICS EXPRESS 2021; 29:24989-24999. [PMID: 34614840 DOI: 10.1364/oe.431530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
The angle dependent transmission of light trapping transparent electrodes is investigated. The electrodes consist of triangular metallic wire arrays embedded in a dielectric cover layer. Normal incidence illumination of the structure produces light trapping via total internal reflection, virtually eliminating all shadowing losses. It is found that varying the external angle of incidence can affect the light trapping efficiency ηLT due to partial loss of internal reflection and increased interaction with neighboring wires. Despite these effects, a judicious selection of geometry and materials can reduce shadowing losses by more than 85% over a surprisingly large angular range of 120°. It is demonstrated that the angle-averaged shadowing losses in an encapsulated silicon solar cell under illumination with unpolarized light can be reduced by more than a factor of two for incident angles between -60° and +60° off-normal across the entire AM1.5 solar spectrum.
Collapse
|
5
|
Shi X, Ge L, Liu B, Xu H, Cao D, Liu F. Optical metasurface composed of multiple antennas with anti-Hermitian coupling in a single layer. OPTICS LETTERS 2021; 46:2252-2255. [PMID: 33988557 DOI: 10.1364/ol.421555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Metasurfaces consisting of different shapes of resonant units are used to manipulate light beams at subwavelength scales. In many cases, interactions among the resonant units are suppressed or avoided because of mode splitting in metasurfaces. Here we theoretically and numerically investigate metasurfaces composed of multiple antennas with anti-Hermitian coupling in a single layer. By utilizing the anti-Hermitian coupling, the results show that antennas with similar resonance frequencies at a subwavelength distance can individually absorb their corresponding frequency photons. The antennas whose reflection phase can be tailored by changing the number of antennas have the same resonance frequencies. This Letter paves the way for various potential applications in broadband absorption, photon sorting, image sensors, and phase modulation.
Collapse
|
6
|
Wei J, Li Y, Wang L, Liao W, Dong B, Xu C, Zhu C, Ang KW, Qiu CW, Lee C. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nat Commun 2020; 11:6404. [PMID: 33335090 PMCID: PMC7747747 DOI: 10.1038/s41467-020-20115-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/16/2020] [Indexed: 01/27/2023] Open
Abstract
Bulk photovoltaic effect (BPVE), featuring polarization-dependent uniform photoresponse at zero external bias, holds potential for exceeding the Shockley-Queisser limit in the efficiency of existing opto-electronic devices. However, the implementation of BPVE has been limited to the naturally existing materials with broken inversion symmetry, such as ferroelectrics, which suffer low efficiencies. Here, we propose metasurface-mediated graphene photodetectors with cascaded polarization-sensitive photoresponse under uniform illumination, mimicking an artificial BPVE. With the assistance of non-centrosymmetric metallic nanoantennas, the hot photocarriers in graphene gain a momentum upon their excitation and form a shift current which is nonlocal and directional. Thereafter, we demonstrate zero-bias uncooled mid-infrared photodetectors with three orders higher responsivity than conventional BPVE and a noise equivalent power of 0.12 nW Hz−1/2. Besides, we observe a vectorial photoresponse which allows us to detect the polarization angle of incident light with a single device. Our strategy opens up alternative possibilities for scalable, low-cost, multifunctional infrared photodetectors. Here, graphene-based plasmonic metamaterials are used to generate an artificial bulk photovoltaic effect, enabling the realization of mid-infrared photodetectors with enhanced responsivity and calibration-free polarization detection at room temperature.
