1
|
Baek S, Gutierrez-Portocarrero S, Gerulskis R, Minteer SD, German SR, White HS. Detection of CO 2 Locally Generated by Formate Dehydrogenase Using Carbonate Ion-Selective Micropipette Electrodes. ACS NANO 2025; 19:13240-13249. [PMID: 40130603 DOI: 10.1021/acsnano.5c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Many technologies involve immobilizing catalysts such as enzymes on surfaces, and the catalytic activities or functional efficiencies of these surface-bound catalysts can vary depending on orientations, localized binding sites, active sites, and intrinsic molecular nature. Accurate and rapid quantification of reaction products from surface-immobilized catalysts is crucial for understanding the selectivity, mechanisms, and reaction dynamics of catalytic systems and for revealing heterogeneous catalytic activities and reaction sites for applications such as biosensors and energy conversion/generation systems. Here, we demonstrate the feasibility of localized enzymatic activity measurements using microscale carbon dioxide (CO2)-sensitive ion-selective electrode (ISE) pipettes (0.5-2.5 μm tip radius) as a probe, with in situ potentiometric scanning electrochemical microscopy (SECM). We develop carbonate (CO32-) ionophore-incorporated ISEs exhibiting a Nernstian response (26.7 mV/decade) with a detection limit of 1.72 μM and explore surface-immobilized formate dehydrogenase (FDH) activity by detecting CO2 generated by the enzymatic reaction via potentiometric measurements. SECM is used for real-time spatial/temporal investigation of FDH immobilized onto the surface at a micrometer-scale resolution. Moreover, unlike voltammetric techniques based on faradaic reactions, the potentiometric measurements using ISEs allow highly sensitive and selective detection of CO32-, rendering efficient quantification of CO2 without interference from solution composition changes arising from faradaic processes. The total amount of CO2 generated at an FDH-immobilized Au ultramicroelectrode is quantified as a function of coenzyme, i.e., NAD+, and substrate, i.e., formate, concentrations both in constant tip-sample distance mode and variable depth mode. Finally, we demonstrate the use of the ISE to quantify CO2 levels in blood serum.
Collapse
Affiliation(s)
- Seol Baek
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, South Korea
| | | | - Rokas Gerulskis
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Kummer Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Sean R German
- Electronic BioSciences, 421 Wakara Way, Suite 328, Salt Lake City, Utah 84108, United States
| | - Henry S White
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Wang Y, Liang J, Liu S, Wang Q, Zhang Y, Tian Y, Ke Z, Su Q, Pang S. Selective Adsorbent Design with Multifunctional Surfaces: Innovating Solutions for Heterogeneous Catalysis in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9265-9279. [PMID: 38636094 DOI: 10.1021/acs.langmuir.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Heterogeneous catalytic systems with water as the solvent often have the disadvantage of cross-contamination, while concerns about the purification and workup of the aqueous phase after reactions are rare in the lab or industry. In this context, designing and developing the functional selective solid adsorbent and revealing the adsorption mechanism can provide a new strategy and guidelines for constructing supported heterogeneous catalysts to address these issues. Herein, we report the stable composite adsorbent (Fe/ATP@PPy: magnetic Fe3O4/attapulgite with the polypyrrole shell) that features an integrated multifunctional surface, which can effectively tune the selective adsorption processes for Cu2+, Co2+, and Ni2+ ions and nitrobenzene via the cooperative chemisorption/physisorption in an aqueous system. The adsorption experiments showed that Fe/ATP@PPy displayed significantly higher adsorption selectivity for Ni2+ than Cu2+ and Co2+ ions, especially which exhibited an approximate 100.00% removal for both Ni2+ ions and nitrobenzene in the mixture system with a low concentration. Furthermore, combined tracking adsorption of Ni2+ ions and X-ray photoelectron spectroscopy characterization confirmed that the effective adsorption occurs via ion transfer coordination; the pathway was further validated at the molecular level through theoretical modeling. In addition, the selective adsorption mechanism was proposed based on the adsorption experiment, characterization, and the corresponding density functional theory calculation.
