1
|
Liao JF, Zhang Z, Wang G, Zhou L, Yi N, Tang Z, Xing G. Oriented Growth of Highly Emissive Manganese Halide Microrods for Dual-Mode Low-Loss Optical Waveguides. Angew Chem Int Ed Engl 2025; 64:e202419085. [PMID: 39379792 DOI: 10.1002/anie.202419085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Zero-dimensional (0D) structured lead-free metal halides have recently attracted widespread attention due to their high photoluminescence quantum yield (PLQY) and negligible self-absorption, showing enormous potential as optical waveguides towards miniaturized photonic devices. However, due to the great difficulty in growth of rod-like nano/micro-sized morphologies, such applications have been less explored. Herein, a new-type emissive organic-inorganic manganese (II) halide crystal (TPS2MnCl4, TPS=C18H15S, triphenylsulfonium) in the form of microrods is synthesized via a facile chloride ion (Cl-) induced oriented growth method. Due to a combination of attractive features such as a high PLQY of 86 %, negligible self-absorption and smooth crystal surface, TPS2MnCl4 microrods are well suited for use in optical waveguide with an ultra-low optical loss coefficient of 1.20 ⋅ 10-4 dB μm-1, superior to that of most organic-inorganic metal halide hybrids, organic materials, polymers and metal nanoclusters to the best of our knowledge. Importantly, TPS2MnCl4 microrods can further work as dual-mode optical waveguides, combining active and passive light transmission functionalities in one single crystal. In addition, TPS2MnCl4 microrods also display remarkable performance in lighting and anti-counterfeiting due to their distinct optical properties and commendable stability.
Collapse
Affiliation(s)
- Jin-Feng Liao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Zhipeng Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Gang Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Lei Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Ningbo Yi
- School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macau, 999078, P. R. China
| |
Collapse
|
2
|
Xie Z, Liu D, Gao C, Zhang X, Dong H, Hu W. High Mobility Emissive Organic Semiconductors for Optoelectronic Devices. J Am Chem Soc 2025; 147:2239-2256. [PMID: 39792593 DOI: 10.1021/jacs.4c11208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
High mobility emissive organic semiconductors (HMEOSCs) are a kind of unique semiconducting material that simultaneously integrates high charge carrier mobility and strong emission features, which are not only crucial for overcoming the performance bottlenecks of current organic optoelectronic devices but also important for constructing high-density integrated devices/circuits for potential smart display technologies and electrically pumped organic lasers. However, the development of HMEOSCs is facing great challenges due to the mutually exclusive requirements of molecular structures and packing modes between high charge carrier mobility and strong solid-state emission. Encouragingly, considerable advances on HMEOSCs have been made with continuous efforts, and the successful integration of these two properties within individual organic semiconductors currently presents a promising research direction in organic electronics. Representative progress, including the molecular design of HMEOSCs, and the exploration of their applications in photoelectric conversion devices and electroluminescent devices, especially organic photovoltaic cells, organic light-emitting diodes, and organic light-emitting transistors, are summarized in a timely manner. The current challenges of developing HMEOSCs and their potential applications in other related devices including electrically pumped organic lasers, spin organic light-emitting transistors are also discussed. We hope that this perspective will boost the rapid development of HMEOSCs with a new mechanism understanding and their wide applications in different fields entering a new stage.
Collapse
Affiliation(s)
- Ziyi Xie
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Can Gao
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
3
|
Zhang X, Song XF, Jiang S, Yao YG, Chang X, Gao Y, Li K, Chen Y. Two-Coordinate Gold(I) Complex with Rotational Freedom: A Platform Integrating Thermally Activated Delayed Fluorescence, Polymorphism, and Linearly Polarized Luminescence. Angew Chem Int Ed Engl 2025; 64:e202414892. [PMID: 39258945 DOI: 10.1002/anie.202414892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/12/2024]
Abstract
Two-coordinate coinage metal complexes have been exploited for various applications. Herein, a new donor-metal-acceptor (D-M-A) complex PZI-Au-TOT, using bulky pyrazine-fused N-heterocyclic carbene (PZI) and trioxytriphenylamine (TOT) ligands, was synthesized. PZI-Au-TOT displays decent thermally activated delayed fluorescence (TADF) with a quantum yield of 93 % in doped film. The crystals of PZI-Au-TOT show simultaneous TADF, polymorphism, and linearly polarized luminescence (LPL). The polymorph-dependent emission properties with widely varied peaks from 560 to 655 nm are attributed to different packing modes in terms of isolated monomers, discrete π-π stacked dimers or dimer PLUS. Two well-defined microcrystals of PZI-Au-TOT exhibit linearly polarized thermally activated delayed fluorescence with a degree of polarization up to 0.64. This work demonstrates that the molecular rotational flexibility of D-M-A type complexes endows an integration of multiple functions into one complex through manipulation of supramolecular aggregation. This type of complexes is expected to serve as a versatile platform for the fabrication of crystal materials for advanced photonic applications.
