1
|
Klages JP, Hillenbrand CD, Bohaty SM, Salzmann U, Bickert T, Lohmann G, Knahl HS, Gierz P, Niu L, Titschack J, Kuhn G, Frederichs T, Müller J, Bauersachs T, Larter RD, Hochmuth K, Ehrmann W, Nehrke G, Rodríguez-Tovar FJ, Schmiedl G, Spezzaferri S, Läufer A, Lisker F, van de Flierdt T, Eisenhauer A, Uenzelmann-Neben G, Esper O, Smith JA, Pälike H, Spiegel C, Dziadek R, Ronge TA, Freudenthal T, Gohl K. Ice sheet-free West Antarctica during peak early Oligocene glaciation. Science 2024; 385:322-327. [PMID: 38963876 DOI: 10.1126/science.adj3931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
One of Earth's most fundamental climate shifts, the greenhouse-icehouse transition 34 million years ago, initiated Antarctic ice sheet buildup, influencing global climate until today. However, the extent of the ice sheet during the Early Oligocene Glacial Maximum (~33.7 to 33.2 million years ago) that immediately followed this transition-a critical knowledge gap for assessing feedbacks between permanently glaciated areas and early Cenozoic global climate reorganization-is uncertain. In this work, we present shallow-marine drilling data constraining earliest Oligocene environmental conditions on West Antarctica's Pacific margin-a key region for understanding Antarctic ice sheet evolution. These data indicate a cool-temperate environment with mild ocean and air temperatures that prevented West Antarctic Ice Sheet formation. Climate-ice sheet modeling corroborates a highly asymmetric Antarctic ice sheet, thereby revealing its differential regional response to past and future climatic change.
Collapse
Affiliation(s)
- J P Klages
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | | | - S M Bohaty
- Institute of Earth Sciences, University of Heidelberg, Heidelberg, Germany
| | - U Salzmann
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - T Bickert
- MARUM - Center for Marine Environmental Sciences, Bremen, Germany
| | - G Lohmann
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
- MARUM - Center for Marine Environmental Sciences, Bremen, Germany
- Environmental Physics, University of Bremen, Bremen, Germany
| | - H S Knahl
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - P Gierz
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - L Niu
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - J Titschack
- MARUM - Center for Marine Environmental Sciences, Bremen, Germany
- Marine Research Department, Senckenberg am Meer (SAM), Wilhelmshaven, Germany
| | - G Kuhn
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - T Frederichs
- MARUM - Center for Marine Environmental Sciences, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - J Müller
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
- MARUM - Center for Marine Environmental Sciences, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - T Bauersachs
- Chair of Organic Biogeochemistry in Geo-Systems, RWTH Aachen University, Aachen, Germany
| | | | - K Hochmuth
- Australian Centre for Excellence in Antarctic Science, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - W Ehrmann
- Institute for Geophysics and Geology, University of Leipzig, Leipzig, Germany
| | - G Nehrke
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - F J Rodríguez-Tovar
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, Granada, Spain
| | - G Schmiedl
- Center for Earth System Research and Sustainability, Institute for Geology, University of Hamburg, Hamburg, Germany
| | - S Spezzaferri
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - A Läufer
- Polar Geology, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany
| | - F Lisker
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - T van de Flierdt
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - A Eisenhauer
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany
| | - G Uenzelmann-Neben
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - O Esper
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - J A Smith
- British Antarctic Survey, Cambridge, UK
| | - H Pälike
- MARUM - Center for Marine Environmental Sciences, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - C Spiegel
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - R Dziadek
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - T A Ronge
- International Ocean Discovery Program, Texas A&M University, College Station, TX, USA
| | - T Freudenthal
- MARUM - Center for Marine Environmental Sciences, Bremen, Germany
| | - K Gohl
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| |
Collapse
|
2
|
Hou S, Stap LB, Paul R, Nelissen M, Hoem FS, Ziegler M, Sluijs A, Sangiorgi F, Bijl PK. Reconciling Southern Ocean fronts equatorward migration with minor Antarctic ice volume change during Miocene cooling. Nat Commun 2023; 14:7230. [PMID: 37945579 PMCID: PMC10636158 DOI: 10.1038/s41467-023-43106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Gradual climate cooling and CO2 decline in the Miocene were recently shown not to be associated with major ice volume expansion, challenging a fundamental paradigm in the functioning of the Antarctic cryosphere. Here, we explore Miocene ice-ocean-climate interactions by presenting a multi-proxy reconstruction of subtropical front migration, bottom water temperature and global ice volume change, using dinoflagellate cyst biogeography, benthic foraminiferal clumped isotopes from offshore Tasmania. We report an equatorward frontal migration and strengthening, concurrent with surface and deep ocean cooling but absence of ice volume change in the mid-late-Miocene. To reconcile these counterintuitive findings, we argue based on new ice sheet modelling that the Antarctic ice sheet progressively lowered in height while expanding seawards, to maintain a stable volume. This can be achieved with rigorous intervention in model precipitation regimes on Antarctica and ice-induced ocean cooling and requires rethinking the interactions between ice, ocean and climate.
