1
|
Lee SK, Shen W, Wen W, Joo Y, Xue Y, Park A, Qiang A, Su S, Zhang T, Zhang M, Fan J, Zhang Y, De S, Gainetdinov I, Sharov A, Maragkakis M, Wang W. Topoisomerase 3b facilitates piRNA biogenesis to promote transposon silencing and germ cell development. Cell Rep 2025; 44:115495. [PMID: 40184251 PMCID: PMC12070812 DOI: 10.1016/j.celrep.2025.115495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2024] [Accepted: 03/10/2025] [Indexed: 04/06/2025] Open
Abstract
Topoisomerases typically function in the nucleus to relieve topological stress in DNA. Here, we show that a dual-activity topoisomerase, Top3b, and its partner, TDRD3, largely localize in the cytoplasm and interact biochemically and genetically with PIWI-interacting RNA (piRNA) processing enzymes to promote piRNA biogenesis, post-transcriptional gene silencing (PTGS) of transposons, and Drosophila germ cell development. Top3b requires its topoisomerase activity to promote PTGS of a transposon reporter and preferentially silences long and highly expressed transposons, suggesting that RNAs with these features may produce more topological stress for topoisomerases to solve. The double mutants between Top3b and piRNA processing enzymes exhibit stronger disruption of the signatures and levels of germline piRNAs, more de-silenced transposons, and larger defects in germ cells than either single mutant. Our data suggest that Top3b can act in an RNA-based process-piRNA biogenesis and PTGS of transposons-and this function is required for Top3b to promote normal germ cell function.
Collapse
Affiliation(s)
- Seung Kyu Lee
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Weiping Shen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - William Wen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yuyoung Joo
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yutong Xue
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Aaron Park
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Amy Qiang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Shuaikun Su
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tianyi Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Megan Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | - Alexei Sharov
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
2
|
da Trindade NS, Valentini MB, Rognon A, Mendes TMF, Gomes MDS, Allegretti SM, Grunau C, Cabral FJ. Heterochromatin protein 1 (HP1) of Schistosoma mansoni: non-canonical chromatin landscape and oviposition effects. Mem Inst Oswaldo Cruz 2025; 120:e240075. [PMID: 40172426 PMCID: PMC11961034 DOI: 10.1590/0074-02760240075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/14/2024] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Heterochromatin protein 1 (HP1) is widespread in several organisms playing a role in control of gene expression by heterochromatin formation and maintenance of silent chromatin. Schistosoma mansoni is a human parasite that is responsible for Schistosomiasis, a tropical neglected disease in the tropical and subtropical areas in the world, where the intermediate host Biomphalaria glabrata is present. OBJECTIVES In this study we attempted to investigate if the SmHP1 is enriched in S. mansoni chromatin in cercariae larvae stage, compared with another larvae stage sporocysts and its importance for S. mansoni life cycle progression and parasite oviposition. METHODS We used ChIPmentation with commercial antibody ab109028 that passed in-house quality control. We also used RNA interference, mice infection and histology. FINDINGS Our data show that S. mansoni HP1 enrichment is non-canonical with a peak at the transcription end sites of protein coding genes. We did not find strong differences in SmHP1 chromatin landscapes between sporocysts and cercariae. Knock- down of SmHP1 in schistosomula and in vivo experiments in mice unexpectedly increased parasite oviposition. MAIN CONCLUSIONS Our results suggest that SmHP1 may influence chromatin structure in a non-canonical way in S. mansoni stages and may play a role in regulation of parasite oviposition.
Collapse
Affiliation(s)
- Natália Silva da Trindade
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
- Hosts-Pathogens-Environments Interactions, University of Perpignan Via Domitia, Centre National de la Recherche Scientifique, Institut français de Recherche pour l’Exploitation de la Mer, University of Montpellier, Perpignan, France
| | - Marilia Bergamini Valentini
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
| | - Anne Rognon
- Hosts-Pathogens-Environments Interactions, University of Perpignan Via Domitia, Centre National de la Recherche Scientifique, Institut français de Recherche pour l’Exploitation de la Mer, University of Montpellier, Perpignan, France
| | | | | | - Silmara Marques Allegretti
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
| | - Christoph Grunau
- Hosts-Pathogens-Environments Interactions, University of Perpignan Via Domitia, Centre National de la Recherche Scientifique, Institut français de Recherche pour l’Exploitation de la Mer, University of Montpellier, Perpignan, France
| | - Fernanda Janku Cabral
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
| |
Collapse
|
3
|
Teimuri S, Suter B. Drosophila Topoisomerase 3β binds to mRNAs in vivo, contributes to their localization and stability, and counteracts premature aging. PLoS One 2025; 20:e0318142. [PMID: 39932982 DOI: 10.1371/journal.pone.0318142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 01/12/2025] [Indexed: 02/13/2025] Open
Abstract
Topoisomerase 3β (Top3β) works not only on DNA but also on RNA. We isolated and identified the naturally cross-linked RNA targets of Drosophila Top3β from an early embryonic stage that contains almost exclusively maternal mRNAs. Favorite targets were long RNAs, particularly with long 3'UTRs, and RNAs that become localized in large cells. Top3β lacking only the hydroxyl group that makes the covalent bond to the RNA, did not allow normal expression and localization of Top3β mRNA targets or their protein products, demonstrating the importance of the enzymatic activity of Top3 β for optimized gene expression. Top3β is not essential for development to the adult stage but to maintain the morphology of the adult neuromuscular junction and to prevent premature loss of coordinated movement and aging. Alterations in human Top3β have been associated with several neurological diseases and cancers. The homologs of genes and (pre)mRNAs mis-expressed in these conditions show the same characteristics identified in the Drosophila Top3β targets, suggesting that Drosophila could model human Top3β. An in vivo test of this model showed that the enzymatic activity of Top3β reduces the neurodegeneration caused by the cytotoxic human (G4C2)49 RNA. Top3β supports normal gene expression, particularly of long and complex transcripts that must be transported and translationally controlled. These RNAs encode large cytoskeletal, cortical, and membrane proteins that are particularly important in large and long cells like motoneurons. Their reduced expression in the mutant seems to stress the cells, increasing the chances of developing neurodegenerative diseases.
