1
|
Caraglio M, Micheletti C, Orlandini E. Unraveling the Influence of Topology and Spatial Confinement on Equilibrium and Relaxation Properties of Interlocked Ring Polymers. Macromolecules 2024; 57:3223-3233. [PMID: 38616813 PMCID: PMC11008367 DOI: 10.1021/acs.macromol.3c02203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 04/16/2024]
Abstract
We use Langevin dynamics simulations to study linked ring polymers in channel confinement. We address the in- and out-of-equilibrium behavior of the systems for varying degrees of confinement and increasing topological and geometrical complexity of the interlocking. The main findings are three. First, metric observables of different link topologies collapse onto the same master curve when plotted against the crossing number, revealing a universal response to confinement. Second, the relaxation process from initially stretched states is faster for more complex links. We ascribe these properties to the interplay of several effects, including the dependence of topological friction on the link complexity. Finally, we show that transient forms of geometrical entanglement purposely added to the initial stressed state can leave distinctive signatures in force-spectroscopy curves. The insight provided by the findings could be leveraged in single-molecule nanochannel experiments to identify geometric entanglement within topologically linked rings.
Collapse
Affiliation(s)
- Michele Caraglio
- Institut
für Theoretische Physik, Universität
Innsbruck, Technikerstraße 21A, Innsbruck A-6020, Austria
| | - Cristian Micheletti
- Scuola
Internazionale Superiore di Studi Avanzati—SISSA, Via Bonomea 265, Trieste 34136, Italy
| | - Enzo Orlandini
- Department
of Physics and Astronomy, University of
Padova, Via Marzolo 8, Padova I-35100, Italy
| |
Collapse
|
2
|
Slongo F, Hauke P, Faccioli P, Micheletti C. Quantum-inspired encoding enhances stochastic sampling of soft matter systems. SCIENCE ADVANCES 2023; 9:eadi0204. [PMID: 37878707 PMCID: PMC10599611 DOI: 10.1126/sciadv.adi0204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/21/2023] [Indexed: 10/27/2023]
Abstract
Quantum advantage in solving physical problems is still hard to assess due to hardware limitations. However, algorithms designed for quantum computers may engender transformative frameworks for modeling and simulating paradigmatically hard systems. Here, we show that the quadratic unconstrained binary optimization encoding enables tackling classical many-body systems that are challenging for conventional Monte Carlo. Specifically, in self-assembled melts of rigid lattice ring polymers, the combination of high density, chain stiffness, and topological constraints results in divergent autocorrelation times for real-space Monte Carlo. Our quantum-inspired encoding overcomes this problem and enables sampling melts of lattice rings with fixed curvature and compactness, unveiling counterintuitive topological effects. Tackling the same problems with the D-Wave quantum annealer leads to substantial performance improvements and advantageous scaling of sampling computational cost with the size of the self-assembled ring melts.