Collapse
Affiliation(s)
- Xi Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xiu-Fang Song
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P.R. China
| | - Shan Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yi-Ge Yao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, P.R. China
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Yunan Gao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, P.R. China
| | - Kai Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P.R. China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
4
|
Vinod Kumar A, Pattanayak P, Khapre A, Nandi A, Purkayastha P, Chandrasekar R. Capturing the Interplay Between TADF and RTP Through Mechanically Flexible Polymorphic Optical Waveguides. Angew Chem Int Ed Engl 2024; 63:e202411054. [PMID: 38924274 DOI: 10.1002/anie.202411054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Polymorphism plays a pivotal role in generating a range of crystalline materials with diverse photophysical and mechanical attributes, all originating from the same molecule. Here, we showcase two distinct polymorphs: green (GY) emissive and orange (OR) emissive crystals of 5'-(4-(diphenylamino)phenyl)-[2,2'-bithiophene]-5-carbaldehyde (TPA-CHO). These polymorphs display differing optical characteristics, with GY exhibiting thermally activated delayed fluorescence (TADF) and OR showing room temperature phosphorescence (RTP). Additionally, both polymorphic crystals display mechanical flexibility and optical waveguiding capabilities. Leveraging the AFM-tip-based mechanophotonics technique, we position the GY optical waveguide at varying lengths perpendicular to the OR waveguide. This approach facilitates the exploration of the interplay between TADF and RTP phenomena by judiciously controlling the optical path length of crystal waveguides. Essentially, our approach provides a clear pathway for understanding and controlling the photophysical processes in organic molecular crystals, paving the way for advancements in polymorphic crystal-based photonic circuit technologies.
Collapse
Affiliation(s)
- Avulu Vinod Kumar
- Advanced Photonic Materials and Technology Laboratory, School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Pradip Pattanayak
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, West Bengal, India
| | - Ankur Khapre
- Advanced Photonic Materials and Technology Laboratory, School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Arnab Nandi
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, West Bengal, India
| | - Pradipta Purkayastha
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, West Bengal, India
| | - Rajadurai Chandrasekar
- Advanced Photonic Materials and Technology Laboratory, School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046, Telangana, India
| |
Collapse
|
5
|
Pan X, Lan L, Zhang H. Flexible organic crystals with multi-stimuli-responsive CPL for broadband multicolor optical waveguides. Chem Sci 2024:d4sc05005c. [PMID: 39371458 PMCID: PMC11447684 DOI: 10.1039/d4sc05005c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
Flexible organic crystals, capable of transmitting light and responding to various external stimuli, are emerging as a new frontier in optoelectronic materials. They hold immense potential for applications in molecular machines, sensors, displays, and intelligent devices. Here, we report on flexible organic crystals based on single-component enantiomeric organic compounds, demonstrating multi-stimuli-responsive circularly polarized light (CPL). These crystals exhibit remarkable elasticity, responsiveness to light and acid vapors, and tunable circularly polarized optical signals. Upon exposure to acid vapors, the fluorescence of the crystals shifts from initial yellow emission to green emission, attributable to the protonation-induced inhibition of excited-state intramolecular proton transfer. Under UV irradiation, the fluorescence emission undergoes a red-shift, resulting from the molecular transformation from an enol configuration to a ketone configuration. Notably, both processes are reversible and can be restored under daylight. The integration of reversible fluorescence changes under light and acid vapors stimuli, CPL signals, and flexible optical waveguides within a single crystal paves the way for the application of organic crystals as all-organic chiral functional materials.