Collapse
Affiliation(s)
- Shohreh Teimuri
- Institute of Cell Biology, University of Bern, Berne, Switzerland
| | - Beat Suter
- Institute of Cell Biology, University of Bern, Berne, Switzerland
| |
Collapse
|
4
|
Mamun Y, Tse-Dinh YC, Chapagain P. Insights into the DNA and RNA Interactions of Human Topoisomerase III Beta Using Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:6062-6071. [PMID: 39024468 PMCID: PMC11323020 DOI: 10.1021/acs.jcim.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024]
Abstract
Human topoisomerase III beta (hTOP3B) is the only topoisomerase in the human cell that can act on both DNA and RNA substrates. Recent findings have emphasized the physiological importance of hTOP3B and consolidated it as a valuable drug target for antiviral and anticancer therapeutics. Although type IA topoisomerases of different organisms have been studied over the years, the step-by-step interaction of hTOP3B and nucleic acid substrates is still not well understood. Due to the lack of hTOP3B-RNA structures as well as DNA/RNA covalent complexes, computational investigations have been limited. In our study, we utilized molecular dynamics (MD) simulations to study the interactions between hTOP3B and nucleic acids to get a closer look into the residues that play a role in binding DNA or RNA and facilitate catalysis, along with the differences and similarities when hTOP3B interacts with DNA compared to RNA. For this, we generated multiple models of hTOP3B complexed with DNA and RNA sequences using the hTOP3B crystal structure and 8-mer single-stranded DNA and RNA sequences. These models include both covalent and noncovalent complexes, which are then subjected to MD simulations and analyzed. Our findings highlight the complexes' stability, sequence preference, and interactions of the binding pocket residues with different nucleotides. Our work demonstrates that hTOP3B forms stable complexes with both DNA and RNA and provides a better understanding of the enzyme's interaction with different nucleic acid substrate sequences.
Collapse
Affiliation(s)
- Yasir Mamun
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Yuk-Ching Tse-Dinh
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
| | - Prem Chapagain
- Department
of Physics, Florida International University, Miami, Florida 33199, United States
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
| |
Collapse
|
5
|
Tan K, Tse-Dinh YC. Variation of Structure and Cellular Functions of Type IA Topoisomerases across the Tree of Life. Cells 2024; 13:553. [PMID: 38534397 PMCID: PMC10969213 DOI: 10.3390/cells13060553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Topoisomerases regulate the topological state of cellular genomes to prevent impediments to vital cellular processes, including replication and transcription from suboptimal supercoiling of double-stranded DNA, and to untangle topological barriers generated as replication or recombination intermediates. The subfamily of type IA topoisomerases are the only topoisomerases that can alter the interlinking of both DNA and RNA. In this article, we provide a review of the mechanisms by which four highly conserved N-terminal protein domains fold into a toroidal structure, enabling cleavage and religation of a single strand of DNA or RNA. We also explore how these conserved domains can be combined with numerous non-conserved protein sequences located in the C-terminal domains to form a diverse range of type IA topoisomerases in Archaea, Bacteria, and Eukarya. There is at least one type IA topoisomerase present in nearly every free-living organism. The variation in C-terminal domain sequences and interacting partners such as helicases enable type IA topoisomerases to conduct important cellular functions that require the passage of nucleic acids through the break of a single-strand DNA or RNA that is held by the conserved N-terminal toroidal domains. In addition, this review will exam a range of human genetic disorders that have been linked to the malfunction of type IA topoisomerase.
Collapse
Affiliation(s)
- Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
6
|
Zhu X, Joo Y, Bossi S, McDevitt RA, Xie A, Wang Y, Xue Y, Su S, Lee SK, Sah N, Zhang S, Ye R, Pinto A, Zhang Y, Araki K, Araki M, Morales M, Mattson MP, van Praag H, Wang W. Tdrd3-null mice show post-transcriptional and behavioral impairments associated with neurogenesis and synaptic plasticity. Prog Neurobiol 2024; 233:102568. [PMID: 38216113 PMCID: PMC10922770 DOI: 10.1016/j.pneurobio.2024.102568] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
The Topoisomerase 3B (Top3b) - Tudor domain containing 3 (Tdrd3) protein complex is the only dual-activity topoisomerase complex that can alter both DNA and RNA topology in animals. TOP3B mutations in humans are associated with schizophrenia, autism and cognitive disorders; and Top3b-null mice exhibit several phenotypes observed in animal models of psychiatric and cognitive disorders, including impaired cognitive and emotional behaviors, aberrant neurogenesis and synaptic plasticity, and transcriptional defects. Similarly, human TDRD3 genomic variants have been associated with schizophrenia, verbal short-term memory and educational attainment. However, the importance of Tdrd3 in normal brain function has not been examined in animal models. Here we generated a Tdrd3-null mouse strain and demonstrate that these mice display both shared and unique defects when compared to Top3b-null mice. Shared defects were observed in cognitive behaviors, synaptic plasticity, adult neurogenesis, newborn neuron morphology, and neuronal activity-dependent transcription; whereas defects unique to Tdrd3-deficient mice include hyperactivity, changes in anxiety-like behaviors, olfaction, increased new neuron complexity, and reduced myelination. Interestingly, multiple genes critical for neurodevelopment and cognitive function exhibit reduced levels in mature but not nascent transcripts. We infer that the entire Top3b-Tdrd3 complex is essential for normal brain function, and that defective post-transcriptional regulation could contribute to cognitive and psychiatric disorders.