Collapse
Affiliation(s)
- Yanbin Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Chemical Engineering Institute, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Junxi Liang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Chemical Engineering Institute, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Shimin Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P. R. China
| | - Qing Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Chemical Engineering Institute, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Yujing Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Yu Tian
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Chemical Engineering Institute, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Zhengang Ke
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Qiong Su
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Chemical Engineering Institute, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Shaofeng Pang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Chemical Engineering Institute, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| |
Collapse
|
3
|
Li P, Tian Y, Tian L, Wang Y. Selective electrochemical acceptorless dehydrogenation reactions of tetrahydroisoquinoline derivatives. Org Biomol Chem 2024; 22:725-730. [PMID: 38169000 DOI: 10.1039/d3ob01930f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Selective dehydrogenation reactions of tetrahydroisoquinoline derivatives through electrochemical oxidation are disclosed. In the presence of nitric acid, the selective partial dehydrogenation of tetrahydroisoquinolines to form 3,4-dihydroisoquinolines was achieved via anodic oxidation. The results of CV (Cyclic Voltammograms) experiments and DFT calculations showed the 3,4-dihydroisoquinolines protonated by an external Brønsted acid to be less prone than their unprotonated counterparts to oxidation under electrochemical conditions, thus avoiding their further dehydrogenation. Moreover, a TEMPO-mediated electrochemical oxidation enabled a complete dehydrogenation to yield fully aromatized isoquinolines. Thus, tunable processes involving electrochemical dehydrogenation of tetrahydroisoquinolines could be used to selectively produce various 3,4-dihydroisoquinolines and isoquinoline derivatives.
Collapse
Affiliation(s)
- Pan Li
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yue Tian
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials-Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
4
|
Wang C, Qiao Z, Tian Y, Yang H, Cao H, Cheetham AK. Alcohol imination catalyzed by carbon nanostructures synthesized by C(sp 2)-C(sp 3) free radical coupling. iScience 2023; 26:106659. [PMID: 37182103 PMCID: PMC10173739 DOI: 10.1016/j.isci.2023.106659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/13/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Imines are important intermediates for synthesizing various fine chemicals, with the disadvantage of requiring the use of expensive metal-containing catalysts. We report that the dehydrogenative cross-coupling of phenylmethanol and benzylamine (or aniline) directly forms the corresponding imine with a yield of up to 98%, and water as the sole by-product, in the presence of a stoichiometric base, using carbon nanostructures as the "green" metal-free carbon catalysts with high spin concentrations, which is synthesized by C(sp2)-C(sp3) free radical coupling reactions. The catalytic mechanism is attributed to the unpaired electrons of carbon catalysts to reduce O2 to O2·-, which triggers the oxidative coupling reaction to form imines, whereas the holes in the carbon catalysts receive electrons from the amine to restore the spin states. This is supported by density functional theory calculations. This work will open up an avenue for synthesizing carbon catalysts and offer great potential for industrial applications.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zirui Qiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yulan Tian
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haijun Yang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huaqiang Cao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Anthony K. Cheetham
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
5
|
Chen J, Shi D, Wu Q, Chen K, Zhang Y, Xu X, Li H. Magnetically-separable quasi-homogeneous catalyst: Brush-type ionic liquid polymer coated magnetic polymer microspheres for tandem reactions to produce 4H-pyrans/biodiesel. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Xiang H, Ferla S, Varricchio C, Brancale A, Brown NL, Black GW, Turner NJ, Castagnolo D. Biocatalytic and Chemo-Enzymatic Synthesis of Quinolines and 2-Quinolones by Monoamine Oxidase (MAO-N) and Horseradish Peroxidase (HRP) Biocatalysts. ACS Catal 2023; 13:3370-3378. [PMID: 36910872 PMCID: PMC9990064 DOI: 10.1021/acscatal.2c05902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/15/2023] [Indexed: 02/24/2023]
Abstract
The oxidative aromatization of aliphatic N-heterocycles is a fundamental organic transformation for the preparation of a diverse array of heteroaromatic compounds. Despite many attempts to improve the efficiency and practicality of this transformation, most synthetic methodologies still require toxic and expensive reagents as well as harsh conditions. Herein, we describe two enzymatic strategies for the oxidation of 1,2,3,4-tetrahydroquinolines (THQs) and N-cyclopropyl-N-alkylanilines into quinolines and 2-quinolones, respectively. Whole cells and purified monoamine oxidase (MAO-N) enzymes were used to effectively catalyze the biotransformation of THQs into the corresponding aromatic quinoline derivatives, while N-cyclopropyl-N-alkylanilines were converted into 2-quinolone compounds through a horseradish peroxidase (HRP)-catalyzed annulation/aromatization reaction followed by Fe-mediated oxidation.
