1
|
Sagatova DN, Gavryushkin PN, Sagatov NE, Banaev MV. Crystal structures and P-T phase diagrams of SrC 2 O 5 and BaC 2 O 5 . J Comput Chem 2023; 44:2453-2460. [PMID: 37610074 DOI: 10.1002/jcc.27210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023]
Abstract
In this study, we present the results of a search for new stable structures of SrC2 O5 and BaC2 O5 in the pressure range of 0-100 GPa based on the density functional theory and crystal structure prediction approaches. We have shown that the recently synthesized pyrocarbonate structure SrC2 O5 - P 2 1 / c is thermodynamically stable for both SrC2 O5 and BaC2 O5 . Thus, SrC2 O5 - P 2 1 / c is stable relative to decomposition reaction above 10 GPa, while the lower-pressure stability limit for BaC2 O5 - P 2 1 / c is 5 GPa, which is the lowest value for the formation of pyrocarbonates. For SrC2 O5 , the following polymorphic transitions were found with increasing pressure: P 2 1 / c → F d d 2 at 40 GPa and 1000 K, F d d 2 → C 2 at 90 GPa and 1000 K. SrC2 O5 - F d d 2 and SrC2 O5 - C 2 are characterized by the framework and layered structures of [CO4 ]4 - tetrahedra, respectively. For BaC2 O5 , with increasing pressure, decomposition of BaC2 O5 - P 2 1 / c into BaCO3 and CO2 is observed at 34 GPa without any polymorphic transitions.
Collapse
Affiliation(s)
- Dinara N Sagatova
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Geology and Geophysics, Novosibirsk State University, Novosibirsk, Russia
| | - Pavel N Gavryushkin
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Geology and Geophysics, Novosibirsk State University, Novosibirsk, Russia
| | - Nursultan E Sagatov
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Geology and Geophysics, Novosibirsk State University, Novosibirsk, Russia
| | - Maksim V Banaev
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Geology and Geophysics, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
2
|
Scelta D, Ceppatelli M, Bini R, Pakhomova A, Garbarino G, Mezouar M, Santoro M. High temperature decomposition of polymeric carbon monoxide at pressures up to 120 GPa. J Chem Phys 2023; 159:084501. [PMID: 37610022 DOI: 10.1063/5.0157907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
While polymeric carbon monoxide (pCO) has been experimentally found to remain amorphous and undecomposed at room temperature up to 50 GPa, the question of whether crystalline counterparts of it can be obtained naturally raises. From different computational studies, it can be inferred that either the crystallization of amorphous pCO (a-pCO) or its decomposition into a mixture of CxOy suboxides (x > y) or carbon and CO2 may occur. In this study, we report experimental investigations of the high temperature (700-4000 K) transformation of a-pCO in the 47-120 GPa pressure range, conducted by x-ray diffraction in laser heated diamond anvil cells. Our results show the formation of no crystalline phases other than CO2 phase V, thus indicating the decomposition of the pristine a-pCO into CO2 and, likely, a mixture of amorphous CxOy suboxides and amorphous carbon hardly detectable at extreme conditions. These results support the theoretical picture of the pCO decomposition. We also show that the pressure-temperature kinetic border for this decomposition is very steep, thus indicating a strongly pressure-dependent kinetic barrier.