Collapse
Affiliation(s)
- Xingliang Zhu
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Yuyoung Joo
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Simone Bossi
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Ross A McDevitt
- Comparative Medicine Section, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Aoji Xie
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Yue Wang
- Lab of Neuroscience, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Yutong Xue
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Shuaikun Su
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Seung Kyu Lee
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Nirnath Sah
- Lab of Neuroscience, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Shiliang Zhang
- Confocal and Electron Microscopy Core, National Institute on Drug Abuse, National Institute of Health, Baltimore, MD 21224, USA
| | - Rong Ye
- Confocal and Electron Microscopy Core, National Institute on Drug Abuse, National Institute of Health, Baltimore, MD 21224, USA
| | - Alejandro Pinto
- Stiles-Nicholson Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1, Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Masatake Araki
- Division of Genomics, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1, Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Marisela Morales
- Confocal and Electron Microscopy Core, National Institute on Drug Abuse, National Institute of Health, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Lab of Neuroscience, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Henriette van Praag
- Stiles-Nicholson Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
7
|
Zhang T, Xue Y, Su S, Altouma V, Ho K, Martindale JL, Lee SK, Shen W, Park A, Zhang Y, De S, Gorospe M, Wang W. RNA-binding protein Nocte regulates Drosophila development by promoting translation reinitiation on mRNAs with long upstream open reading frames. Nucleic Acids Res 2024; 52:885-905. [PMID: 38000373 PMCID: PMC10810208 DOI: 10.1093/nar/gkad1122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
RNA-binding proteins (RBPs) with intrinsically disordered regions (IDRs) are linked to multiple human disorders, but their mechanisms of action remain unclear. Here, we report that one such protein, Nocte, is essential for Drosophila eye development by regulating a critical gene expression cascade at translational level. Knockout of nocte in flies leads to lethality, and its eye-specific depletion impairs eye size and morphology. Nocte preferentially enhances translation of mRNAs with long upstream open reading frames (uORFs). One of the key Nocte targets, glass mRNA, encodes a transcription factor critical for differentiation of photoreceptor neurons and accessory cells, and re-expression of Glass largely rescued the eye defects caused by Nocte depletion. Mechanistically, Nocte counteracts long uORF-mediated translational suppression by promoting translation reinitiation downstream of the uORF. Nocte interacts with translation factors eIF3 and Rack1 through its BAT2 domain, and a Nocte mutant lacking this domain fails to promote translation of glass mRNA. Notably, de novo mutations of human orthologs of Nocte have been detected in schizophrenia patients. Our data suggest that Nocte family of proteins can promote translation reinitiation to overcome long uORFs-mediated translational suppression, and disruption of this function can lead to developmental defects and neurological disorders.
Collapse
Affiliation(s)
- Tianyi Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yutong Xue
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Shuaikun Su
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Valerie Altouma
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Katherine Ho
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Seung-Kyu Lee
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Weiping Shen
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Aaron Park
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
8
|
Saha S, Huang SYN, Yang X, Saha LK, Sun Y, Khandagale P, Jenkins LM, Pommier Y. The TDRD3-USP9X complex and MIB1 regulate TOP3B homeostasis and prevent deleterious TOP3B cleavage complexes. Nat Commun 2023; 14:7524. [PMID: 37980342 PMCID: PMC10657456 DOI: 10.1038/s41467-023-43151-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023] Open
Abstract
TOP3B is stabilized by TDRD3. Hypothesizing that TDRD3 recruits a deubiquitinase, we find that TOP3B interacts with USP9X via TDRD3. Inactivation of USP9X destabilizes TOP3B, and depletion of both TDRD3 and USP9X does not promote further TOP3B ubiquitylation. Additionally, we observe that MIB1 mediates the ubiquitylation and proteasomal degradation of TOP3B by directly interacting with TOP3B independently of TDRD3. Combined depletion of USP9X, TDRD3 and MIB1 causes no additional increase in TOP3B levels compared to MIB1 knockdown alone indicating that the TDRD3-USP9X complex works downstream of MIB1. To comprehend why cells degrade TOP3B in the absence of TDRD3, we measured TOP3Bccs. Lack of TDRD3 increases TOP3Bccs in DNA and RNA, and induced R-loops, γH2AX and growth defect. Biochemical experiments confirm that TDRD3 increases the turnover of TOP3B. Our work provides molecular insights into the mechanisms by which TDRD3 protect cells from deleterious TOP3Bccs which are otherwise removed by TRIM41.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Xi Yang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Liton Kumar Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yilun Sun
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Prashant Khandagale
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Lisa M Jenkins
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Su S, Xue Y, Lee SK, Zhang Y, Fan J, De S, Sharov A, Wang W. A dual-activity topoisomerase complex promotes both transcriptional activation and repression in response to starvation. Nucleic Acids Res 2023; 51:2415-2433. [PMID: 36794732 PMCID: PMC10018333 DOI: 10.1093/nar/gkad086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Topoisomerases are required to release topological stress generated by RNA polymerase II (RNAPII) during transcription. Here, we show that in response to starvation, the complex of topoisomerase 3b (TOP3B) and TDRD3 can enhance not only transcriptional activation, but also repression, which mimics other topoisomerases that can also alter transcription in both directions. The genes enhanced by TOP3B-TDRD3 are enriched with long and highly-expressed ones, which are also preferentially stimulated by other topoisomerases, suggesting that different topoisomerases may recognize their targets through a similar mechanism. Specifically, human HCT116 cells individually inactivated for TOP3B, TDRD3 or TOP3B topoisomerase activity, exhibit similarly disrupted transcription for both starvation-activated genes (SAGs) and starvation-repressed genes (SRGs). Responding to starvation, both TOP3B-TDRD3 and the elongating form of RNAPII exhibit concomitantly increased binding to TOP3B-dependent SAGs, at binding sites that overlap. Notably, TOP3B inactivation decreases the binding of elongating RNAPII to TOP3B-dependent SAGs while increased it to SRGs. Furthermore, TOP3B-ablated cells display reduced transcription of several autophagy-associated genes and autophagy per se. Our data suggest that TOP3B-TDRD3 can promote both transcriptional activation and repression by regulating RNAPII distribution. In addition, the findings that it can facilitate autophagy may account for the shortened lifespan of Top3b-KO mice.