Collapse
Affiliation(s)
- Suning Hou
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands.
| | - Lennert B Stap
- Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ryan Paul
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mei Nelissen
- NIOZ Royal Netherlands Institute of Sea Research, Texel, The Netherlands
| | - Frida S Hoem
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| | - Martin Ziegler
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| | - Appy Sluijs
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Peter K Bijl
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Gales JA, McKay RM, De Santis L, Rebesco M, Laberg JS, Shevenell AE, Harwood D, Leckie RM, Kulhanek DK, King M, Patterson M, Lucchi RG, Kim S, Kim S, Dodd J, Seidenstein J, Prunella C, Ferrante GM. Climate-controlled submarine landslides on the Antarctic continental margin. Nat Commun 2023; 14:2714. [PMID: 37202379 DOI: 10.1038/s41467-023-38240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 04/21/2023] [Indexed: 05/20/2023] Open
Abstract
Antarctica's continental margins pose an unknown submarine landslide-generated tsunami risk to Southern Hemisphere populations and infrastructure. Understanding the factors driving slope failure is essential to assessing future geohazards. Here, we present a multidisciplinary study of a major submarine landslide complex along the eastern Ross Sea continental slope (Antarctica) that identifies preconditioning factors and failure mechanisms. Weak layers, identified beneath three submarine landslides, consist of distinct packages of interbedded Miocene- to Pliocene-age diatom oozes and glaciomarine diamicts. The observed lithological differences, which arise from glacial to interglacial variations in biological productivity, ice proximity, and ocean circulation, caused changes in sediment deposition that inherently preconditioned slope failure. These recurrent Antarctic submarine landslides were likely triggered by seismicity associated with glacioisostatic readjustment, leading to failure within the preconditioned weak layers. Ongoing climate warming and ice retreat may increase regional glacioisostatic seismicity, triggering Antarctic submarine landslides.
Collapse
Affiliation(s)
- Jenny A Gales
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK.
| | - Robert M McKay
- Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand
| | - Laura De Santis
- National Institute of Oceanography and Applied Geophysics-OGS, Trieste, Italy
| | - Michele Rebesco
- National Institute of Oceanography and Applied Geophysics-OGS, Trieste, Italy
| | - Jan Sverre Laberg
- Department of Geosciences, UIT-The Arctic University of Norway, Tromsø, Norway
| | - Amelia E Shevenell
- College of Marine Sciences, University of South Florida, St Petersburg, FL, USA
| | - David Harwood
- Earth and Atmospheric Sciences, University of Nebraska, Lincoln, USA
| | - R Mark Leckie
- Department of Earth, Geographic, and Climate Science, University of Massachusetts, Amherst, MA, USA
| | - Denise K Kulhanek
- Institute of Geosciences, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Earth Sciences, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Maxine King
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Molly Patterson
- Department of Earth Sciences, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Renata G Lucchi
- National Institute of Oceanography and Applied Geophysics-OGS, Trieste, Italy
- Department of Geosciences, UIT-The Arctic University of Norway, Tromsø, Norway
| | - Sookwan Kim
- Ocean Climate Response & Ecosystem Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Sunghan Kim
- Division of Glacial Environment Research, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Justin Dodd
- Department of Earth, Atmosphere and Environment, Northern Illinois University, DeKalb, IL, USA
| | - Julia Seidenstein
- Department of Earth, Geographic, and Climate Science, University of Massachusetts, Amherst, MA, USA
- Florence Bascom Geoscience Center, U.S. Geological Survey, National Center, Reston, VA, USA
| | - Catherine Prunella
- College of Marine Sciences, University of South Florida, St Petersburg, FL, USA
- National Science Foundation, Alexandria, VA, USA
| | - Giulia M Ferrante
- National Institute of Oceanography and Applied Geophysics-OGS, Trieste, Italy
| |
Collapse
|
4
|
Auderset A, Moretti S, Taphorn B, Ebner PR, Kast E, Wang XT, Schiebel R, Sigman DM, Haug GH, Martínez-García A. Enhanced ocean oxygenation during Cenozoic warm periods. Nature 2022; 609:77-82. [PMID: 36045236 PMCID: PMC9433325 DOI: 10.1038/s41586-022-05017-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/09/2022] [Indexed: 11/09/2022]