Collapse
Affiliation(s)
- Demetrio Scelta
- European Laboratory for Nonlinear Spectroscopy, LENS, Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy
- Consiglio Nazionale delle Ricerche-Istituto di Chimica dei Composti OrganoMetallici, CNR-ICCOM, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - Matteo Ceppatelli
- European Laboratory for Nonlinear Spectroscopy, LENS, Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy
- Consiglio Nazionale delle Ricerche-Istituto di Chimica dei Composti OrganoMetallici, CNR-ICCOM, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - Roberto Bini
- European Laboratory for Nonlinear Spectroscopy, LENS, Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy
- Consiglio Nazionale delle Ricerche-Istituto di Chimica dei Composti OrganoMetallici, CNR-ICCOM, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
- Dipartimento di Chimica "Ugo Schiff," Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Anna Pakhomova
- European Synchrotron Radiation Facility, ESRF, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - Gaston Garbarino
- European Synchrotron Radiation Facility, ESRF, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - Mohamed Mezouar
- European Synchrotron Radiation Facility, ESRF, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - Mario Santoro
- European Laboratory for Nonlinear Spectroscopy, LENS, Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy
- Consiglio Nazionale delle Ricerche-Istituto Nazionale di Ottica, CNR-INO, Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
3
|
Stress to distress: Triboluminescence and pressure luminescence of lanthanide diketonates. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
4
|
Spahr D, König J, Bayarjargal L, Milman V, Perlov A, Liermann HP, Winkler B. Sr[C 2O 5] is an Inorganic Pyrocarbonate Salt with [C 2O 5] 2- Complex Anions. J Am Chem Soc 2022; 144:2899-2904. [PMID: 35134291 DOI: 10.1021/jacs.2c00351] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The synthesis of a novel type of carbonate, namely of the inorganic pyrocarbonate salt Sr[C2O5], which contains isolated [C2O5]2--groups, significantly extends the crystal chemistry of inorganic carbonates beyond the established sp2- and sp3-carbonates. We synthesized Sr[C2O5] in a laser-heated diamond anvil cell by reacting Sr[CO3] with CO2. By single crystal synchrotron diffraction, Raman spectroscopy, and density functional theory (DFT) calculations, we show that it is a pyrocarbonate salt. Sr[C2O5] is the first member of a novel family of inorganic carbonates. We predict, based on DFT calculations, that further inorganic pyrocarbonates can be obtained and that these will be relevant to geoscience and may provide a better understanding of reactions converting CO2 into useful inorganic compounds.
Collapse
Affiliation(s)
- Dominik Spahr
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt, Germany
| | - Jannes König
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt, Germany
| | - Lkhamsuren Bayarjargal
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt, Germany
| | - Victor Milman
- Dassault Systèmes BIOVIA, 334 Cambridge Science Park, Cambridge CB4 0WN, United Kingdom
| | - Alexander Perlov
- Dassault Systèmes BIOVIA, 334 Cambridge Science Park, Cambridge CB4 0WN, United Kingdom
| | | | - Björn Winkler
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt, Germany
| |
Collapse
|
5
|
Laniel D, Fedotenko T, Winkler B, Aslandukova A, Aslandukov A, Aprilis G, Chariton S, Milman V, Prakapenka V, Dubrovinsky L, Dubrovinskaia N. A reentrant phase transition and a novel polymorph revealed in high-pressure investigations of CF4 up to 46.5 GPa. J Chem Phys 2022; 156:044503. [DOI: 10.1063/5.0079402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Dominique Laniel
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany
| | - Timofey Fedotenko
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany
| | - Bjoern Winkler
- Institut für Geowissenschaften, Abteilung Kristallographie, Johann Wolfgang Goethe-Universität Frankfurt, Altenhöferallee 1, D-60438 Frankfurt am Main, Germany
| | - Alena Aslandukova
- Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany
| | - Andrey Aslandukov
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany
| | - Georgios Aprilis
- The European Synchrotron Radiation Facility, 38043 Grenoble Cedex 9, France
| | - Stella Chariton
- Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, USA
| | - Victor Milman
- Dassault Systèmes BIOVIA, CB4 0WN Cambridge, United Kingdom
| | - Vitali Prakapenka
- Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, USA
| | - Leonid Dubrovinsky
- Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany
| | - Natalia Dubrovinskaia
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
6
|
Moog M, Pietrucci F, Saitta AM. Carbon Dioxide under Earth Mantle Conditions: From a Molecular Liquid through a Reactive Fluid to Polymeric Regimes. J Phys Chem A 2021; 125:5863-5869. [PMID: 34228460 DOI: 10.1021/acs.jpca.1c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In both its gaseous and condensed forms, carbon dioxide has an ever-increasing impact on Earth's chemistry and human life and activities. However, many aspects of its high-pressure phase diagram remain unclear. In this work, we present a complete structural characterization of carbon dioxide fluids under geological conditions using extensive ab initio molecular dynamics simulations throughout a wide pressure and temperature range, corresponding to Earth's lower mantle. We identify and describe four different disordered regimes, including two polymeric forms and two molecular ones, all within the geothermal conditions of the lower mantle. At pressures below 40 GPa, we find that the molecular liquid becomes very reactive above 2000 K: the C-O double bond routinely breaks, resulting in small and transient chains composed of CO2 units and frequently leading to an exchange of oxygen atoms between molecules. At higher pressures, in addition to the polymeric fluid previously reported at 3000 K, we find a polymeric system with glass-like behavior at lower temperatures, suggesting a complex interplay between kinetics and stability.