Collapse
Affiliation(s)
- Jingxuan Wei
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, 117608, Singapore
| | - Ying Li
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lin Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Wugang Liao
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Bowei Dong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, 117608, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, 117608, Singapore
| | - Chunxiang Zhu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Kah-Wee Ang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore. .,Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, 117608, Singapore.
| |
Collapse
|
7
|
Smalley JST, Ren X, Lee JY, Ko W, Joo WJ, Park H, Yang S, Wang Y, Lee CS, Choo H, Hwang S, Zhang X. Subwavelength pixelated CMOS color sensors based on anti-Hermitian metasurface. Nat Commun 2020; 11:3916. [PMID: 32764547 PMCID: PMC7413260 DOI: 10.1038/s41467-020-17743-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/14/2020] [Indexed: 11/09/2022] Open
Abstract
The demand for essential pixel components with ever-decreasing size and enhanced performance is central to current optoelectronic applications, including imaging, sensing, photovoltaics and communications. The size of the pixels, however, are severely limited by the fundamental constraints of lightwave diffraction. Current development using transmissive filters and planar absorbing layers can shrink the pixel size, yet there are two major issues, optical and electrical crosstalk, that need to be addressed when the pixel dimension approaches wavelength scale. All these fundamental constraints preclude the continual reduction of pixel dimensions and enhanced performance. Here we demonstrate subwavelength scale color pixels in a CMOS compatible platform based on anti-Hermitian metasurfaces. In stark contrast to conventional pixels, spectral filtering is achieved through structural color rather than transmissive filters leading to simultaneously high color purity and quantum efficiency. As a result, this subwavelength anti-Hermitian metasurface sensor, over 28,000 pixels, is able to sort three colors over a 100 nm bandwidth in the visible regime, independently of the polarization of normally-incident light. Furthermore, the quantum yield approaches that of commercial silicon photodiodes, with a responsivity exceeding 0.25 A/W for each channel. Our demonstration opens a new door to sub-wavelength pixelated CMOS sensors and promises future high-performance optoelectronic systems.
Collapse
Affiliation(s)
- Joseph S T Smalley
- Nano-Scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Xuexin Ren
- Nano-Scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Jeong Yub Lee
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro 130, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Korea
| | - Woong Ko
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro 130, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Korea
| | - Won-Jae Joo
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro 130, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Korea
| | - Hongkyu Park
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro 130, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Korea
| | - Sui Yang
- Nano-Scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Yuan Wang
- Nano-Scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Chang Seung Lee
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro 130, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Korea
| | - Hyuck Choo
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro 130, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Korea
| | - Sungwoo Hwang
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro 130, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Korea
| | - Xiang Zhang
- Nano-Scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California Berkeley, Berkeley, CA, 94720, USA.
- Faculties of Sciences and Engineering, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Sun M, Kik PG. Scale dependent performance of metallic light-trapping transparent electrodes. OPTICS EXPRESS 2020; 28:18112-18121. [PMID: 32680011 DOI: 10.1364/oe.391351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The optical and electrical performance of light trapping metallic electrodes is investigated. Reflection losses from metallic contacts are shown to be dramatically reduced compared to standard metallic contacts by leveraging total internal reflection at the surface of an added dielectric cover layer. Triangular wire arrays are shown to exhibit increased performance with increasing size, whereas cylindrical wires continue to exhibit diffractive losses as their size is increased. These trends are successfully correlated with radiation patterns from individual metallic wires. Triangular metallic electrodes with a metal areal coverage of 25% are shown to enable a polarization-averaged transmittance of >90% across the wavelength range 0.46-1.1 µm for an electrode width of 2 µm, with a peak transmission of 97%, a degree of polarization of <0.2%, and a sheet resistance of 0.35 Ω/sq. A new figure of merit is introduced to evaluate the light trapping potential of surface-shaped electrodes.
Collapse
|
9
|
Wei J, Lee C. Anomalous plasmon hybridization in nanoantennas near interfaces. OPTICS LETTERS 2019; 44:6041-6044. [PMID: 32628214 DOI: 10.1364/ol.44.006041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/18/2019] [Indexed: 06/11/2023]
Abstract
We report on an anomalous plasmon hybridization in side-by-side coupled metallic nanoantennas on top of a silicon waveguide. Contrary to the conventional perception based on Coulomb coupling, the hybridized anti-symmetric mode in our structure possesses a higher resonance frequency than the symmetric mode. This unusual phenomenon reveals a new mechanism of plasmon hybridization, namely, coupling-induced charge redistribution. Our work includes numerical simulation, experimental validation, and theoretical analysis, emphasizing the importance of dielectric interfaces in coupled plasmonic structures, and offers new possibilities for non-Hermitian systems and integrated devices.