Abstract
Dissolved oxygen (O2) is essential for most ocean ecosystems, fuelling organisms’ respiration and facilitating the cycling of carbon and nutrients. Oxygen measurements have been interpreted to indicate that the ocean’s oxygen-deficient zones (ODZs) are expanding under global warming1,2. However, models provide an unclear picture of future ODZ change in both the near term and the long term3–6. The paleoclimate record can help explore the possible range of ODZ changes in warmer-than-modern periods. Here we use foraminifera-bound nitrogen (N) isotopes to show that water-column denitrification in the eastern tropical North Pacific was greatly reduced during the Middle Miocene Climatic Optimum (MMCO) and the Early Eocene Climatic Optimum (EECO). Because denitrification is restricted to oxygen-poor waters, our results indicate that, in these two Cenozoic periods of sustained warmth, ODZs were contracted, not expanded. ODZ contraction may have arisen from a decrease in upwelling-fuelled biological productivity in the tropical Pacific, which would have reduced oxygen demand in the subsurface. Alternatively, invigoration of deep-water ventilation by the Southern Ocean may have weakened the ocean’s ‘biological carbon pump’, which would have increased deep-ocean oxygen. The mechanism at play would have determined whether the ODZ contractions occurred in step with the warming or took centuries or millennia to develop. Thus, although our results from the Cenozoic do not necessarily apply to the near-term future, they might imply that global warming may eventually cause ODZ contraction. By using foraminifera-bound nitrogen isotopes, it is shown that, during two warm periods of the Cenozoic, oxygen-deficient zones contracted rather than expanded, suggesting that global warming may not necessarily lead to increased oceanic anoxia.
Collapse
Affiliation(s)
- Alexandra Auderset
- Climate Geochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany. .,Department of Earth Sciences, ETH Zurich, Zurich, Switzerland.
| | - Simone Moretti
- Climate Geochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.,Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
| | - Björn Taphorn
- Climate Geochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Pia-Rebecca Ebner
- Climate Geochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Emma Kast
- Department of Geosciences, Princeton University, Princeton, NJ, USA.,Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Xingchen T Wang
- Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, USA
| | - Ralf Schiebel
- Climate Geochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Daniel M Sigman
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Gerald H Haug
- Climate Geochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.,Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
5
|
Stokes CR, Abram NJ, Bentley MJ, Edwards TL, England MH, Foppert A, Jamieson SSR, Jones RS, King MA, Lenaerts JTM, Medley B, Miles BWJ, Paxman GJG, Ritz C, van de Flierdt T, Whitehouse PL. Response of the East Antarctic Ice Sheet to past and future climate change. Nature 2022; 608:275-286. [PMID: 35948707 DOI: 10.1038/s41586-022-04946-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/07/2022] [Indexed: 11/09/2022]
Abstract
The East Antarctic Ice Sheet contains the vast majority of Earth's glacier ice (about 52 metres sea-level equivalent), but is often viewed as less vulnerable to global warming than the West Antarctic or Greenland ice sheets. However, some regions of the East Antarctic Ice Sheet have lost mass over recent decades, prompting the need to re-evaluate its sensitivity to climate change. Here we review the response of the East Antarctic Ice Sheet to past warm periods, synthesize current observations of change and evaluate future projections. Some marine-based catchments that underwent notable mass loss during past warm periods are losing mass at present but most projections indicate increased accumulation across the East Antarctic Ice Sheet over the twenty-first century, keeping the ice sheet broadly in balance. Beyond 2100, high-emissions scenarios generate increased ice discharge and potentially several metres of sea-level rise within just a few centuries, but substantial mass loss could be averted if the Paris Agreement to limit warming below 2 degrees Celsius is satisfied.