Collapse
Affiliation(s)
- Mathieu Moog
- Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, 75252 Paris, France
| | - Fabio Pietrucci
- Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, 75252 Paris, France
| | - A Marco Saitta
- Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, 75252 Paris, France
| |
Collapse
|
7
|
Laniel D, Winkler B, Koemets E, Fedotenko T, Chariton S, Milman V, Glazyrin K, Prakapenka V, Dubrovinsky L, Dubrovinskaia N. Nitro-sonium nitrate (NO +NO 3 -) structure solution using in situ single-crystal X-ray diffraction in a diamond anvil cell. IUCRJ 2021; 8:208-214. [PMID: 33708398 PMCID: PMC7924226 DOI: 10.1107/s2052252521000075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
At high pressures, autoionization - along with polymerization and metallization - is one of the responses of simple molecular systems to a rise in electron density. Nitro-sonium nitrate (NO+NO3 -), known for this property, has attracted a large interest in recent decades and was reported to be synthesized at high pressure and high temperature from a variety of nitro-gen-oxygen precursors, such as N2O4, N2O and N2-O2 mixtures. However, its structure has not been determined unambiguously. Here, we present the first structure solution and refinement for nitro-sonium nitrate on the basis of single-crystal X-ray diffraction at 7.0 and 37.0 GPa. The structure model (P21/m space group) contains the triple-bonded NO+ cation and the NO3 - sp 2-trigonal planar anion. Remarkably, crystal-chemical considerations and accompanying density-functional-theory calculations show that the oxygen atom of the NO+ unit is positively charged - a rare occurrence when in the presence of a less-electronegative element.
Collapse
Affiliation(s)
- Dominique Laniel
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Bayreuth, 95440, Germany
| | - Bjoern Winkler
- Institut für Geowissenschaften, Abteilung Kristallographie, Johann Wolfgang Goethe-Universität Frankfurt, Altenhöferallee 1, Frankfurt am Main, D-60438, Germany
| | - Egor Koemets
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, 95440, Germany
| | - Timofey Fedotenko
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Bayreuth, 95440, Germany
| | - Stella Chariton
- Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, USA
| | - Victor Milman
- Dassault Systèmes BIOVIA, Cambridge, Cambridgeshire CB4 0WN, United Kingdom
| | - Konstantin Glazyrin
- Photon Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, Hamburg, 22607, Germany
| | - Vitali Prakapenka
- Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, USA
| | - Leonid Dubrovinsky
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, 95440, Germany
| | - Natalia Dubrovinskaia
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Bayreuth, 95440, Germany
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-581 83, Sweden
| |
Collapse
|
8
|
Scelta D, Dziubek KF, Ende M, Miletich R, Mezouar M, Garbarino G, Bini R. Extending the Stability Field of Polymeric Carbon Dioxide Phase V beyond the Earth's Geotherm. PHYSICAL REVIEW LETTERS 2021; 126:065701. [PMID: 33635684 DOI: 10.1103/physrevlett.126.065701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/13/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
We present a study on the phase stability of dense carbon dioxide (CO_{2}) at extreme pressure-temperature conditions, up to 6200 K within the pressure range 37±9 to 106±17 GPa. The investigations of high-pressure high-temperature in situ x-ray diffraction patterns recorded from laser-heated CO_{2}, as densified in diamond-anvil cells, consistently reproduced the exclusive formation of polymeric tetragonal CO_{2}-V at any condition achieved in repetitive laser-heating cycles. Using well-considered experimental arrangements, which prevent reactions with metal components of the pressure cells, annealing through laser heating was extended individually up to approximately 40 min per cycle in order to keep track of upcoming instabilities and changes with time. The results clearly exclude any decomposition of CO_{2}-V into the elements as previously suggested. Alterations of the Bragg peak distribution on Debye-Scherrer rings indicate grain coarsening at temperatures >4000 K, giving a glimpse of the possible extension of the stability of the polymeric solid phase.