Collapse
Affiliation(s)
- Haoyue Xiang
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Salvatore Ferla
- Medical
School, Faculty of Medicine, Health and Life Science, Swansea University, Swansea SA2 8PP, U.K.
| | - Carmine Varricchio
- School
of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, U.K.
| | - Andrea Brancale
- School
of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, U.K.
- University
of Chemistry and Technology, Prague, 166 28 Prague 6, Czech Republic
| | - Nicola L. Brown
- Department
of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1
8ST, U.K.
| | - Gary W. Black
- Department
of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1
8ST, U.K.
| | - Nicholas J. Turner
- Department
of Chemistry, University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Daniele Castagnolo
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| |
Collapse
|
7
|
Salman MS, Rambhujun N, Pratthana C, Srivastava K, Aguey-Zinsou KF. Catalysis in Liquid Organic Hydrogen Storage: Recent Advances, Challenges, and Perspectives. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Muhammad Saad Salman
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Nigel Rambhujun
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Chulaluck Pratthana
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Kshitij Srivastava
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
8
|
Su LL, Zheng YW, Wang WG, Chen B, Wei XZ, Wu LZ, Tung CH. Photocatalytic Synthesis of Quinolines via Povarov Reaction under Oxidant-Free Conditions. Org Lett 2022; 24:1180-1185. [PMID: 35089722 DOI: 10.1021/acs.orglett.1c04287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe here an approach for synthesizing quinolines either from N-alkyl anilines or from anilines and aldehydes. A dual-catalyst system consisting of a photocatalyst and a proton reduction cocatalyst is employed. Without the use of any sacrificial oxidant and under extremely mild conditions, the reactions afford quinolines in excellent yields and produce H2 as a byproduct.
Collapse
Affiliation(s)
- Long-Long Su
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.,Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yi-Wen Zheng
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Wen-Guang Wang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiang-Zhu Wei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.,Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
9
|
Sun K, Shan H, Ma R, Wang P, Neumann H, Lu GP, Beller M. Catalytic oxidative dehydrogenation of N-heterocycles with nitrogen/phosphorus co-doped porous carbon materials. Chem Sci 2022; 13:6865-6872. [PMID: 35774164 PMCID: PMC9200114 DOI: 10.1039/d2sc01838a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
A metal-free oxidative dehydrogenation of N-heterocycles utilizing a nitrogen/phosphorus co-doped porous carbon (NPCH) catalyst is reported. The optimal material is robust against traditional poisoning agents and shows high antioxidant resistance. It exhibits good catalytic performance for the synthesis of various quinoline, indole, isoquinoline, and quinoxaline ‘on-water’ under air atmosphere. The active sites in the NPCH catalyst are proposed to be phosphorus and nitrogen centers within the porous carbon network. Green oxidations made easy. Metal-free dehydrogenation of N-heterocycles are possible in using N,P-co-doped porous carbon materials “on” water using air.![]()
Collapse
Affiliation(s)
- Kangkang Sun
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, P. R. China
- Leibniz-Institute for Catalysis, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Hongbin Shan
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, P. R. China
| | - Rui Ma
- Leibniz-Institute for Catalysis, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Peng Wang
- Leibniz-Institute for Catalysis, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Helfried Neumann
- Leibniz-Institute for Catalysis, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Guo-Ping Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, P. R. China
| | - Matthias Beller
- Leibniz-Institute for Catalysis, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
10
|