Collapse
Affiliation(s)
| | - Nerilie J Abram
- Research School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory, Australia.,Australian Centre for Excellence in Antarctic Science, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | - Matthew H England
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia.,Australian Centre for Excellence in Antarctic Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Annie Foppert
- Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Richard S Jones
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia.,Securing Antarctica's Environmental Future, Monash University, Clayton, Victoria, Australia
| | - Matt A King
- School of Geography, Planning, and Spatial Sciences, University of Tasmania, Hobart, Tasmania, Australia.,Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Jan T M Lenaerts
- Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Brooke Medley
- Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | | | - Guy J G Paxman
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Catherine Ritz
- Institut des Géosciences de l'Environnement, Université Grenoble Alpes, Grenoble, France
| | - Tina van de Flierdt
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | | |
Collapse
|
6
|
Herbert TD, Dalton CA, Liu Z, Salazar A, Si W, Wilson DS. Tectonic degassing drove global temperature trends since 20 Ma. Science 2022; 377:116-119. [PMID: 35771904 DOI: 10.1126/science.abl4353] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Miocene Climatic Optimum (MCO) from ~17 to 14 million years ago (Ma) represents an enigmatic reversal in Cenozoic cooling. A synthesis of marine paleotemperature records shows that the MCO was a local maximum in global sea surface temperature superimposed on a period from at least 19 Ma to 10 Ma, during which global temperatures were on the order of 10°C warmer than at present. Our high-resolution global reconstruction of ocean crustal production, a proxy for tectonic degassing of carbon, suggests that crustal production rates were ~35% higher than modern rates until ~14 Ma, when production began to decline steeply along with global temperatures. The magnitude and timing of the inferred changes in tectonic degassing can account for the majority of long-term ice sheet and global temperature evolution since 20 Ma.
Collapse
Affiliation(s)
| | | | - Zhonghui Liu
- Department of Earth Sciences, University of Hong Kong, Hong Kong, China
| | - Andrea Salazar
- Department of Earth and Planetary Science, Harvard University, Cambridge, MA, USA
| | - Weimin Si
- DEEPS, Brown University, Providence, RI 02912, USA
| | - Douglas S Wilson
- Department of Earth Science, University of California, Santa Barbara, CA, USA
| |
Collapse
|
7
|
A large West Antarctic Ice Sheet explains early Neogene sea-level amplitude. Nature 2021; 600:450-455. [PMID: 34912089 DOI: 10.1038/s41586-021-04148-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022]
Abstract
Early to Middle Miocene sea-level oscillations of approximately 40-60 m estimated from far-field records1-3 are interpreted to reflect the loss of virtually all East Antarctic ice during peak warmth2. This contrasts with ice-sheet model experiments suggesting most terrestrial ice in East Antarctica was retained even during the warmest intervals of the Middle Miocene4,5. Data and model outputs can be reconciled if a large West Antarctic Ice Sheet (WAIS) existed and expanded across most of the outer continental shelf during the Early Miocene, accounting for maximum ice-sheet volumes. Here we provide the earliest geological evidence proving large WAIS expansions occurred during the Early Miocene (~17.72-17.40 Ma). Geochemical and petrographic data show glacimarine sediments recovered at International Ocean Discovery Program (IODP) Site U1521 in the central Ross Sea derive from West Antarctica, requiring the presence of a WAIS covering most of the Ross Sea continental shelf. Seismic, lithological and palynological data reveal the intermittent proximity of grounded ice to Site U1521. The erosion rate calculated from this sediment package greatly exceeds the long-term mean, implying rapid erosion of West Antarctica. This interval therefore captures a key step in the genesis of a marine-based WAIS and a tipping point in Antarctic ice-sheet evolution.
Collapse
|
8
|
Marri I, Ossicini S. Multiple exciton generation in isolated and interacting silicon nanocrystals. NANOSCALE 2021; 13:12119-12142. [PMID: 34250528 DOI: 10.1039/d1nr01747k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An important challenge in the field of renewable energy is the development of novel nanostructured solar cell devices which implement low-dimensional materials to overcome the limits of traditional photovoltaic systems. For optimal energy conversion in photovoltaic devices, one important requirement is that the full energy of the solar spectrum is effectively used. In this context, the possibility of exploiting features and functionalities induced by the reduced dimensionality of the nanocrystalline phase, in particular by the quantum confinement of the electronic density, can lead to a better use of the carrier excess energy and thus to an increment of the thermodynamic conversion efficiency of the system. Carrier multiplication, i.e. the generation of multiple electron-hole pairs after absorption of one single high-energy photon (with energy at least twice the energy gap of the system), can be exploited to maximize cell performance, promoting a net reduction of loss mechanisms. Over the past fifteen years, carrier multiplication has been recorded in a large variety of semiconductor nanocrystals and other nanostructures. Owing to the role of silicon in solar cell applications, the mission of this review is to summarize the progress in this fascinating research field considering carrier multiplication in Si-based low-dimensional systems, in particular Si nanocrystals, both from the experimental and theoretical point of view, with special attention given to the results obtained by ab initio calculations.