Collapse
|
10
|
Li Q, van de Groep J, Wang Y, Kik PG, Brongersma ML. Transparent multispectral photodetectors mimicking the human visual system. Nat Commun 2019; 10:4982. [PMID: 31676782 PMCID: PMC6825164 DOI: 10.1038/s41467-019-12899-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 10/04/2019] [Indexed: 11/24/2022] Open
Abstract
Compact and lightweight photodetection elements play a critical role in the newly emerging augmented reality, wearable and sensing technologies. In these technologies, devices are preferred to be transparent to form an optical interface between a viewer and the outside world. For this reason, it is of great value to create detection platforms that are imperceptible to the human eye directly onto transparent substrates. Semiconductor nanowires (NWs) make ideal photodetectors as their optical resonances enable parsing of the multi-dimensional information carried by light. Unfortunately, these optical resonances also give rise to strong, undesired light scattering. In this work, we illustrate how a new optical resonance arising from the radiative coupling between arrayed silicon NWs can be harnessed to remove reflections from dielectric interfaces while affording spectro-polarimetric detection. The demonstrated transparent photodetector concept opens up promising platforms for transparent substrates as the base for opto-electronic devices and in situ optical measurement systems. For augmented reality technologies it is beneficial to create devices on transparent substrates that are imperceptible to the human eye. Here, the authors harness resonances from radiative coupling between arrayed silicon nanowire photodetectors to remove reflections while affording spectro-polarimetric detection.
Collapse
Affiliation(s)
- Qitong Li
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
| | - Jorik van de Groep
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
| | - Yifei Wang
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
| | - Pieter G Kik
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA.,CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, USA
| | - Mark L Brongersma
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Tsurimaki Y, Boriskina SV, Huang Y, Chen G. Spectral, spatial and polarization-selective perfect absorbers with large magnetic response for sensing and thermal emission control. OPTICS EXPRESS 2019; 27:A1041-A1059. [PMID: 31510490 DOI: 10.1364/oe.27.0a1041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Spectral, spatial, and polarization selective perfect absorption of light in periodic metal-dielectric-metal nanoslits, each of which supporting a single electric-field anti-symmetric surface mode, is systematically studied. Our numerical analysis shows complete absorption of p-polarized light associated with large magnetic field enhancement at wavelengths from the visible to the mid-infrared range and roles played by the geometrical parameters of the structure. This understanding is then applied to the design of the structure with multiple nanoslits in a period that exhibits complete absorption at multiple wavelengths. Semi-analytical expression of the zeroth mode reflectance is derived, which shows a good agreement with numerical simulations and yields clear insight into the underlying physics of light-matter interactions in the structure.
Collapse
|
12
|
Chen J, Wang P, Ming H, Lakowicz JR, Zhang D. Fano resonance and polarization transformation induced by interpolarization coupling of Bloch surface waves. PHYSICAL REVIEW. B 2019; 99:115420. [PMID: 33842743 PMCID: PMC8034434 DOI: 10.1103/physrevb.99.115420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, the resonant coupling behaviors between the transverse-electric (TE) and transverse-magnetic (TM) Bloch surface waves (BSWs) on a dielectric multilayer have been theoretically studied. Due to the different penetration depths in the dielectric multilayer, the TM BSWs and TE BSWs can act as the radiative and dark electromagnetic modes, respectively. By using a rectangular grating on the dielectric multilayer, both Rabi splitting and Fano resonance phenomena based on the coupling of the two BSW modes were demonstrated, through tuning the period of the grating and the azimuthal angle of the incoming wave. Furthermore, by using the temporal coupled-mode theory, we show that the anti-Hermitian coupling between the two BSW modes contributes to the enhanced diffraction and the huge polarization transformation efficiency of incoming waves in the weak coupling regime.
Collapse
Affiliation(s)
- Junxue Chen
- School of Science, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People’s Republic of China
| | - Pei Wang
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Hai Ming
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Joseph R. Lakowicz
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Douguo Zhang
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|