Collapse
Affiliation(s)
- Francesco Slongo
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
| | - Philipp Hauke
- Pitaevskii BEC Center, Department of Physics, University of Trento, Via Sommarive 14, I-38123 Povo, Trento, Italy
- INFN-TIFPA, Via Sommarive 14, I-38123 Povo, Trento, Italy
| | - Pietro Faccioli
- Department of Physics and BiQuTe Center, University of Milano-Bicocca, Piazza della Scienza 3, I-20126 Milan, Italy
- Department of Physics, University of Trento, Via Sommarive 14, I-38123 Povo, Trento, Italy
| | - Cristian Micheletti
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
| |
Collapse
|
3
|
Zhao Y, Rothörl J, Besenius P, Virnau P, Daoulas KC. Can Polymer Helicity Affect Topological Chirality of Polymer Knots? ACS Macro Lett 2023; 12:234-240. [PMID: 36706453 PMCID: PMC9948535 DOI: 10.1021/acsmacrolett.2c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We investigate the effect of helicity in isolated polymers on the topological chirality of their knots with computer simulations. Polymers are described by generic worm-like chains (WLC), where helical conformations are promoted by chiral coupling between segments that are neighbors along the chain contour. The sign and magnitude of the coupling coefficient u determine the sense and strength of helicity. The corrugation of the helix is adjusted via the radius R of a spherical, hard excluded volume around each WLC segment. Open and compact helices are, respectively, obtained for R that is either zero or smaller than the length of the WLC bond, and R that is a few times larger than the bond length. We use a Monte Carlo algorithm to sample polymer conformations for different values of u, spanning the range from achiral polymers to chains with well-developed helices. Monitoring the average helix torsion and fluctuations of chiral order as a function of u, for two very different chain lengths, demonstrates that the coil-helix transition in this model is not a phase transition but a crossover. Statistical analysis of conformations forming the simplest chiral knots, 31, 51, and 52, demonstrates that topological mirror symmetry is broken─knots formed by helices with a given sense prefer one handedness over the other. For the 31 and 51 knots, positive helical sense favors positive handedness. Intriguingly, an opposite trend is observed for 52 knots, where positive helical sense promotes negative handedness. We argue that this special coupling between helicity and topological chirality stems from a generic mechanism: conformations where some of the knot crossings are found in "braids" formed by two tightly interwoven sections of the polymer.
Collapse
Affiliation(s)
- Yani Zhao
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jan Rothörl
- Department
of Physics, Johannes Gutenberg University
Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Pol Besenius
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Peter Virnau
- Department
of Physics, Johannes Gutenberg University
Mainz, Staudingerweg 9, 55128 Mainz, Germany,E-mail:
| | - Kostas Ch. Daoulas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany,E-mail: . Phone: +49
(0)6131 379218
| |
Collapse
|
4
|
Tagliabue A, Micheletti C, Mella M. Tuning Knotted Copolyelectrolyte Conformations via Solution Properties. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Andrea Tagliabue
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100Como, Italy
- SISSA (Scuola Internazionale Superiore di Studi Avanzati), via Bonomea 265, 34136Trieste, Italy
| | - Cristian Micheletti
- SISSA (Scuola Internazionale Superiore di Studi Avanzati), via Bonomea 265, 34136Trieste, Italy
| | - Massimo Mella
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100Como, Italy
| |
Collapse
|
5
|
Tubiana L, Ferrari F, Orlandini E. Circular Polycatenanes: Supramolecular Structures with Topologically Tunable Properties. PHYSICAL REVIEW LETTERS 2022; 129:227801. [PMID: 36493458 DOI: 10.1103/physrevlett.129.227801] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 06/17/2023]
Abstract
Polycatenanes, macrochains of topologically interlocked rings with unique physical properties have recently gained considerable interest in supramolecular chemistry, biology, and soft matter. Most of the work has been, so far, focused on linear chains and on their variety of conformational properties compared to standard polymers. Here we go beyond the linear case and show that, by circularizing such macrochains, one can exploit the topology of the local interlockings to store twist in the system, significantly altering its metric and local properties. Moreover, by properly defining the twist (Tw) and writhe (Wr) of these macrorings we show the validity of a relation equivalent to the Călugăreanu-White-Fuller theorem Tw+Wr=const, originally proved for ribbonlike structures such as double stranded DNA. Our results suggest that circular polycatenanes with storable and tunable twist can form a new category of highly designable multiscale structures with potential applications in supramolecular chemistry and material science.