Collapse
Affiliation(s)
- Demetrio Scelta
- ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds, National Research Council of Italy, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy and LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Kamil F Dziubek
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Martin Ende
- Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, A-1090 Wien, Austria
| | - Ronald Miletich
- Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, A-1090 Wien, Austria
| | - Mohamed Mezouar
- European Synchrotron Radiation Facility, ESRF, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Gaston Garbarino
- European Synchrotron Radiation Facility, ESRF, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Roberto Bini
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy; ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds, National Research Council of Italy, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy; and Dipartimento di Chimica "Ugo Schiff" dell'Università degli Studi di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
9
|
Crandall LE, Rygg JR, Spaulding DK, Boehly TR, Brygoo S, Celliers PM, Eggert JH, Fratanduono DE, Henderson BJ, Huff MF, Jeanloz R, Lazicki A, Marshall MC, Polsin DN, Zaghoo M, Millot M, Collins GW. Equation of State of CO_{2} Shock Compressed to 1 TPa. PHYSICAL REVIEW LETTERS 2020; 125:165701. [PMID: 33124844 DOI: 10.1103/physrevlett.125.165701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Equation-of-state (pressure, density, temperature, internal energy) and reflectivity measurements on shock-compressed CO_{2} at and above the insulating-to-conducting transition reveal new insight into the chemistry of simple molecular systems in the warm-dense-matter regime. CO_{2} samples were precompressed in diamond-anvil cells to tune the initial densities from 1.35 g/cm^{3} (liquid) to 1.74 g/cm^{3} (solid) at room temperature and were then shock compressed up to 1 TPa and 93 000 K. Variation in initial density was leveraged to infer thermodynamic derivatives including specific heat and Gruneisen coefficient, exposing a complex bonded and moderately ionized state at the most extreme conditions studied.
Collapse
Affiliation(s)
- L E Crandall
- Laboratory for Laser Energetics, Rochester, New York 14623, USA
- Department of Physics, University of Rochester, Rochester, New York 14611, USA
| | - J R Rygg
- Laboratory for Laser Energetics, Rochester, New York 14623, USA
- Department of Physics, University of Rochester, Rochester, New York 14611, USA
- Department of Mechanical Engineering, University of Rochester, Rochester, New York 14611, USA
| | - D K Spaulding
- University of California, Davis, California 95616, USA
| | - T R Boehly
- Laboratory for Laser Energetics, Rochester, New York 14623, USA
| | - S Brygoo
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - P M Celliers
- Lawrence Livermore National Laboratory, Livermore, California 94550-9234, USA
| | - J H Eggert
- Lawrence Livermore National Laboratory, Livermore, California 94550-9234, USA
| | - D E Fratanduono
- Lawrence Livermore National Laboratory, Livermore, California 94550-9234, USA
| | - B J Henderson
- Laboratory for Laser Energetics, Rochester, New York 14623, USA
- Department of Physics, University of Rochester, Rochester, New York 14611, USA
| | - M F Huff
- Laboratory for Laser Energetics, Rochester, New York 14623, USA
- Department of Physics, University of Rochester, Rochester, New York 14611, USA
| | - R Jeanloz
- University of California, Berkeley, California 94720-5800, USA
| | - A Lazicki
- Lawrence Livermore National Laboratory, Livermore, California 94550-9234, USA
| | - M C Marshall
- Lawrence Livermore National Laboratory, Livermore, California 94550-9234, USA
| | - D N Polsin
- Laboratory for Laser Energetics, Rochester, New York 14623, USA
| | - M Zaghoo
- Laboratory for Laser Energetics, Rochester, New York 14623, USA
| | - M Millot
- Lawrence Livermore National Laboratory, Livermore, California 94550-9234, USA
| | - G W Collins
- Laboratory for Laser Energetics, Rochester, New York 14623, USA