Collapse
Affiliation(s)
- Shuaikun Su
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yutong Xue
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Seung Kyu Lee
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Alexei Sharov
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
10
|
Zhu X, Joo Y, Bossi S, McDevitt R, Xie A, Wang Y, Xue Y, Su S, Lee SK, Sah N, Zhang S, Ye R, Pinto A, Zhang Y, Araki K, Araki M, Morales M, Mattson M, van Praag H, Wang W. Tdrd3-null mice show post-transcriptional and behavioral impairments associated with neurogenesis and synaptic plasticity. RESEARCH SQUARE 2023:rs.3.rs-2597043. [PMID: 36909584 PMCID: PMC10002826 DOI: 10.21203/rs.3.rs-2597043/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The Topoisomerase 3B (Top3b) - Tudor domain containing 3 (Tdrd3) protein complex is the only dual-activity topoisomerase complex in animals that can alter the topology of both DNA and RNA. TOP3B mutations in humans are associated with schizophrenia, autism and cognitive disorders; and Top3b-null mice exhibit several phenotypes observed in animal models of psychiatric and cognitive disorders, including impairments in cognitive and emotional behaviors, aberrant neurogenesis and synaptic plasticity, and transcriptional defects. Similarly, human TDRD3 genomic variants have been associated with schizophrenia, verbal shorten-memory and learning, and educational attainment. However, the importance of Tdrd3 in normal brain function has not been examined in animal models. Here we built a Tdrd3-null mouse strain and demonstrate that these mice display both shared and unique defects when compared to Top3b-null mice. Shared defects were observed in cognitive behaviors, synaptic plasticity, adult neurogenesis, newborn neuron morphology, and neuronal activity-dependent transcription; whereas defects unique to Tdrd3-deficient mice include hyperactivity, changes in anxiety-like behaviors, increased new neuron complexity, and reduced myelination. Interestingly, multiple genes critical for neurodevelopment and cognitive function exhibit reduced levels in mature but not nascent transcripts. We infer that the entire Top3b-Tdrd3 complex is essential for normal brain function, and that defective post-transcriptional regulation could contribute to cognitive impairment and psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University
| | - Masatake Araki
- Institute of Resource Development and Analysis, Kumamoto University
| | | | - Mark Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine
| | | | | |
Collapse
|
11
|
Soujanya M, Bihani A, Hajirnis N, Pathak RU, Mishra RK. Nuclear architecture and the structural basis of mitotic memory. CHROMOSOME RESEARCH : AN INTERNATIONAL JOURNAL ON THE MOLECULAR, SUPRAMOLECULAR AND EVOLUTIONARY ASPECTS OF CHROMOSOME BIOLOGY 2023; 31:8. [PMID: 36725757 DOI: 10.1007/s10577-023-09714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/13/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023]
Abstract
The nucleus is a complex organelle that hosts the genome and is essential for vital processes like DNA replication, DNA repair, transcription, and splicing. The genome is non-randomly organized in the three-dimensional space of the nucleus. This functional sub-compartmentalization was thought to be organized on the framework of nuclear matrix (NuMat), a non-chromatin scaffold that functions as a substratum for various molecular processes of the nucleus. More recently, nuclear bodies or membrane-less subcompartments of the nucleus are thought to arise due to phase separation of chromatin, RNA, and proteins. The nuclear architecture is an amalgamation of the relative organization of chromatin, epigenetic landscape, the nuclear bodies, and the nucleoskeleton in the three-dimensional space of the nucleus. During mitosis, the nucleus undergoes drastic changes in morphology to the degree that it ceases to exist as such; various nuclear components, including the envelope that defines the nucleus, disintegrate, and the chromatin acquires mitosis-specific epigenetic marks and condenses to form chromosome. Upon mitotic exit, chromosomes are decondensed, re-establish hierarchical genome organization, and regain epigenetic and transcriptional status similar to that of the mother cell. How this mitotic memory is inherited during cell division remains a puzzle. NuMat components that are a part of the mitotic chromosome in the form of mitotic chromosome scaffold (MiCS) could potentially be the seeds that guide the relative re-establishment of the epigenome, chromosome territories, and the nuclear bodies. Here, we synthesize the advances towards understanding cellular memory of nuclear architecture across mitosis and propose a hypothesis that a subset of NuMat proteome essential for nucleation of various nuclear bodies are retained in MiCS to serve as seeds of mitotic memory, thus ensuring the daughter cells re-establish the complex status of nuclear architecture similar to that of the mother cells, thereby maintaining the pre-mitotic transcriptional status.
Collapse
Affiliation(s)
- Mamilla Soujanya
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ashish Bihani
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
| | - Nikhil Hajirnis
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, USA
| | - Rashmi U Pathak
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
| | - Rakesh K Mishra
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India.
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, India.