Collapse
Affiliation(s)
- L Tubiana
- Physics Department, University of Trento, via Sommarive, 14 I-38123 Trento, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, I-38123 Trento, Italy and Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - F Ferrari
- CASA* and Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland
| | - E Orlandini
- Department of Physics and Astronomy, University of Padova, Via Marzolo 8, I-35131 Padova, Italy and INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy
| |
Collapse
|
6
|
Becchi M, Capelli R, Perego C, Pavan GM, Micheletti C. Density-tunable pathway complexity in a minimalistic self-assembly model. SOFT MATTER 2022; 18:8106-8116. [PMID: 36239129 DOI: 10.1039/d2sm00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An open challenge in self-assembly is learning how to design systems that can be conditionally guided towards different target structures depending on externally-controlled conditions. Using a theoretical and numerical approach, here we discuss a minimalistic self-assembly model that can be steered towards different types of ordered constructs at the equilibrium by solely tuning a facile selection parameter, namely the density of building blocks. Metadynamics and Langevin dynamics simulations allow us to explore the behavior of the system in and out of equilibrium conditions. We show that the density-driven tunability is encoded in the pathway complexity of the system, and specifically in the competition between two different main self-assembly routes. A comprehensive set of simulations provides insight into key factors allowing to make one self-assembling pathway prevailing on the other (or vice versa), determining the selection of the final self-assembled products. We formulate and validate a practical criterion for checking whether a specific molecular design is predisposed for such density-driven tunability of the products, thus offering a new, broader perspective to realize and harness this facile extrinsic control of conditional self-assembly.
Collapse
Affiliation(s)
- Matteo Becchi
- Scuola Internazionale Superiore di Studi Avanzati - SISSA, via Bonomea 265, 34136 Trieste, Italy.
| | - Riccardo Capelli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
- Department of Biosciences, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milano, Italy
| | - Claudio Perego
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus Est, Via la Santa 1, 6962 Lugano-Viganello, Switzerland
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus Est, Via la Santa 1, 6962 Lugano-Viganello, Switzerland
| | - Cristian Micheletti
- Scuola Internazionale Superiore di Studi Avanzati - SISSA, via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|
7
|
Walker CC, Fobe TL, Shirts MR. How Cooperatively Folding Are Homopolymer Molecular Knots? Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher C. Walker
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303 United States
| | - Theodore L. Fobe
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303 United States
| | - Michael R. Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303 United States
| |
Collapse
|
8
|
Ashbridge Z, Fielden SDP, Leigh DA, Pirvu L, Schaufelberger F, Zhang L. Knotting matters: orderly molecular entanglements. Chem Soc Rev 2022; 51:7779-7809. [PMID: 35979715 PMCID: PMC9486172 DOI: 10.1039/d2cs00323f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/29/2022]
Abstract
Entangling strands in a well-ordered manner can produce useful effects, from shoelaces and fishing nets to brown paper packages tied up with strings. At the nanoscale, non-crystalline polymer chains of sufficient length and flexibility randomly form tangled mixtures containing open knots of different sizes, shapes and complexity. However, discrete molecular knots of precise topology can also be obtained by controlling the number, sequence and stereochemistry of strand crossings: orderly molecular entanglements. During the last decade, substantial progress in the nascent field of molecular nanotopology has been made, with general synthetic strategies and new knotting motifs introduced, along with insights into the properties and functions of ordered tangle sequences. Conformational restrictions imparted by knotting can induce allostery, strong and selective anion binding, catalytic activity, lead to effective chiral expression across length scales, binding modes in conformations efficacious for drug delivery, and facilitate mechanical function at the molecular level. As complex molecular topologies become increasingly synthetically accessible they have the potential to play a significant role in molecular and materials design strategies. We highlight particular examples of molecular knots to illustrate why these are a few of our favourite things.