Collapse
Affiliation(s)
- Ivan Marri
- Department of Sciences and Methods for Engineering, University of Modena e Reggio Emilia, 42122 Reggio Emilia, Italy.
| | | |
Collapse
|
9
|
Post E, Alley RB, Christensen TR, Macias-Fauria M, Forbes BC, Gooseff MN, Iler A, Kerby JT, Laidre KL, Mann ME, Olofsson J, Stroeve JC, Ulmer F, Virginia RA, Wang M. The polar regions in a 2°C warmer world. SCIENCE ADVANCES 2019; 5:eaaw9883. [PMID: 31840060 PMCID: PMC6892626 DOI: 10.1126/sciadv.aaw9883] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/26/2019] [Indexed: 05/21/2023]
Abstract
Over the past decade, the Arctic has warmed by 0.75°C, far outpacing the global average, while Antarctic temperatures have remained comparatively stable. As Earth approaches 2°C warming, the Arctic and Antarctic may reach 4°C and 2°C mean annual warming, and 7°C and 3°C winter warming, respectively. Expected consequences of increased Arctic warming include ongoing loss of land and sea ice, threats to wildlife and traditional human livelihoods, increased methane emissions, and extreme weather at lower latitudes. With low biodiversity, Antarctic ecosystems may be vulnerable to state shifts and species invasions. Land ice loss in both regions will contribute substantially to global sea level rise, with up to 3 m rise possible if certain thresholds are crossed. Mitigation efforts can slow or reduce warming, but without them northern high latitude warming may accelerate in the next two to four decades. International cooperation will be crucial to foreseeing and adapting to expected changes.
Collapse
Affiliation(s)
- Eric Post
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA 95616, USA
| | - Richard B. Alley
- Department of Geosciences, and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Torben R. Christensen
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Marc Macias-Fauria
- School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK
| | - Bruce C. Forbes
- Arctic Centre, University of Lapland, Box 122, FI-96101 Rovaniemi, Finland
| | - Michael N. Gooseff
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80303, USA
| | - Amy Iler
- Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022, USA
| | - Jeffrey T. Kerby
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA 95616, USA
- Neukom Institute for Computational Science, Institute of Arctic Studies, and Environmental Studies Program, Dartmouth College, Hanover, NH 03755, USA
| | - Kristin L. Laidre
- Polar Science Center, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105, USA
| | - Michael E. Mann
- Department of Meteorology and Atmospheric Science and Department of Geosciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Johan Olofsson
- Department of Ecology and Environmental Science, Umeå University, S-901 87 Umeå, Sweden
| | - Julienne C. Stroeve
- University College London, Bloomsbury, London, UK
- National Snow and Ice Data Center, Boulder, CO 80303, USA
| | - Fran Ulmer
- Chair, U.S. Arctic Research Commission, 420 L Street, Suite 315 Anchorage, AK 99501, USA
- Chair, U.S. Artic Research Commission, 4350 N. Fairfax Drive, Suite 510, Arlington, VA 22203, USA
- Belfer Center for Science and International Affairs John F. Kennedy School of Government, Harvard University, Cambridge, MA 02138, USA
| | - Ross A. Virginia
- Institute of Arctic Studies, and Environmental Studies Program, Dartmouth College, Hanover, NH 03755, USA
| | - Muyin Wang
- Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, WA 98195, USA
- National Oceanic and Atmospheric Administration Pacific Marine Environmental Laboratory, Seattle, WA 98115, USA
| |
Collapse
|
10
|
Back to the Future: Using Long-Term Observational and Paleo-Proxy Reconstructions to Improve Model Projections of Antarctic Climate. GEOSCIENCES 2019. [DOI: 10.3390/geosciences9060255] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Quantitative estimates of future Antarctic climate change are derived from numerical global climate models. Evaluation of the reliability of climate model projections involves many lines of evidence on past performance combined with knowledge of the processes that need to be represented. Routine model evaluation is mainly based on the modern observational period, which started with the establishment of a network of Antarctic weather stations in 1957/58. This period is too short to evaluate many fundamental aspects of the Antarctic and Southern Ocean climate system, such as decadal-to-century time-scale climate variability and trends. To help address this gap, we present a new evaluation of potential ways in which long-term observational and paleo-proxy reconstructions may be used, with a particular focus on improving projections. A wide range of data sources and time periods is included, ranging from ship observations of the early 20th century to ice core records spanning hundreds to hundreds of thousands of years to sediment records dating back 34 million years. We conclude that paleo-proxy records and long-term observational datasets are an underused resource in terms of strategies for improving Antarctic climate projections for the 21st century and beyond. We identify priorities and suggest next steps to addressing this.