Bera A, Bera S, Banerjee D. Recent advances in the synthesis of N-heteroarenes via catalytic dehydrogenation of N-heterocycles. Chem Commun (Camb) 2021; 57:13042-13058. [PMID: 34781335 DOI: 10.1039/d1cc04919d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bio-active molecules having N-heteroarene core are widely used for numerous medicinal applications and as lifesaving drugs. In this direction, dehydrogenation of partially saturated aromatic N-heterocycles shows utmost importance for the synthesis of heterocycles. This feature article highlights the recent advances, from 2009 to April 2021, on the dehydrogenation of N-heteroaromatics. Notable features considering the development of newer catalysis for dehydrogenations are: (i) approaches based on precious metal catalysis, (ii) newer strategies and catalyst development technology using non-precious metal-catalysts for N-heterocycles having one or more heteroatoms, (iii) Synthesis of five or six-membered N-heterocycles using photocatalysis, electrocatalytic, and organo-catalytic approaches using different homogeneous and heterogeneous conditions' (iv) metal free (base and acid-promoted) dehydrogenation along with I2, N-hydroxyphthalimide (NHPI) and bio catalyzed miscellaneous examples have also been discussed, (v) mechanistic studies for various dehydrogenation reactions and (vi) synthetic applications of various bio-active molecules including post-drug derivatization are discussed.
Collapse
Affiliation(s)
- Atanu Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
11
|
Zhou X, Sterbinsky GE, Wasim E, Chen L, Tait SL. Tuning Ligand-Coordinated Single Metal Atoms on TiO 2 and their Dynamic Response during Hydrogenation Catalysis. CHEMSUSCHEM 2021; 14:3825-3837. [PMID: 33955201 DOI: 10.1002/cssc.202100208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Ligand-coordinated supported catalysts (LCSCs) are of growing interest for heterogeneous single-atom catalysis. Here, the effect of the choice of organic ligand on the activity and stability of TiO2 -supported single-atom Pt-ligand catalysts was investigated for ethylene hydrogenation. The activity of these catalysts showed a significant dependence on the choice of ligand and also correlated with coordination number for Pt-ligand and Pt-Cl- . Of the three ligands examined in this study, the one with the lowest Pt coordination number, 1,10-phenanthroline-5,6-dione (PDO), showed the lowest reaction temperature and highest reaction rate, likely due to those metal sites being more accessible to reactant adsorption. In-situ X-ray absorption spectroscopy (XAS) experiments showed that the activity also correlated with good heterolytic dissociation of hydrogen, which was supported by OH/OD exchange experiments and was the rate-determining step of the hydrogenation reaction. In these in-situ XAS experiments up to 190 °C, the supported Pt-ligand catalyst showed excellent stability against structural and chemical change. Instead of Pt, the PDO ligand could be coordinated with Ir on TiO2 to form Ir LCSCs that showed slow activation by loss of Ir-Cl bonds, then excellent stability in the hydrogenation of ethylene. These results provide the chance to engineer ligand-coordinated supported catalysts at the single-atom catalyst level by the choice of ligand and enable new applications at relatively high temperature.
Collapse
Affiliation(s)
- Xuemei Zhou
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana, 47405, USA
- School of Chemical Engineering, Sichuan University No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
| | - George E Sterbinsky
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois, 60439, USA
| | - Eman Wasim
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana, 47405, USA
| | - Linxiao Chen
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana, 47405, USA
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | - Steven L Tait
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana, 47405, USA
| |
Collapse
|
12
|
Wang H, Shi F. Towards Economic and Sustainable Amination with Green and Renewable Feedstocks. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou Gansu 730000 China
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou Gansu 730000 China
| |
Collapse
|
13
|
Enders L, Casadio DS, Aikonen S, Lenarda A, Wirtanen T, Hu T, Hietala S, Ribeiro LS, Pereira MFR, Helaja J. Air oxidized activated carbon catalyst for aerobic oxidative aromatizations of N-heterocycles. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00878a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Air oxidized activated carbon offers a robust, efficient, metal-free and recyclable catalyst for aromatizations of N-heterocycles, O2 being the terminal oxidant.