Collapse
Affiliation(s)
- Zoe Ashbridge
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - David A Leigh
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| | - Lucian Pirvu
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - Liang Zhang
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| |
Collapse
|
9
|
Molecular communications in complex systems of dynamic supramolecular polymers. Nat Commun 2022; 13:2162. [PMID: 35443756 PMCID: PMC9021206 DOI: 10.1038/s41467-022-29804-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Supramolecular polymers are composed of monomers that self-assemble non-covalently, generating distributions of monodimensional fibres in continuous communication with each other and with the surrounding solution. Fibres, exchanging molecular species, and external environment constitute a sole complex system, which intrinsic dynamics is hard to elucidate. Here we report coarse-grained molecular simulations that allow studying supramolecular polymers at the thermodynamic equilibrium, explicitly showing the complex nature of these systems, which are composed of exquisitely dynamic molecular entities. Detailed studies of molecular exchange provide insights into key factors controlling how assemblies communicate with each other, defining the equilibrium dynamics of the system. Using minimalistic and finer chemically relevant molecular models, we observe that a rich concerted complexity is intrinsic in such self-assembling systems. This offers a new dynamic and probabilistic (rather than structural) picture of supramolecular polymer systems, where the travelling molecular species continuously shape the assemblies that statistically emerge at the equilibrium. The dynamic structure of supramolecular polymers is challenging to determine both in experiments and in simulations. Here the authors use coarse-grained molecular models to provide a comprehensive analysis of the molecular communication in these complex molecular systems.
Collapse
|
10
|
Amici G, Caraglio M, Orlandini E, Micheletti C. Topological Friction and Relaxation Dynamics of Spatially Confined Catenated Polymers. ACS Macro Lett 2022; 11:1-6. [PMID: 35574798 PMCID: PMC8772382 DOI: 10.1021/acsmacrolett.1c00594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022]
Abstract
We study catenated ring polymers confined inside channels and slits with Langevin dynamics simulations and address how the contour position and size of the interlocked or physically linked region evolve with time. We show that the catenation constraints generate a drag, or topological friction, that couples the contour motion of the interlocked regions. Notably, the coupling strength decreases as the interlocking is made tighter, but also shorter, by confinement. Though the coupling strength differs for channel and slit confinement, the data outline a single universal curve when plotted against the size of the linked region. Finally, we study how the relaxation kinetics changes after one of the rings is cut open and conclude that considering interlocked circular polymers is key for isolating the manifestations of topological friction. The results ought to be relevant for linked biomolecules in experimental or biological confining conditions.
Collapse
Affiliation(s)
- Giulia Amici
- Scuola
Internazionale Superiore di Studi Avanzati - SISSA, via Bonomea 265, 34136 Trieste, Italy
| | - Michele Caraglio
- Institut
für Theoretische Physik, Universität
Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Enzo Orlandini
- Department
of Physics and Astronomy, University of
Padova, Via Marzolo 8, I-35100 Padova, Italy
| | - Cristian Micheletti
- Scuola
Internazionale Superiore di Studi Avanzati - SISSA, via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
11
|
Orlandini E, Micheletti C. Topological and physical links in soft matter systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:013002. [PMID: 34547745 DOI: 10.1088/1361-648x/ac28bf] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Linking, or multicomponent topological entanglement, is ubiquitous in soft matter systems, from mixtures of polymers and DNA filaments packedin vivoto interlocked line defects in liquid crystals and intertwined synthetic molecules. Yet, it is only relatively recently that theoretical and experimental advancements have made it possible to probe such entanglements and elucidate their impact on the physical properties of the systems. Here, we review the state-of-the-art of this rapidly expanding subject and organize it as follows. First, we present the main concepts and notions, from topological linking to physical linking and then consider the salient manifestations of molecular linking, from synthetic to biological ones. We next cover the main physical models addressing mutual entanglements in mixtures of polymers, both linear and circular. Finally, we consider liquid crystals, fluids and other non-filamentous systems where topological or physical entanglements are observed in defect or flux lines. We conclude with a perspective on open challenges.
Collapse
Affiliation(s)
- Enzo Orlandini
- Department of Physics and Astronomy, University of Padova and Sezione INFN, Via Marzolo 8, Padova, Italy
| | - Cristian Micheletti
- SISSA, International School for Advanced Studies, via Bonomea 265, Trieste, Italy
| |
Collapse
|
12
|
Sawada T, Fujita M. Orderly Entangled Nanostructures of Metal–Peptide Strands. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210218] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tomohisa Sawada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Division of Advanced Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
13
|
O'Keeffe M, Treacy MMJ. Piecewise-linear embeddings of knots and links with rotoinversion symmetry. Acta Crystallogr A Found Adv 2021; 77:392-398. [PMID: 34473094 DOI: 10.1107/s2053273321006136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
This article describes the simplest members of an infinite family of knots and links that have achiral piecewise-linear embeddings in which linear segments (sticks) meet at corners. The structures described are all corner- and stick-2-transitive - the smallest possible for achiral knots.