Collapse
|
11
|
Nair RR, Karumathil S, Udayan PS, Prakashkumar RP, Sérsic AN. Evolutionary history of Kingiodendron pinnatum(Fabaceae: Caesalpinoideae), an endangered species of the Western Ghats, India: a phylogeographical approach. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Rahul Raveendran Nair
- Centre for Evolutionary Ecology, Aushmath Biosciences, Coimbatore District, Tamil Nadu, India
| | - Sudeesh Karumathil
- Centre for Evolutionary Ecology, Aushmath Biosciences, Coimbatore District, Tamil Nadu, India
| | | | | | - Alicia N Sérsic
- Laboratorio de Ecología Evolutiva – Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET–Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
12
|
Change in future climate due to Antarctic meltwater. Nature 2018; 564:53-58. [PMID: 30455421 DOI: 10.1038/s41586-018-0712-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/05/2018] [Indexed: 11/08/2022]
Abstract
Meltwater from the Antarctic Ice Sheet is projected to cause up to one metre of sea-level rise by 2100 under the highest greenhouse gas concentration trajectory (RCP8.5) considered by the Intergovernmental Panel on Climate Change (IPCC). However, the effects of meltwater from the ice sheets and ice shelves of Antarctica are not included in the widely used CMIP5 climate models, which introduces bias into IPCC climate projections. Here we assess a large ensemble simulation of the CMIP5 model 'GFDL ESM2M' that accounts for RCP8.5-projected Antarctic Ice Sheet meltwater. We find that, relative to the standard RCP8.5 scenario, accounting for meltwater delays the exceedance of the maximum global-mean atmospheric warming targets of 1.5 and 2 degrees Celsius by more than a decade, enhances drying of the Southern Hemisphere and reduces drying of the Northern Hemisphere, increases the formation of Antarctic sea ice (consistent with recent observations of increasing Antarctic sea-ice area) and warms the subsurface ocean around the Antarctic coast. Moreover, the meltwater-induced subsurface ocean warming could lead to further ice-sheet and ice-shelf melting through a positive feedback mechanism, highlighting the importance of including meltwater effects in simulations of future climate.
Collapse
|
13
|
Past continental shelf evolution increased Antarctic ice sheet sensitivity to climatic conditions. Sci Rep 2018; 8:11323. [PMID: 30054536 PMCID: PMC6063862 DOI: 10.1038/s41598-018-29718-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/12/2018] [Indexed: 11/17/2022] Open
Abstract
Over the past 34 Million years, the Antarctic continental shelf has gradually deepened due to ice sheet loading, thermal subsidence, and erosion from repeated glaciations. The deepening that is recorded in the sedimentary deposits around the Antarctic margin indicates that after the mid-Miocene Climate Optimum (≈15 Ma), Antarctic Ice Sheet (AIS) dynamical response to climate conditions changed. We explore end-members for maximum AIS extent, based on ice-sheet simulations of a late-Pleistocene and a mid-Miocene glaciation. Fundamental dynamical differences emerge as a consequence of atmospheric forcing, eustatic sea level and continental shelf evolution. We show that the AIS contributed to the amplification of its own sensitivity to ocean forcing by gradually expanding and eroding the continental shelf, that probably changed its tipping points through time. The lack of past topographic and bathymetric reconstructions implies that so far, we still have an incomplete understanding of AIS fast response to past warm climate conditions, which is crucial to constrain its future evolution.
Collapse
|