- Department of Physics, University of Rochester, Rochester, New York 14611, USA
- Department of Mechanical Engineering, University of Rochester, Rochester, New York 14611, USA
| |
Collapse
|
10
|
Goderski S, Runowski M, Woźny P, Lavín V, Lis S. Lanthanide Upconverted Luminescence for Simultaneous Contactless Optical Thermometry and Manometry-Sensing under Extreme Conditions of Pressure and Temperature. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40475-40485. [PMID: 32805851 PMCID: PMC7498144 DOI: 10.1021/acsami.0c09882] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The growing interest in the miniaturization of various devices and conducting experiments under extreme conditions of pressure and temperature causes the need for the development of small, contactless, precise, and accurate optical sensors without any electrical connections. In this work, YF3:Yb3+-Er3+ upconverting microparticles are used as a bifunctional luminescence sensor for simultaneous temperature and pressure measurements. Different changes in the properties of Er3+ green and red upconverted luminescence, after excitation of Yb3+ ions in the near-infrared at ∼975 nm, are used to calibrate pressure and/or temperature inside the hydrostatic chamber of a diamond anvil cell (DAC). For temperature sensing, changes in the relative intensities of the Er3+ green upconverted luminescence of 2H11/2 and 4S3/2 thermally coupled multiplets to the 4I15/2 ground state, whose relative populations follow a Boltzmann distribution, are calibrated. For pressure sensing, the spectral shift of the Er3+ upconverted red emission peak at ∼665 nm, between the Stark sublevels of the 4F9/2 → 4I15/2 transition, is used. Experiments performed under simultaneous extreme conditions of pressure, up to ∼8 GPa, and temperature, up to ∼473 K, confirm the possibility of remote optical pressure and temperature sensing.
Collapse
Affiliation(s)
- Szymon Goderski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, Poznań 61-614, Poland
| | - Marcin Runowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, Poznań 61-614, Poland
| | - Przemysław Woźny
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, Poznań 61-614, Poland
| | - Víctor Lavín
- Departamento de Física, MALTA Consolider
Team, IMN and IUdEA, Universidad de La Laguna, Apdo. Correos 456, San Cristóbal de La Laguna, Santa
Cruz de Tenerife E-38200, Spain
| | - Stefan Lis
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, Poznań 61-614, Poland
| |
Collapse
|
11
|
Cogollo-Olivo BH, Biswas S, Scandolo S, Montoya JA. Ab initio Determination of the Phase Diagram of CO_{2} at High Pressures and Temperatures. PHYSICAL REVIEW LETTERS 2020; 124:095701. [PMID: 32202852 DOI: 10.1103/physrevlett.124.095701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
The experimental study of the CO_{2} phase diagram is hampered by strong kinetic effects leading to wide regions of metastability and to large uncertainties in the location of some phase boundaries. Here, we determine CO_{2}'s thermodynamic phase boundaries by means of ab initio calculations of the Gibbs free energy of several solid phases of CO_{2} up to 50 Gigapascals. Temperature effects are included in the quasiharmonic approximation. Contrary to previous suggestions, we find that the boundary between molecular forms and the nonmolecular phase V has, indeed, a positive slope and starts at 21.5 GPa at T=0 K. A triple point between phase IV, V, and the liquid phase is found at 35 GPa and 1600 K, indicating a broader region of stability for the nonmolecular form than previously thought. The experimentally determined boundary line between CO_{2}-II and CO_{2}-IV phases is reproduced by our calculations, indicating that kinetic effects do not play a major role in that particular transition. Our results also show that CO_{2}-III is stabilized at high temperature and its stability region coincides with the P-T conditions where phase VII has been reported experimentally; instead, phase II is the most stable molecular phase at low temperatures, extending its region of stability to every P-T condition where phase III is reported experimentally.