Collapse
Affiliation(s)
- Michael O'Keeffe
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Michael M J Treacy
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
14
|
Herschberg T, Carrillo JMY, Sumpter BG, Panagiotou E, Kumar R. Topological Effects Near Order–Disorder Transitions in Symmetric Diblock Copolymer Melts. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tom Herschberg
- Department of Computer Science and Engineering, University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403, United States
| | - Jan-Michael Y. Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Eleni Panagiotou
- Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403, United States
| | - Rajeev Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
15
|
Leigh DA, Danon JJ, Fielden SDP, Lemonnier JF, Whitehead GFS, Woltering SL. A molecular endless (7 4) knot. Nat Chem 2021; 13:117-122. [PMID: 33318672 DOI: 10.1038/s41557-020-00594-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023]
Abstract
Current strategies for the synthesis of molecular knots focus on twisting, folding and/or threading molecular building blocks. Here we report that Zn(II) or Fe(II) ions can be used to weave ligand strands to form a woven 3 × 3 molecular grid. We found that the process requires tetrafluoroborate anions to template the assembly of the interwoven grid by binding within the square cavities formed between the metal-coordinated criss-crossed ligands. The strand ends of the grid can subsequently be joined through within-grid alkene metathesis reactions to form a topologically trivial macrocycle (unknot), a doubly interlocked [2]catenane (Solomon link) and a knot with seven crossings in a 258-atom-long closed loop. This 74 knot topology corresponds to that of an endless knot, which is a basic motif of Celtic interlace, the smallest Chinese knot and one of the eight auspicious symbols of Buddhism and Hinduism. The weaving of molecular strands within a discrete layer by anion-template metal-ion coordination opens the way for the synthesis of other molecular knot topologies and to woven polymer materials.
Collapse
Affiliation(s)
- David A Leigh
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China. .,Department of Chemistry, University of Manchester, Manchester, UK.
| | - Jonathan J Danon
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | | | | | | |
Collapse
|
16
|
Song Y, Schaufelberger F, Ashbridge Z, Pirvu L, Vitorica-Yrezabal IJ, Leigh DA. Effects of turn-structure on folding and entanglement in artificial molecular overhand knots. Chem Sci 2020; 12:1826-1833. [PMID: 34163946 PMCID: PMC8179330 DOI: 10.1039/d0sc05897a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The length and constitution of spacers linking three 2,6-pyridinedicarboxamide units in a molecular strand influence the tightness of the resulting overhand (open-trefoil) knot that the strand folds into in the presence of lanthanide(iii) ions. The use of β-hairpin forming motifs as linkers enables a metal-coordinated pseudopeptide with a knotted tertiary structure to be generated. The resulting pseudopeptide knot has one of the highest backbone-to-crossing ratios (BCR)—a measure of knot tightness (a high value corresponding to looseness)—for a synthetic molecular knot to date. Preorganization in the crossing-free turn section of the knot affects aromatic stacking interactions close to the crossing region. The metal-coordinated pseudopeptide knot is compared to overhand knots with other linkers of varying tightness and turn preorganization, and the entangled architectures characterized by NMR spectroscopy, ESI-MS, CD spectroscopy and, in one case, X-ray crystallography. The results show how it is possible to program specific conformational properties into different key regions of synthetic molecular knots, opening the way to systems where knotting can be systematically incorporated into peptide-like chains through design. Spacers linking 2,6-pyridinedicarboxamide units influence the tightness of the corresponding lanthanide-coordinated overhand knot. β-Hairpin forming motifs generate a metal-coordinated pseudopeptide with a knotted tertiary structure.![]()