Collapse
Affiliation(s)
- Lukas Enders
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, 00014 Finland
| | - David S. Casadio
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, 00014 Finland
| | - Santeri Aikonen
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, 00014 Finland
| | - Anna Lenarda
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, 00014 Finland
| | - Tom Wirtanen
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, 00014 Finland
| | - Tao Hu
- Research Unit of Sustainable Chemistry, Faculty of Technology, University of Oulu, 90014 Oulu, Finland
| | - Sami Hietala
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, 00014 Finland
| | - Lucília S. Ribeiro
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Manuel Fernando R. Pereira
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Juho Helaja
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, 00014 Finland
| |
Collapse
|
14
|
Abstract
Quinoxalines are observed in several bioactive molecules and have been widely employed in designing molecules for DSSC's, optoelectronics, and sensing applications. Therefore, developing newer synthetic routes as well as novel ways for their functionalization is apparent.
Collapse
Affiliation(s)
- Gauravi Yashwantrao
- Department of Speciality Chemicals Technology
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Satyajit Saha
- Department of Speciality Chemicals Technology
- Institute of Chemical Technology
- Mumbai-400019
- India
| |
Collapse
|
15
|
Fang Z, Li P, Yu G. Gel Electrocatalysts: An Emerging Material Platform for Electrochemical Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003191. [PMID: 32830391 DOI: 10.1002/adma.202003191] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Seeking sustainable and cost-effective energy sources is one of the significant challenges for the sustainable development of modern society. To date, considerable expectations have been held for technologies, such as fuel cells and electrolyzers, where the performance strongly depends on electrochemical conversion processes that can generate and store chemical energy through the breaking or formation of chemical bonds. However, those advanced technologies are severely limited by the efficiency, selectivity, and durability of electrocatalysis. Thanks to their hierarchically porous architecture, compositional and structural tunability, and ease of functionalization, the family of gel materials opens exciting opportunities for advanced energy technologies. Unique advances in gel materials based on controllable compositions and functions enable gel electrocatalysts to potentially break the limitations of current materials, enhancing the device performance of electrochemical energy. Here, recent developments and challenges for nanostructured gel-based materials for electrocatalysis applications are summarized. Future possibilities and challenges for gel electrocatalysts in terms of synthesis and applications are also discussed.
Collapse
Affiliation(s)
- Zhiwei Fang
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Panpan Li
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Guihua Yu
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
16
|
Bera S, Bera A, Banerjee D. Nickel-Catalyzed Dehydrogenation of N-Heterocycles Using Molecular Oxygen. Org Lett 2020; 22:6458-6463. [DOI: 10.1021/acs.orglett.0c02271] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sourajit Bera
- Laboratory of Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Atanu Bera
- Laboratory of Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Debasis Banerjee
- Laboratory of Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
17
|
Zhao F, Masci D, Ferla S, Varricchio C, Brancale A, Colonna S, Black GW, Turner NJ, Castagnolo D. Monoamine Oxidase (MAO-N) Biocatalyzed Synthesis of Indoles from Indolines Prepared via Photocatalytic Cyclization/Arylative Dearomatization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01351] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fei Zhao
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, United Kingdom
| | - Domiziana Masci
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, United Kingdom
| | - Salvatore Ferla
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| | - Carmine Varricchio
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| | - Serena Colonna
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, United Kingdom