- TIGS - Tata Institute for Genetics and Society, Bangalore, India.
| |
Collapse
|
12
|
Saha S, Yang X, Huang SYN, Agama K, Baechler SA, Sun Y, Zhang H, Saha LK, Su S, Jenkins LM, Wang W, Pommier Y. Resolution of R-loops by topoisomerase III-β (TOP3B) in coordination with the DEAD-box helicase DDX5. Cell Rep 2022; 40:111067. [PMID: 35830799 PMCID: PMC10575568 DOI: 10.1016/j.celrep.2022.111067] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/20/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
The present study demonstrates how TOP3B is involved in resolving R-loops. We observed elevated R-loops in TOP3B knockout cells (TOP3BKO), which are suppressed by TOP3B transfection. R-loop-inducing agents, the topoisomerase I inhibitor camptothecin, and the splicing inhibitor pladienolide-B also induce higher R-loops in TOP3BKO cells. Camptothecin- and pladienolide-B-induced R-loops are concurrent with the induction of TOP3B cleavage complexes (TOP3Bccs). RNA/DNA hybrid IP-western blotting show that TOP3B is physically associated with R-loops. Biochemical assays using recombinant TOP3B and oligonucleotides mimicking R-loops show that TOP3B cleaves the single-stranded DNA displaced by the R-loop RNA-DNA duplex. IP-mass spectrometry and IP-western experiments reveal that TOP3B interacts with the R-loop helicase DDX5 independently of TDRD3. Finally, we demonstrate that DDX5 and TOP3B are epistatic in resolving R-loops in a pathway parallel with senataxin. We propose a decatenation model for R-loop resolution by TOP3B-DDX5 protecting cells from R-loop-induced damage.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Xi Yang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Keli Agama
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Simone Andrea Baechler
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yilun Sun
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hongliang Zhang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Liton Kumar Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shuaikun Su
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Lisa M Jenkins
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Su S, Xue Y, Sharov A, Zhang Y, Lee SK, Martindale J, Li W, Ku WL, Zhao K, De S, Shen W, Sen P, Gorospe M, Xu D, Wang W. A dual-activity topoisomerase complex regulates mRNA translation and turnover. Nucleic Acids Res 2022; 50:7013-7033. [PMID: 35748872 PMCID: PMC9262614 DOI: 10.1093/nar/gkac538] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/06/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
Topoisomerase 3β (TOP3B) and TDRD3 form a dual-activity topoisomerase complex that interacts with FMRP and can change the topology of both DNA and RNA. Here, we investigated the post-transcriptional influence of TOP3B and associated proteins on mRNA translation and turnover. First, we discovered that in human HCT116 colon cancer cells, knock-out (KO) of TOP3B had similar effects on mRNA turnover and translation as did TDRD3-KO, while FMRP-KO resulted in rather distinct effects, indicating that TOP3B had stronger coordination with TDRD3 than FMRP in mRNA regulation. Second, we identified TOP3B-bound mRNAs in HCT116 cells; we found that while TOP3B did not directly influence the stability or translation of most TOP3B target mRNAs, it stabilized a subset of target mRNAs but had a more complex effect on translation-enhancing for some mRNAs whereas reducing for others. Interestingly, a point mutation that specifically disrupted TOP3B catalytic activity only partially recapitulated the effects of TOP3B-KO on mRNA stability and translation, suggesting that the impact of TOP3B on target mRNAs is partly linked to its ability to change topology of mRNAs. Collectively, our data suggest that TOP3B-TDRD3 can regulate mRNA translation and turnover by mechanisms that are dependent and independent of topoisomerase activity.
Collapse
Affiliation(s)
- Shuaikun Su
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yutong Xue
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Alexei Sharov
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Seung Kyu Lee
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Wen Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 1000871, China
| | - Wai Lim Ku
- System Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keji Zhao
- System Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Weiping Shen
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dongyi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 1000871, China
| | - Weidong Wang
- To whom correspondence should be addressed. Tel: +1 410 454 8418; Fax: +1 410 558 8331.
| |
Collapse
|
14
|
Yang N, Srivastav SP, Rahman R, Ma Q, Dayama G, Li S, Chinen M, Lei EP, Rosbash M, Lau NC. Transposable element landscapes in aging Drosophila. PLoS Genet 2022; 18:e1010024. [PMID: 35239675 PMCID: PMC8893327 DOI: 10.1371/journal.pgen.1010024] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022] Open
Abstract
Genetic mechanisms that repress transposable elements (TEs) in young animals decline during aging, as reflected by increased TE expression in aged animals. Does increased TE expression during aging lead to more genomic TE copies in older animals? To address this question, we quantified TE Landscapes (TLs) via whole genome sequencing of young and aged Drosophila strains of wild-type and mutant backgrounds. We quantified TLs in whole flies and dissected brains and validated the feasibility of our approach in detecting new TE insertions in aging Drosophila genomes when small RNA and RNA interference (RNAi) pathways are compromised. We also describe improved sequencing methods to quantify extra-chromosomal DNA circles (eccDNAs) in Drosophila as an additional source of TE copies that accumulate during aging. Lastly, to combat the natural progression of aging-associated TE expression, we show that knocking down PAF1, a conserved transcription elongation factor that antagonizes RNAi pathways, may bolster suppression of TEs during aging and extend lifespan. Our study suggests that in addition to a possible influence by different genetic backgrounds, small RNA and RNAi mechanisms may mitigate genomic TL expansion despite the increase in TE transcripts during aging. Transposable elements, also called transposons, are genetic parasites found in all animal genomes. Normally, transposons are compacted away in silent chromatin in young animals. But, as animals age and transposon-silencing defense mechanisms break down, transposon RNAs accumulate to significant levels in old animals like fruit flies. An open question is whether the increased levels of transposon RNAs in older animals also correspond to increased genomic copies of transposons. This study approached this question by sequencing the whole genomes of young and old wild-type and mutant flies lacking a functional RNA interference (RNAi) pathway, which naturally silences transposon RNAs. Although the wild-type flies with intact RNAi activity had little new accumulation of transposon copies, the sequencing approach was able to detect several transposon accumulation occurrences in some RNAi mutants. In addition, we found that some fly transposon families can also accumulate as extra-chromosomal circular DNA copies. Lastly, we showed that genetically augmenting the expression of RNAi factors can counteract the rising transposon RNA levels in aging and promote longevity. This study improves our understanding of the animal host genome relationship with transposons during natural aging processes.