Collapse
Affiliation(s)
- Yiwei Song
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 PR China
| | | | - Zoe Ashbridge
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Lucian Pirvu
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | | | - David A Leigh
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 PR China .,Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
17
|
Lu L, Zhu H, Yuyuan Lu, An L, Dai L. Application of the Tube Model to Explain the Unexpected Decrease in Polymer Bending Energy Induced by Knot Formation. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luwei Lu
- Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong, P.R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
| | - Haoqi Zhu
- Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong, P.R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Lijia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong, P.R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
18
|
O'Keeffe M, Treacy MMJ. Isogonal weavings on the sphere: knots, links, polycatenanes. Acta Crystallogr A Found Adv 2020; 76:611-621. [PMID: 32869759 DOI: 10.1107/s2053273320010669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
Mathematical knots and links are described as piecewise linear - straight, non-intersecting sticks meeting at corners. Isogonal structures have all corners related by symmetry (`vertex'-transitive). Corner- and stick-transitive structures are termed regular. No regular knots are found. Regular links are cubic or icosahedral and a complete account of these (36 in number) is given, including optimal (thickest-stick) embeddings. Stick 2-transitive isogonal structures are again cubic and icosahedral and also encompass the infinite family of torus knots and links. The major types of these structures are identified and reported with optimal embeddings. The relevance of this work to materials chemistry and biochemistry is noted.
Collapse
Affiliation(s)
- Michael O'Keeffe
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Michael M J Treacy
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
19
|
Abstract
The properties of knots are exploited in a range of applications, from shoelaces to the knots used for climbing, fishing and sailing1. Although knots are found in DNA and proteins2, and form randomly in other long polymer chains3,4, methods for tying5 different sorts of knots in a synthetic nanoscale strand are lacking. Molecular knots of high symmetry have previously been synthesized by using non-covalent interactions to assemble and entangle molecular chains6-15, but in such instances the template and/or strand structure intrinsically determines topology, which means that only one type of knot is usually possible. Here we show that interspersing coordination sites for different metal ions within an artificial molecular strand enables it to be tied into multiple knots. Three topoisomers-an unknot (01) macrocycle, a trefoil (31) knot6-15, and a three-twist (52) knot-were each selectively prepared from the same molecular strand by using transition-metal and lanthanide ions to guide chain folding in a manner reminiscent of the action of protein chaperones16. We find that the metal-ion-induced folding can proceed with stereoinduction: in the case of one knot, a lanthanide(III)-coordinated crossing pattern formed only with a copper(I)-coordinated crossing of particular handedness. In an unanticipated finding, metal-ion coordination was also found to translocate an entanglement from one region of a knotted molecular structure to another, resulting in an increase in writhe (topological strain) in the new knotted conformation. The knot topology affects the chemical properties of the strand: whereas the tighter 52 knot can bind two different metal ions simultaneously, the looser 31 isomer can bind only either one copper(I) ion or one lutetium(III) ion. The ability to tie nanoscale chains into different knots offers opportunities to explore the modification of the structure and properties of synthetic oligomers, polymers and supramolecules.