| | - Gary W. Black
- Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Nicholas J. Turner
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Daniele Castagnolo
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, United Kingdom
| |
Collapse
|
18
|
Kim JH, Shin D, Lee J, Baek DS, Shin TJ, Kim YT, Jeong HY, Kwak JH, Kim H, Joo SH. A General Strategy to Atomically Dispersed Precious Metal Catalysts for Unravelling Their Catalytic Trends for Oxygen Reduction Reaction. ACS NANO 2020; 14:1990-2001. [PMID: 31999424 DOI: 10.1021/acsnano.9b08494] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Atomically dispersed precious metal catalysts have emerged as a frontier in catalysis. However, a robust, generic synthetic strategy toward atomically dispersed catalysts is still lacking, which has limited systematic studies revealing their general catalytic trends distinct from those of conventional nanoparticle (NP)-based catalysts. Herein, we report a general synthetic strategy toward atomically dispersed precious metal catalysts, which consists of "trapping" precious metal precursors on a heteroatom-doped carbonaceous layer coated on a carbon support and "immobilizing" them with a SiO2 layer during thermal activation. Through the "trapping-and-immobilizing" method, five atomically dispersed precious metal catalysts (Os, Ru, Rh, Ir, and Pt) could be obtained and served as model catalysts for unravelling catalytic trends for the oxygen reduction reaction (ORR). Owing to their isolated geometry, the atomically dispersed precious metal catalysts generally showed higher selectivity for H2O2 production than their NP counterparts for the ORR. Among the atomically dispersed catalysts, the H2O2 selectivity was changed by the types of metals, with atomically dispersed Pt catalyst showing the highest selectivity. A combination of experimental results and density functional theory calculations revealed that the selectivity trend of atomically dispersed catalysts could be correlated to the binding energy difference between *OOH and *O species. In terms of 2 e- ORR activity, the atomically dispersed Rh catalyst showed the best activity. Our general approach to atomically dispersed precious metal catalysts may help in understanding their unique catalytic behaviors for the ORR.
Collapse
Affiliation(s)
| | - Dongyup Shin
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-Ro , Daejeon 34141 , Republic of Korea
| | | | | | | | - Yong-Tae Kim
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro , Pohang , Gyeongbuk 37673 , Republic of Korea
| | | | | | - Hyungjun Kim
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-Ro , Daejeon 34141 , Republic of Korea
| | | |
Collapse
|
19
|
He F, Zheng Y, Fan H, Ma D, Chen Q, Wei T, Wu W, Wu D, Hu X. Oxidase-Inspired Selective 2e/4e Reduction of Oxygen on Electron-Deficient Cu. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4833-4842. [PMID: 31914316 DOI: 10.1021/acsami.9b20920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Development of low-cost and efficient (electro)catalysts with tunable 2e/4e oxygen reduction reaction (ORR) selectivity toward energy conversion, biomimetic catalysis, and biosensing has attracted growing interest. Herein, we reported that carbon nanohybrids with O- or N-coordinated Cu (Cu-OC or Cu-NC) showed superior activity for 2e and 4e electrocatalytic ORR with selectivities of 84.0% and 97.2%, respectively. Experimental evidence demonstrated that the strong electron-rich O-doped carbon in Cu-OC donated electrons to Cu2+, weakening the binding strength of H2O2 at Cu-O centers and facilitating the 2e ORR pathway for selective production of H2O2. However, the poor electron-donor ability of the N-doped carbon in Cu-NC made Cu-N sites more electron deficient due to the reduced electron transfer from N-doped carbon to Cu2+, promoting 4e ORR by enhancing adsorption of O2 and the ORR intermediates. The high 4e ORR activity of Cu-NC rendered its potential for application in a Zn-air battery and oxidase-mimicking activity for 3,3',5,5'-tetramethylbenzidine (TMB) and ascorbic acid (AA) oxidation. The maximal velocity (Vmax) of TMB and AA oxidation over Cu-NC was higher than some natural oxidases and noble-metal-based artificial enzymes. The lower activation energy for AA oxidation over Cu-NC resulted in a 263-fold higher oxidative rate than TMB, further prompting nonenzymatic sensing of AA by the competitive oxidation strategy.