Collapse
Affiliation(s)
- Nachen Yang
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Satyam P. Srivastav
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Reazur Rahman
- Brandeis University, Department of Biology and Howard Hughes Medical Institute, Waltham, Massachusetts, United States of America
| | - Qicheng Ma
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Gargi Dayama
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Sizheng Li
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Madoka Chinen
- Nuclear Organization and Gene Expression Section, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Elissa P. Lei
- Nuclear Organization and Gene Expression Section, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Michael Rosbash
- Brandeis University, Department of Biology and Howard Hughes Medical Institute, Waltham, Massachusetts, United States of America
| | - Nelson C. Lau
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
- Boston University Genome Science Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Cristini A, Géraud M, Sordet O. Transcription-associated DNA breaks and cancer: A matter of DNA topology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:195-240. [PMID: 34507784 DOI: 10.1016/bs.ircmb.2021.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcription is an essential cellular process but also a major threat to genome integrity. Transcription-associated DNA breaks are particularly detrimental as their defective repair can induce gene mutations and oncogenic chromosomal translocations, which are hallmarks of cancer. The past few years have revealed that transcriptional breaks mainly originate from DNA topological problems generated by the transcribing RNA polymerases. Defective removal of transcription-induced DNA torsional stress impacts on transcription itself and promotes secondary DNA structures, such as R-loops, which can induce DNA breaks and genome instability. Paradoxically, as they relax DNA during transcription, topoisomerase enzymes introduce DNA breaks that can also endanger genome integrity. Stabilization of topoisomerases on chromatin by various anticancer drugs or by DNA alterations, can interfere with transcription machinery and cause permanent DNA breaks and R-loops. Here, we review the role of transcription in mediating DNA breaks, and discuss how deregulation of topoisomerase activity can impact on transcription and DNA break formation, and its connection with cancer.
Collapse
Affiliation(s)
- Agnese Cristini
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.
| | - Mathéa Géraud
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France
| | - Olivier Sordet
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.
| |
Collapse
|
16
|
Titus MB, Wright EG, Bono JM, Poliakon AK, Goldstein BR, Super MK, Young LA, Manaj M, Litchford M, Reist NE, Killian DJ, Olesnicky EC. The conserved alternative splicing factor caper regulates neuromuscular phenotypes during development and aging. Dev Biol 2021; 473:15-32. [PMID: 33508255 PMCID: PMC7987824 DOI: 10.1016/j.ydbio.2021.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
RNA-binding proteins play an important role in the regulation of post-transcriptional gene expression throughout the nervous system. This is underscored by the prevalence of mutations in genes encoding RNA splicing factors and other RNA-binding proteins in a number of neurodegenerative and neurodevelopmental disorders. The highly conserved alternative splicing factor Caper is widely expressed throughout the developing embryo and functions in the development of various sensory neural subtypes in the Drosophila peripheral nervous system. Here we find that caper dysfunction leads to aberrant neuromuscular junction morphogenesis, as well as aberrant locomotor behavior during larval and adult stages. Despite its widespread expression, our results indicate that caper function is required to a greater extent within the nervous system, as opposed to muscle, for neuromuscular junction development and for the regulation of adult locomotor behavior. Moreover, we find that Caper interacts with the RNA-binding protein Fmrp to regulate adult locomotor behavior. Finally, we show that caper dysfunction leads to various phenotypes that have both a sex and age bias, both of which are commonly seen in neurodegenerative disorders in humans.
Collapse
Affiliation(s)
- M Brandon Titus
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Ethan G Wright
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Jeremy M Bono
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Andrea K Poliakon
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Brandon R Goldstein
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Meg K Super
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Lauren A Young
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Melpomeni Manaj
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Morgan Litchford
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Noreen E Reist
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Darrell J Killian
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, 80903, USA
| | - Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA.
| |
Collapse
|
17
|
Richter JD, Zhao X. The molecular biology of FMRP: new insights into fragile X syndrome. Nat Rev Neurosci 2021; 22:209-222. [PMID: 33608673 PMCID: PMC8094212 DOI: 10.1038/s41583-021-00432-0] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 01/31/2023]
Abstract
Fragile X mental retardation protein (FMRP) is the product of the fragile X mental retardation 1 gene (FMR1), a gene that - when epigenetically inactivated by a triplet nucleotide repeat expansion - causes the neurodevelopmental disorder fragile X syndrome (FXS). FMRP is a widely expressed RNA-binding protein with activity that is essential for proper synaptic plasticity and architecture, aspects of neural function that are known to go awry in FXS. Although the neurophysiology of FXS has been described in remarkable detail, research focusing on the molecular biology of FMRP has only scratched the surface. For more than two decades, FMRP has been well established as a translational repressor; however, recent whole transcriptome and translatome analyses in mouse and human models of FXS have shown that FMRP is involved in the regulation of nearly all aspects of gene expression. The emerging mechanistic details of the mechanisms by which FMRP regulates gene expression may offer ways to design new therapies for FXS.