Collapse
|
20
|
Piejko M, Niewieczerzal S, Sulkowska JI. The Folding of Knotted Proteins: Distinguishing the Distinct Behavior of Shallow and Deep Knots. Isr J Chem 2020. [DOI: 10.1002/ijch.202000036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maciej Piejko
- Faculty of ChemistryUniversity of Warsaw Pasteura 1 Warsaw 02-093 Poland
- Centre of New TechnologiesUniversity of Warsaw Banacha 2c Warsaw 02-097 Poland
| | | | - Joanna I. Sulkowska
- Faculty of ChemistryUniversity of Warsaw Pasteura 1 Warsaw 02-093 Poland
- Centre of New TechnologiesUniversity of Warsaw Banacha 2c Warsaw 02-097 Poland
| |
Collapse
|
21
|
Heidari M, Schiessel H, Mashaghi A. Circuit Topology Analysis of Polymer Folding Reactions. ACS CENTRAL SCIENCE 2020; 6:839-847. [PMID: 32607431 PMCID: PMC7318069 DOI: 10.1021/acscentsci.0c00308] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 06/03/2023]
Abstract
Circuit topology is emerging as a versatile measure to classify the internal structures of folded linear polymers such as proteins and nucleic acids. The topology framework can be applied to a wide range of problems, most notably molecular folding reactions that are central to biology and molecular engineering. In this Outlook, we discuss the state-of-the art of the technology and elaborate on the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Maziar Heidari
- Leiden
Academic Centre for Drug Research, Faculty of Science, Leiden University, Leiden2300 RA, The Netherlands
- Laboratoire
Gulliver, UMR 7083, ESPCI Paris and PSL
University, 75005 Paris, France
| | - Helmut Schiessel
- Institute
Lorentz for Theoretical Physics, Faculty of Science, Leiden University, Leiden 2333 CA, The Netherlands
| | - Alireza Mashaghi
- Leiden
Academic Centre for Drug Research, Faculty of Science, Leiden University, Leiden2300 RA, The Netherlands
| |
Collapse
|
22
|
Vandans O, Yang K, Wu Z, Dai L. Identifying knot types of polymer conformations by machine learning. Phys Rev E 2020; 101:022502. [PMID: 32168694 DOI: 10.1103/physreve.101.022502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/14/2020] [Indexed: 02/04/2023]
Abstract
We investigate the use of artificial neural networks (NNs) as an alternative tool to current analytical methods for recognizing knots in a given polymer conformation. The motivation is twofold. First, it is of interest to examine whether NNs are effective at learning the global and sequential properties that uniquely define a knot. Second, knot classification is an important and unsolved problem in mathematical and physical sciences, and NNs may provide insights into this problem. Motivated by these points, we generate millions of polymer conformations for five knot types: 0, 3_{1}, 4_{1}, 5_{1}, and 5_{2}, and we design various NN models for classification. Our best model achieves a five-class classification accuracy of above 99% on a polymer of 100 monomers. We find that the sequential modeling ability of recurrent NNs is crucial for this result, as it outperforms feed-forward NNs and successfully generalizes to differently sized conformations as well. We present our methods and suggest that deep learning may be used in specific applications of knot detection where some error is permissible. Hopefully, with further development, NNs can offer an alternative computational method for knot identification and facilitate knot research in mathematical and physical sciences.
Collapse
Affiliation(s)
- Olafs Vandans
- Department of Physics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kaiyuan Yang
- Department of Computer Science, School of Computing, National University of Singapore, Singapore 117417, Singapore
| | - Zhongtao Wu
- Department of Mathematics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| |
Collapse
|
23
|
Nath BD, Takaishi K, Ema T. Macrocyclic multinuclear metal complexes acting as catalysts for organic synthesis. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01894h] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent progress in homogeneous catalysis with macrocyclic multinuclear metal complexes (categories A–C) is overviewed.
Collapse
Affiliation(s)
- Bikash Dev Nath
- Division of Applied Chemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| | - Kazuto Takaishi
- Division of Applied Chemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| | - Tadashi Ema
- Division of Applied Chemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| |
Collapse
|
24
|
Celaya CA, Salcedo R, Sansores LE. Molecular knot with nine crossings: Structure and electronic properties from density functional theory computation. J Mol Graph Model 2019; 94:107481. [PMID: 31671365 DOI: 10.1016/j.jmgm.2019.107481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 11/27/2022]
Abstract
The electronic structure of a molecule with nine-crossing composite knots 973 link denoted by the Alexander-Briggs notation (complex-1) are studied by means of theoretical methods (DFT). The most interesting feature of this kind of molecules is their capability to capture anion spices inside the cage. Stability and chemical reactivity were evaluated taking advantage of the criteria chemical hardness and chemical potential. The simulation of the infrared spectra is also included and shows the characteristic signal of the molecule in a range 1000-1600 cm-1. The frontier molecular orbitals were also analyzed. Whereas the capability to capture chlorine ion into the cavity of the complex-1 is explored by means the analysis of bond energy. Also, the electron density distribution of the chlorine complex was studied by means the quantum theory of atoms in molecules (QTAIM) formalism in order to stablish its bonding properties as well as the electron transfer between chlorine ion and complex-1 which was approached by the natural bonding orbital (NBO) and Hirshfeld charge. Ours results revels semiconductor behaviors for both compounds.