Collapse
Affiliation(s)
- Fei He
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Yan Zheng
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Huailin Fan
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Delong Ma
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Qifeng Chen
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Tao Wei
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Weibing Wu
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Xun Hu
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| |
Collapse
|
20
|
Shee S, Panja D, Kundu S. Nickel-Catalyzed Direct Synthesis of Quinoxalines from 2-Nitroanilines and Vicinal Diols: Identifying Nature of the Active Catalyst. J Org Chem 2020; 85:2775-2784. [DOI: 10.1021/acs.joc.9b03104] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sujan Shee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Dibyajyoti Panja
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
21
|
Tang T, Bi X, Meng X, Chen G, Gou M, Liu X, Zhao P. MnOx/catechol/H2O: A cooperative catalytic system for aerobic oxidative dehydrogenation of N-heterocycles at room temperature. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Liu T, Wu K, Wang L, Yu Z. Potassium
tert
‐Butoxide‐Promoted Acceptorless Dehydrogenation of N‐Heterocycles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900499] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Tingting Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian, Liaoning 116023 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- Institute of Chemistry Henan Academy of Sciences Zhengzhou 450002 People's Republic of China
| | - Kaikai Wu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian, Liaoning 116023 People's Republic of China
| | - Liandi Wang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian, Liaoning 116023 People's Republic of China
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian, Liaoning 116023 People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 354 Fenglin Road Shanghai 200032 People's Republic of China
| |
Collapse
|
23
|
Recent advances in heterogeneous catalytic hydrogenation and dehydrogenation of N-heterocycles. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63336-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Babucci M, Fang CY, Perez-Aguilar JE, Hoffman AS, Boubnov A, Guan E, Bare SR, Gates BC, Uzun A. Controlling catalytic activity and selectivity for partial hydrogenation by tuning the environment around active sites in iridium complexes bonded to supports. Chem Sci 2019; 10:2623-2632. [PMID: 30996978 PMCID: PMC6419936 DOI: 10.1039/c8sc05287e] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/08/2019] [Indexed: 01/31/2023] Open
Abstract
Single-site Ir(CO)2 complexes bonded to high-surface-area metal oxide supports, SiO2, TiO2, Fe2O3, CeO2, MgO, and La2O3, were synthesized by chemisorption of Ir(CO)2(acac) (acac = acetylacetonate) followed by coating with each of the following ionic liquids (ILs): 1-n-butyl-3-methylimidazolium tetrafluoroborate, [BMIM][BF4], 1-n-butyl-3-methylimidazolium acetate, [BMIM][Ac], and 1-(3-cyanopropyl)-3-methylimidazolium dicyanamide, [CPMIM][DCA]. Extended X-ray absorption fine structure spectroscopy showed that site-isolated iridium was bonded to oxygen atoms of the support. Electron densities on the iridium enveloped by each IL sheath/support combination were characterized by carbonyl infrared spectroscopy of the iridium gem-dicarbonyls and by X-ray absorption near-edge structure data. The electron-donor/acceptor tendencies of both the support and IL determine the activity and selectivity of the catalysts for the hydrogenation of 1,3-butadiene, with electron-rich iridium being selective for partial hydrogenation. The results resolve the effects of the IL and support as ligands; for example, the effect of the IL becomes dominant when the support has a weak electron-donor character. The combined effects of supports and ILs as ligands offer broad opportunities for tuning catalytic properties of supported metal catalysts.
Collapse
Affiliation(s)
- Melike Babucci
- Department of Chemical and Biological Engineering , Koç University , Rumelifeneri Yolu , Sariyer 34450, Istanbul , Turkey .
- Koç University TÜPRAŞ Energy Center (KUTEM) , Koç University , Rumelifeneri Yolu , Sariyer 34450, Istanbul , Turkey
| | - Chia-Yu Fang
- Department of Materials Science and Engineering , University of California , Davis , California 95616 , USA
| | - Jorge E Perez-Aguilar
- Department of Chemical Engineering , University of California , Davis , California 95616 , USA .
| | - Adam S Hoffman
- SSRL , SLAC National Accelerator Laboratory , Menlo Park , CA 94025 , USA
| | - Alexey Boubnov
- SSRL , SLAC National Accelerator Laboratory , Menlo Park , CA 94025 , USA
| | - Erjia Guan
- Department of Materials Science and Engineering , University of California , Davis , California 95616 , USA
| | - Simon R Bare
- SSRL , SLAC National Accelerator Laboratory , Menlo Park , CA 94025 , USA
| | - Bruce C Gates
- Department of Chemical Engineering , University of California , Davis , California 95616 , USA .
| | - Alper Uzun
- Department of Chemical and Biological Engineering , Koç University , Rumelifeneri Yolu , Sariyer 34450, Istanbul , Turkey .