Collapse
Affiliation(s)
- Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
18
|
Saha S, Sun Y, Huang SYN, Baechler SA, Pongor LS, Agama K, Jo U, Zhang H, Tse-Dinh YC, Pommier Y. DNA and RNA Cleavage Complexes and Repair Pathway for TOP3B RNA- and DNA-Protein Crosslinks. Cell Rep 2020; 33:108569. [PMID: 33378676 PMCID: PMC7859927 DOI: 10.1016/j.celrep.2020.108569] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
The present study demonstrates that topoisomerase 3B (TOP3B) forms both RNA and DNA cleavage complexes (TOP3Bccs) in vivo and reveals a pathway for repairing TOP3Bccs. For inducing and detecting cellular TOP3Bccs, we engineer a “self-trapping” mutant of TOP3B (R338W-TOP3B). Transfection with R338W-TOP3B induces R-loops, genomic damage, and growth defect, which highlights the importance of TOP3Bcc repair mechanisms. To determine how cells repair TOP3Bccs, we deplete tyrosyl-DNA phosphodiesterases (TDP1 and TDP2). TDP2-deficient cells show elevated TOP3Bccs both in DNA and RNA. Conversely, overexpression of TDP2 lowers cellular TOP3Bccs. Using recombinant human TDP2, we demonstrate that TDP2 can process both denatured and proteolyzed TOP3Bccs. We also show that cellular TOP3Bccs are ubiquitinated by the E3 ligase TRIM41 before undergoing proteasomal processing and excision by TDP2. Saha et al. introduce an approach to generate and detect the catalytic intermediates of TOP3B in DNA and RNA by engineering a self-poisoning enzyme, R338W-TOP3B. They reveal the cellular consequences of abortive TOP3Bcc formation and a repair pathway involving TRIM41, the proteasome, and TDP2 for processing of TOP3Bcc.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yilun Sun
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Simone Andrea Baechler
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Lorinc Sandor Pongor
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Keli Agama
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ukhyun Jo
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hongliang Zhang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yuk-Ching Tse-Dinh
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Dasgupta T, Ferdous S, Tse-Dinh YC. Mechanism of Type IA Topoisomerases. Molecules 2020; 25:E4769. [PMID: 33080770 PMCID: PMC7587558 DOI: 10.3390/molecules25204769] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022] Open
Abstract
Topoisomerases in the type IA subfamily can catalyze change in topology for both DNA and RNA substrates. A type IA topoisomerase may have been present in a last universal common ancestor (LUCA) with an RNA genome. Type IA topoisomerases have since evolved to catalyze the resolution of topological barriers encountered by genomes that require the passing of nucleic acid strand(s) through a break on a single DNA or RNA strand. Here, based on available structural and biochemical data, we discuss how a type IA topoisomerase may recognize and bind single-stranded DNA or RNA to initiate its required catalytic function. Active site residues assist in the nucleophilic attack of a phosphodiester bond between two nucleotides to form a covalent intermediate with a 5'-phosphotyrosine linkage to the cleaved nucleic acid. A divalent ion interaction helps to position the 3'-hydroxyl group at the precise location required for the cleaved phosphodiester bond to be rejoined following the passage of another nucleic acid strand through the break. In addition to type IA topoisomerase structures observed by X-ray crystallography, we now have evidence from biophysical studies for the dynamic conformations that are required for type IA topoisomerases to catalyze the change in the topology of the nucleic acid substrates.
Collapse
Affiliation(s)
- Tumpa Dasgupta
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (T.D.); (S.F.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Biochemistry PhD Program, Florida International University, Miami, FL 33199, USA
| | - Shomita Ferdous
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (T.D.); (S.F.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Biochemistry PhD Program, Florida International University, Miami, FL 33199, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (T.D.); (S.F.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
20
|
Joo Y, Xue Y, Wang Y, McDevitt RA, Sah N, Bossi S, Su S, Lee SK, Peng W, Xie A, Zhang Y, Ding Y, Ku WL, Ghosh S, Fishbein K, Shen W, Spencer R, Becker K, Zhao K, Mattson MP, van Praag H, Sharov A, Wang W. Topoisomerase 3β knockout mice show transcriptional and behavioural impairments associated with neurogenesis and synaptic plasticity. Nat Commun 2020; 11:3143. [PMID: 32561719 PMCID: PMC7305123 DOI: 10.1038/s41467-020-16884-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 05/26/2020] [Indexed: 12/16/2022] Open
Abstract
Topoisomerase 3β (Top3β) is the only dual-activity topoisomerase in animals that can change topology for both DNA and RNA, and facilitate transcription on DNA and translation on mRNAs. Top3β mutations have been linked to schizophrenia, autism, epilepsy, and cognitive impairment. Here we show that Top3β knockout mice exhibit behavioural phenotypes related to psychiatric disorders and cognitive impairment. The mice also display impairments in hippocampal neurogenesis and synaptic plasticity. Notably, the brains of the mutant mice exhibit impaired global neuronal activity-dependent transcription in response to fear conditioning stress, and the affected genes include many with known neuronal functions. Our data suggest that Top3β is essential for normal brain function, and that defective neuronal activity-dependent transcription may be a mechanism by which Top3β deletion causes cognitive impairment and psychiatric disorders.