Collapse
Affiliation(s)
- Christian A Celaya
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/n, Ciudad Universitaria, CP 04510, Coyoacán, Ciudad de México, Mexico.
| | - Roberto Salcedo
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/n, Ciudad Universitaria, CP 04510, Coyoacán, Ciudad de México, Mexico
| | - Luis Enrique Sansores
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/n, Ciudad Universitaria, CP 04510, Coyoacán, Ciudad de México, Mexico
| |
Collapse
|
25
|
Leigh DA, Pirvu L, Schaufelberger F. Stereoselective Synthesis of Molecular Square and Granny Knots. J Am Chem Soc 2019; 141:6054-6059. [PMID: 30892025 PMCID: PMC6492950 DOI: 10.1021/jacs.9b01819] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
We
report on the stereoselective synthesis of both molecular granny
and square knots through the use of lanthanide-complexed overhand
knots of specific handedness as three-crossing “entanglement
synthons”. The composite knots are assembled by combining two
entanglement synthons (of the same chirality for a granny knot; of
opposite handedness for a square knot) in three synthetic steps: first,
a CuAAC reaction joins together one end of each overhand knot. Ring-closing
olefin metathesis (RCM) then affords the closed-loop knot, locking
the topology. This allows the lanthanide ions necessary for stabilizing
the entangled conformation of the synthons to subsequently be removed.
The composite knots were characterized by 1H and 13C NMR spectroscopy and mass spectrometry and the chirality of the
knot stereoisomers compared by circular dichroism. The synthetic strategy
of combining building blocks of defined stereochemistry (here overhand
knots of Λ- or Δ-handed entanglement) is reminiscent of
the chiron approach of using minimalist chiral synthons in the stereoselective
synthesis of molecules with multiple asymmetric centers.
Collapse
Affiliation(s)
- David A Leigh
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Lucian Pirvu
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | | |
Collapse
|
26
|
Najafi S. Topological entanglement of interlocked knotted-unknotted polymer rings. SOFT MATTER 2019; 15:1916-1921. [PMID: 30734820 DOI: 10.1039/c8sm02530d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Topological entanglements in biopolymers could drive them to certain internal statics and dynamics with important implications for biological functions. In this study, by means of molecular dynamics simulations, we demonstrate that the minimal crossing pattern of a braid plays a major role in its structural and dynamical properties; the braid consists of a knotted ring and an interlocked entwined unknotted polymer ring. In particular, we show that depending on the bending rigidity of the chains, the conformational energy of the braid can be either lower or higher than the unlocked polymer rings. Additionally, we find that a non-identical crossing pattern in the braid could distinctly enforce concerted internal conformational fluctuations between the interlocked rings.
Collapse
Affiliation(s)
- Saeed Najafi
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Facile construction of Zn(II)-porphyrin-cored [5]rotaxane and its controllable aggregation behaviours. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.10.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Cardelli C, Tubiana L, Bianco V, Nerattini F, Dellago C, Coluzza I. Heteropolymer Design and Folding of Arbitrary Topologies Reveals an Unexpected Role of Alphabet Size on the Knot Population. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chiara Cardelli
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Luca Tubiana
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Valentino Bianco
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Francesca Nerattini
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Christoph Dellago
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Ivan Coluzza
- CIC biomaGUNE, Paseo Miramon 182, 20014 San Sebastian, Spain
- IKERBASQUE,
Basque
Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|