Collapse
Affiliation(s)
- Xiuhong Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Qianjin Street Changchun 130012 P. R. China
| | - Linfeng Lan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Qianjin Street Changchun 130012 P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
6
|
Di Q, Al-Handawi MB, Li L, Naumov P, Zhang H. A Thermosalient and Mechanically Compliant Organic Crystalline Optical Waveguide Switcher. Angew Chem Int Ed Engl 2024; 63:e202403914. [PMID: 38658315 DOI: 10.1002/anie.202403914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
The dense and ordered molecular arrangements endow dynamic molecular crystals with fast response, rapid energy conversion, low energy dissipation, and strong coupling between heat/light and mechanical energy. Most of the known dynamic crystals can only respond to a single stimulus, and materials that can respond to multiple stimuli are rare. Here, we report an organic crystalline material that can be bent plastically and is also thermosalient, as its crystals can move when they undergo a reversible phase transition. The crystals transmit light regardless of their shape or crystalline phase. The combination of light transduction and reversible thermomechanical deformation provides an opportunity to switch the waveguiding capability of the material in a narrow temperature range, which holds a tremendous potential for applications in heat-averse electronic components, such as central processing units. Unlike existing electronics, the material we report here is completely organic and therefore much lighter, potentially reducing the overall weight of electronic circuits.
Collapse
Affiliation(s)
- Qi Di
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | | | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, 38044, Abu Dhabi, UAE
- Department of Science and Engineering, Sorbonne University Abu Dhabi, 38044, Abu Dhabi, UAE
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, 38044, Abu Dhabi, UAE
- Center for Smart Engineering Materials, New York University Abu Dhabi, 129188, Abu Dhabi, UAE
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, MK-1000, Skopje, Macedonia
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, 10003, New York, USA
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| |
Collapse
|
7
|
Tardío C, Donoso B, Fernández P, Torres-Moya I. Rational Design of a Multifunctional Benzothiadiazole Derivative in Organic Photonics and Electronics. Chemistry 2023; 29:e202302524. [PMID: 37811670 DOI: 10.1002/chem.202302524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/10/2023]
Abstract
In order to achieve a multifunctional compound with potential application in organic photonics and electronics, a multidonor benzothiadiazole derivative was rationally designed and synthesized employing microwave irradiation as energy source, increasing the process efficiency about yields and reaction times in comparison with conventional conditions. This powerful compound displayed solvatochromism and showed efficient behavior as red optical waveguide with low OLC around 10-2 dB μm-1 and with the capacity of light transmission in two directions. In addition, the proposed derivative acted as efficient p-type semiconductor in organic field-effect transistors (OFETs) with hole mobilities up 10-1 cm2 V-1 s-1 . This corroborates its multifunctional character, thus making it a potential candidate to be applied in hybrid organic field-effect optical waveguides (OFEWs).
Collapse
Affiliation(s)
- Carlos Tardío
- Department of Inorganic, Organic Chemistry and Biochemistry. Faculty of Chemical Science and Technologies, University of Castilla-La Mancha-IRICA, 13071, Ciudad Real, Spain
| | - Beatriz Donoso
- Department of Organic Chemistry, Faculty of Sciences, Campus of Fuentenueva, University of Granada, 18071, Granada, Spain
| | - Pablo Fernández
- Department of Inorganic, Organic Chemistry and Biochemistry. Faculty of Chemical Science and Technologies, University of Castilla-La Mancha-IRICA, 13071, Ciudad Real, Spain
| | - Iván Torres-Moya
- Department of Organic Chemistry. Faculty of Chemical Sciences. Campus of Espinardo, University of Murcia, 30100, Murcia, Spain
| |
Collapse
|
8
|
Qin Z, Wang T, Gao H, Li Y, Dong H, Hu W. Organic Polarized Light-Emitting Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301955. [PMID: 37358028 DOI: 10.1002/adma.202301955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/13/2023] [Indexed: 06/27/2023]
Abstract
Electrically driven polarized light-emitting sources are central to various applications including quantum computers, optical communication, and 3D displays, but serious challenges remain due to the inevitable incorporation of complex optical elements in conventional devices. Here, organic polarized light-emitting transistors (OPLETs), a kind of novel device that integrates the functions of organic field-effect transistors, organic light-emitting diodes, and polarizers into one unique device, are demonstrated with a degree of polarization (DOP) as high as 0.97, which is comparable to completely linearly polarized light (DOP = 1). Under the modulation of gate voltage, robust and efficient polarization emission is proven, ascribed to the intrinsic in-plane anisotropy of the molecular transition dipole moment in organic semiconductors and the open-ended feature of OPLETs instead of other factors. As a result, high-contrast optical imaging and anti-counterfeiting security are successfully demonstrated based on OPLETs, establishing a new direction for photonic and electronic integration toward on-chip miniaturized optoelectronic applications.