Collapse
Affiliation(s)
- Yuyoung Joo
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yutong Xue
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yue Wang
- Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ross A McDevitt
- The Comparative Medicine Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Nirnath Sah
- Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Simone Bossi
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Shuaikun Su
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Seung Kyu Lee
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Wei Peng
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Aoji Xie
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yi Ding
- Laboratory of Epigenome Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wai Lim Ku
- Laboratory of Epigenome Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Soumita Ghosh
- Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kenneth Fishbein
- Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Weiping Shen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Richard Spencer
- Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kevin Becker
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mark P Mattson
- Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Henriette van Praag
- Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Brain Institute and Charles E. Schmidt College of Medicine, Jupiter, FL, 33458, USA
| | - Alexei Sharov
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
21
|
Cao N, Tan K, Zuo X, Annamalai T, Tse-Dinh YC. Mechanistic insights from structure of Mycobacterium smegmatis topoisomerase I with ssDNA bound to both N- and C-terminal domains. Nucleic Acids Res 2020; 48:4448-4462. [PMID: 32232337 PMCID: PMC7192597 DOI: 10.1093/nar/gkaa201] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/20/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
Type IA topoisomerases interact with G-strand and T-strand ssDNA to regulate DNA topology. However, simultaneous binding of two ssDNA segments to a type IA topoisomerase has not been observed previously. We report here the crystal structure of a type IA topoisomerase with ssDNA segments bound in opposite polarity to the N- and C-terminal domains. Titration of small ssDNA oligonucleotides to Mycobacterium smegmatis topoisomerase I with progressive C-terminal deletions showed that the C-terminal region has higher affinity for ssDNA than the N-terminal active site. This allows the C-terminal domains to capture one strand of underwound negatively supercoiled DNA substrate first and position the N-terminal domains to bind and cleave the opposite strand in the relaxation reaction. Efficiency of negative supercoiling relaxation increases with the number of domains that bind ssDNA primarily with conserved aromatic residues and possibly with assistance from polar/basic residues. A comparison of bacterial topoisomerase I structures showed that a conserved transesterification unit (N-terminal toroid structure) for cutting and rejoining of a ssDNA strand can be combined with two different types of C-terminal ssDNA binding domains to form diverse bacterial topoisomerase I enzymes that are highly efficient in their physiological role of preventing excess negative supercoiling in the genome.
Collapse
Affiliation(s)
- Nan Cao
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8 St, Miami, FL 33199, USA
| | - Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA
| | - Xiaobing Zuo
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA
| | - Thirunavukkarasu Annamalai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8 St, Miami, FL 33199, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8 St, Miami, FL 33199, USA
| |
Collapse
|
22
|
Abstract
The double-helical structure of genomic DNA is both elegant and functional in that it serves both to protect vulnerable DNA bases and to facilitate DNA replication and compaction. However, these design advantages come at the cost of having to evolve and maintain a cellular machinery that can manipulate a long polymeric molecule that readily becomes topologically entangled whenever it has to be opened for translation, replication, or repair. If such a machinery fails to eliminate detrimental topological entanglements, utilization of the information stored in the DNA double helix is compromised. As a consequence, the use of B-form DNA as the carrier of genetic information must have co-evolved with a means to manipulate its complex topology. This duty is performed by DNA topoisomerases, which therefore are, unsurprisingly, ubiquitous in all kingdoms of life. In this review, we focus on how DNA topoisomerases catalyze their impressive range of DNA-conjuring tricks, with a particular emphasis on DNA topoisomerase III (TOP3). Once thought to be the most unremarkable of topoisomerases, the many lives of these type IA topoisomerases are now being progressively revealed. This research interest is driven by a realization that their substrate versatility and their ability to engage in intimate collaborations with translocases and other DNA-processing enzymes are far more extensive and impressive than was thought hitherto. This, coupled with the recent associations of TOP3s with developmental and neurological pathologies in humans, is clearly making us reconsider their undeserved reputation as being unexceptional enzymes.
Collapse
Affiliation(s)
- Anna H Bizard
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
23
|
Zhang T, Wallis M, Petrovic V, Challis J, Kalitsis P, Hudson DF. Loss of TOP3B leads to increased R-loop formation and genome instability. Open Biol 2019; 9:190222. [PMID: 31795919 PMCID: PMC6936252 DOI: 10.1098/rsob.190222] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/01/2019] [Indexed: 12/19/2022] Open
Abstract
Topoisomerase III beta (TOP3B) is one of the least understood members of the topoisomerase family of proteins and remains enigmatic. Our recent data shed light on the function and relevance of TOP3B to disease. A homozygous deletion for the TOP3B gene was identified in a patient with bilateral renal cancer. Analyses in both patient and modelled human cells show the disruption of TOP3B causes genome instability with a rise in DNA damage and chromosome bridging (mis-segregation). The primary molecular defect underlying this pathology is a significant increase in R-loop formation. Our data show that TOP3B is necessary to prevent the accumulation of excessive R-loops and identify TOP3B as a putative cancer gene, and support recent data showing that R-loops are involved in cancer aetiology.
Collapse
Affiliation(s)
- Tao Zhang
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Services, Royal Hobart Hospital, Hobart, Tasmania 7001, Australia
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Vida Petrovic
- Cytogenetics Department, Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Jackie Challis
- Cytogenetics Department, Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Paul Kalitsis
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
- Cytogenetics Department, Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Damien F. Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| |
Collapse
|
24
|
Roles of Topoisomerases in Heterochromatin, Aging, and Diseases. Genes (Basel) 2019; 10:genes10110884. [PMID: 31683993 PMCID: PMC6896002 DOI: 10.3390/genes10110884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
Heterochromatin is a transcriptionally repressive chromatin architecture that has a low abundance of genes but an enrichment of transposons. Defects in heterochromatin can cause the de-repression of genes and transposons, leading to deleterious physiological changes such as aging, cancer, and neurological disorders. While the roles of topoisomerases in many DNA-based processes have been investigated and reviewed, their roles in heterochromatin formation and function are only beginning to be understood. In this review, we discuss recent findings on how topoisomerases can promote heterochromatin organization and impact the transcription of genes and transposons. We will focus on two topoisomerases: Top2α, which catenates and decatenates double-stranded DNA, and Top3β, which can change the topology of not only DNA, but also RNA. Both enzymes are required for normal heterochromatin formation and function, as the inactivation of either protein by genetic mutations or chemical inhibitors can result in defective heterochromatin formation and the de-silencing of transposons. These defects may contribute to the shortened lifespan and neurological disorders observed in individuals carrying mutations of Top3β. We propose that topological stress may be generated in both DNA and RNA during heterochromatin formation and function, which depend on multiple topoisomerases to resolve.
Collapse
|