1
|
Akiyoshi R, Zenno H, Sekine Y, Nakaya M, Akita M, Kosumi D, Lindoy LF, Hayami S. A Ferroelectric Metallomesogen Exhibiting Field-Induced Slow Magnetic Relaxation. Chemistry 2021; 28:e202103367. [PMID: 34846768 DOI: 10.1002/chem.202103367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/12/2022]
Abstract
Magnetoelectric (ME) materials exhibiting coupled electric and magnetic properties are of significant interest because of their potential use in memory storage devices, new sensors, or low-consumption devices. Herein, we report a new category of ME material that shows liquid crystal (LC), ferroelectric (FE), and field-induced single molecule magnet (SMM) behaviors. Co(II) complex incorporating alkyl chains of type [Co(3C16 -bzimpy)2 ](BF4 )2 (1; 3C16 -bzimpy=2,2'-(4-hexadecyloxy-2,6-diyl)bis(1-hexadecyl-1H-benzo[d]imidazole)) displayed a chiral smectic C mesophase in the temperature range 321 K-458 K, in which distinct FE behavior was observed, with a remnant polarization (88.3 nC cm-2 ). Complex 1 also exhibited field-induced slow magnetic relaxation behavior that reflects the large magnetic anisotropy of the Co(II) center. Furthermore, the dielectric property of 1 was able to be tuned by an external magnetic field occurring from both spin-lattice coupling and molecular orientational variation. Clearly, this multifunctional compound, combining LC, FE, and SMM properties, represents an entry to the development of a range of next-generation ME materials.
Collapse
Affiliation(s)
- Ryohei Akiyoshi
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Hikaru Zenno
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Yoshihiro Sekine
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Manabu Nakaya
- Department of Chemistry, Faculty of Science, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Motoko Akita
- Graduate School of Material Science, Josai University, 1-1 Sakado, Saitama, 350-0295, Japan
| | - Daisuke Kosumi
- Department of Physics, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.,Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Leonard F Lindoy
- School of Chemistry F11, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.,Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
2
|
Akiyoshi R, Ohtani R, Lindoy LF, Hayami S. Spin crossover phenomena in long chain alkylated complexes. Dalton Trans 2021; 50:5065-5079. [DOI: 10.1039/d1dt00004g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents a discussion of soft metal complexes with a focus on spin crossover behaviours that are associated with structural phase transition, including liquid crystal LC transition.
Collapse
Affiliation(s)
- Ryohei Akiyoshi
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto
- Japan
| | - Ryo Ohtani
- Department of Chemistry
- Faculty of Science
- Kyushu University
- Fukuoka 819-0395
- Japan
| | | | - Shinya Hayami
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto
- Japan
| |
Collapse
|
3
|
Bormashenko E. Moses effect: physics and applications. Adv Colloid Interface Sci 2019; 269:1-6. [PMID: 31026760 DOI: 10.1016/j.cis.2019.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/03/2019] [Accepted: 04/16/2019] [Indexed: 11/17/2022]
Abstract
Deformation of the surface of a diamagnetic liquid by a magnetic field is called the "Moses Effect". Magnetic fields of ca 0.5 T give rise to near surface dips with a depth of dozens of microns. The physics and applications of direct and inverse Moses effects are reviewed, including trapping and self-assembly of particles. Experimental techniques enabling visualization of the effects are surveyed. The impact of a magnetic field on micro- and macroscopic properties of liquids is addressed. The influence of surface tension on the shape of the near-surface dip formed in a diamagnetic liquid by magnetic field is reported. Floating of diamagnetic bodies driven by the Moses effect is treated. The "magnetic memory of water" in relation to the Moses Effect is discussed. The dynamics of self-healing of near-surface dips due to the Moses Effect is considered.
Collapse
Affiliation(s)
- Edward Bormashenko
- Ariel University, Engineering Faculty, Chemical Engineering, Biotechnology and Materials Department, P.O.B. 3, 407000 Ariel, Israel.
| |
Collapse
|