Collapse
Affiliation(s)
- Beatriz H Cogollo-Olivo
- Universidad de Cartagena, Doctorado en Ciencias Físicas, 130001 Cartagena de Indias, Colombia
| | - Sananda Biswas
- Institut für Theoretische Physik, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Sandro Scandolo
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy
| | - Javier A Montoya
- Universidad de Cartagena, Instituto de Matemáticas Aplicadas, 130001 Cartagena de Indias, Colombia
| |
Collapse
|
12
|
Wu CJ, Young DA, Sterne PA, Myint PC. Equation of state for a chemically dissociative, polyatomic system: Carbon dioxide. J Chem Phys 2019; 151:224505. [PMID: 31837667 DOI: 10.1063/1.5128127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A notorious challenge in high-pressure science is to develop an equation of state (EOS) that explicitly treats chemical reactions. For instance, many materials tend to dissociate at high pressures and temperatures where the chemical bonds that hold them together break down. We present an EOS for carbon dioxide (CO2) that allows for dissociation and captures the key material behavior in a wide range of pressure-temperature conditions. Carbon dioxide is an ideal prototype for the development of a wide-ranging EOS that allows for chemical-dissociation equilibria since it is one of the simplest polyatomic systems and because it is of great interest in planetary science and in the study of detonations. Here, we show that taking dissociation into account significantly improves the accuracy of the resulting EOS compared to other EOSs that either neglect chemistry completely or treat CO2 dissociation in a more rudimentary way.
Collapse
Affiliation(s)
- Christine J Wu
- Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - David A Young
- Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Philip A Sterne
- Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Philip C Myint
- Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
13
|
Oxidation of High Yield Strength Metals Tungsten and Rhenium in High-Pressure High-Temperature Experiments of Carbon Dioxide and Carbonates. CRYSTALS 2019. [DOI: 10.3390/cryst9120676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The laser-heating diamond-anvil cell technique enables direct investigations of materials under high pressures and temperatures, usually confining the samples with high yield strength W and Re gaskets. This work presents experimental data that evidences the chemical reactivity between these refractory metals and CO2 or carbonates at temperatures above 1300 °Ϲ and pressures above 6 GPa. Metal oxides and diamond are identified as reaction products. Recommendations to minimize non-desired chemical reactions in high-pressure high-temperature experiments are given.
Collapse
|
14
|
Pressure-Induced Polymorphism of Caprolactam: A Neutron Diffraction Study. Molecules 2019; 24:molecules24112174. [PMID: 31185609 PMCID: PMC6600225 DOI: 10.3390/molecules24112174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 11/17/2022] Open
Abstract
Caprolactam, a precursor to nylon-6 has been investigated as part of our studies into the polymerization of materials at high pressure. Single-crystal X-ray and neutron powder diffraction data have been used to explore the high-pressure phase behavior of caprolactam; two new high pressure solid forms were observed. The transition between each of the forms requires a substantial rearrangement of the molecules and we observe that the kinetic barrier to the conversion can aid retention of phases beyond their region of stability. Form II of caprolactam shows a small pressure region of stability between 0.5 GPa and 0.9 GPa with Form III being stable from 0.9 GPa to 5.4 GPa. The two high-pressure forms have a catemeric hydrogen-bonding pattern compared with the dimer interaction observed in ambient pressure Form I. The interaction between the chains has a marked effect on the directions of maximal compressibility in the structure. Neither of the high-pressure forms can be recovered to ambient pressure and there is no evidence of any polymerization occurring.
Collapse
|