- Koç University TÜPRAŞ Energy Center (KUTEM) , Koç University , Rumelifeneri Yolu , Sariyer 34450, Istanbul , Turkey
- Koç University Surface Science and Technology Center (KUYTAM) , Koç University , Rumelifeneri Yolu , Sariyer, 34450 Istanbul , Turkey
| |
Collapse
|
25
|
Ding J, Li L, Zheng H, Zuo Y, Wang X, Li H, Chen S, Zhang D, Xu X, Li G. Co 3O 4-CuCoO 2 Nanomesh: An Interface-Enhanced Substrate that Simultaneously Promotes CO Adsorption and O 2 Activation in H 2 Purification. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6042-6053. [PMID: 30638361 DOI: 10.1021/acsami.8b19478] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanomaterials are widely used as redox-type reaction catalysts, while reactant adsorption and O2 activation are hardly to be promoted simultaneously, restricting their applications in many important catalytic fields such as preferential CO oxidation (CO-PROX) in H2-rich stream. In this work, an interface-enhanced Co3O4-CuCoO2 nanomesh was initially synthesized by a hydrothermal process using aluminum powder as a sacrificial agent. This nanomesh is systematically characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption, X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy, Raman spectroscopy, X-ray absorption near-edge spectroscopy, hydrogen temperature-programmed reduction, and oxygen temperature-programmed desorption. It is demonstrated that the nanomesh possesses high-density nanopores, enabling a large number of CO adsorption sites exposed to the surface. Meanwhile, electron transfer from O2- to Co3+/Co2+ and the weakened bonding strength of Co-O bond at surfaces promoted the oxygen activation and redox ability of Co3O4. When tested as a catalyst for CO-PROX, this nanomesh with an optimized pore structure and a surface electronic structure, exhibits a strikingly high catalytic oxidation activity at low temperatures as well as a broader operation temperature window (i.e., CO conversion >99.0%, 100-200 °C) in the CO selective oxidation reaction. The present finding should be highly useful in promoting the quest for better CO-PROX catalysts, a hot topic for proton exchange membrane fuel cells and automotive vehicles.
Collapse
Affiliation(s)
- Junfang Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , P.R. China
| | - Liping Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , P.R. China
| | - Haorui Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , P.R. China
| | - Ying Zuo
- Scientific Instrument Center , Shanxi University , Taiyuan 030006 ,, P.R.China
| | - Xiyang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , P.R. China
| | - Huixia Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , P.R. China
| | - Shaoqing Chen
- Department of Materials Science and Engineering , Southern University of Science and Technology , Shenzhen 518055 , P.R.China
| | - Dan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , P.R. China
| | - Xingliang Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , P.R. China
| | - Guangshe Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , P.R. China
| |
Collapse
|
26
|
Zhang Y, Sun S, Su Y, Zhao J, Li YH, Han B, Shi F. Deconstructive di-functionalization of unstrained, benzo cyclic amines by C–N bond cleavage using a recyclable tungsten catalyst. Org Biomol Chem 2019; 17:4970-4974. [DOI: 10.1039/c9ob00693a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With H2WO4 as the catalyst and H2O2 as the oxidant, we herein report a deconstructive difunctionalization of the C–N bond in unstrained, benzo cyclic amines to generate an ester group and nitro group simultaneously.
Collapse
Affiliation(s)
- Yujing Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou
- P. R. China
| | - Shuai Sun
- University of Chinese Academy of Sciences
- Beijing
- China
| | - Yijin Su
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou
- P. R. China
| | - Jian Zhao
- University of Chinese Academy of Sciences
- Beijing
- China
| | - Yong-Hong Li
- University of Chinese Academy of Sciences
- Beijing
- China
| | - Bo Han
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou
- P. R. China
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou
- P. R. China
| |
Collapse
|