Collapse
Affiliation(s)
- Zhengsheng Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Haikuo Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yang Li
- Normal College, Shenyang University, Shenyang, 110044, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
9
|
Wan R, Mankus D, Lee WS, Lytton-Jean AKR, Tisdale WA, Dincă M. Dipole-Dependent Waveguiding in an Anisotropic Metal-Organic Framework. J Am Chem Soc 2023; 145:19042-19048. [PMID: 37605330 DOI: 10.1021/jacs.3c06678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The interaction between excitons and photons underlies a range of emergent technologies, such as directional light emission, molecular lasers, photonic circuits, and polaritonic devices. Two of the key parameters that impact exciton-photon coupling are the binding energy of excitons and the relative orientations between the exciton dipole and photon field. Tightly bound excitons are typically found in molecular crystals, where nevertheless the angular relationship of excitons with photon fields is difficult to control. Here, we demonstrate directional exciton dipoles and photon fields, anchored by metal-ligand coordination. In a pyrene-porphyrin bichromophoric metal-organic framework (MOF), we observe that the perpendicular arrangement of the pyrene- and porphyrin-based exciton dipoles engenders orthogonal polarizations of their respective emissions. The alignment of the directional exciton and photon fields gives rise to an anisotropic waveguide effect, where the pyrene- and the porphyrin-based emissions show distinct spatial distribution within microplate-shaped MOF crystals. This capability to simultaneously host heterogenous excitonic states and anisotropic photon fields points toward MOFs' yet-to-be-realized potential as a platform for advancing the frontier in the field of exciton-photonics, which centers around engineering emergent properties from the interplay between excitons and photons.
Collapse
Affiliation(s)
- Ruomeng Wan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David Mankus
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Woo Seok Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Abigail K R Lytton-Jean
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Wu X, Gao C, Chen Q, Yan Y, Zhang G, Guo T, Chen H. High-performance vertical field-effect organic photovoltaics. Nat Commun 2023; 14:1579. [PMID: 36949063 PMCID: PMC10033512 DOI: 10.1038/s41467-023-37174-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Limited by the inherent energy loss (Eloss) in carrier transport process, the device efficiency of organic solar cells shows inferior to traditional inorganic photovoltaic devices. Generally, molecular design, morphology optimization and interfacial engineering are usually required to alleviate Eloss. Here, vertical field-effect organic photovoltaic (VFEOPV) by integrating an bulk-heterojunction (BHJ) organic photovoltaic (OPV) with vertical field effect transistor (VFET) is invented, in which VFET generates a large, uneven, internal electric field, eliminating the requirement for driving force to dissociate excitons and prevents non-radiative recombination in OPV. In this way, the performance of solar cell can be well controlled by the gate voltage of VFET and the Eloss of VFEOPVs based on J71: ITIC system is dramatically reduced below 0.2 eV, significantly improving power conversion efficiency (PCE) from 10% to 18% under gate voltage of 0.9 V, which only causes negligible additional power consumption (~10-4mJ/cm2). Besides, the device also exhibits multi-functionality including transistor and phototransistors with excellent photodector performance. This work provides a new and general strategy to improve the OPV performance which is compatible with present optimization methods, and can be applied to improve PCE of other types of solar cells such as Perovskite and inorganic solar cells.
Collapse
Affiliation(s)
- Xiaomin Wu
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, 350007, China
| | - Changsong Gao
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China
| | - Qizhen Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China
| | - Yujie Yan
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China
| | - Guocheng Zhang
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Research Center for Microelectronics Technology, Fujian University of Technology, Fuzhou, 350108, China
| | - Tailiang Guo
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China
| | - Huipeng Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China.
| |
Collapse
|
11
|
Lin HT, Ma YX, Chen S, Wang XD. Hierarchical Integration of Organic Core/Shell Microwires for Advanced Photonics. Angew Chem Int Ed Engl 2023; 62:e202214214. [PMID: 36351872 DOI: 10.1002/anie.202214214] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 11/11/2022]
Abstract
The combination of multiple components or structures into integrated micro/nanostructures for practical application has been pursued for many years. Herein, a series of hierarchical organic microwires with branch, core/shell (C/S), and branch C/S structures are successfully constructed based on organic charge transfer (CT) cocrystals with structural similarity and physicochemical tunability. By regulating the intermolecular CT interaction, single microwires and branch microstructures can be integrated into the C/S and branch C/S structures, respectively. Significantly, the integrated branch C/S microwires, with multicolor waveguide behavior and branch structure multichannel waveguide output characteristics, can function as an optical logic gate with multiple encoding features. This work provides useful insights for creating completely new types of organic microstructures for integrated optoelectronics.
Collapse
Affiliation(s)
- Hong-Tao Lin
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Ying-Xin Ma
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Song Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xue-Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
12
|
Shi Y, Lv Q, Tao Y, Ma Y, Wang X. Design and Growth of Branched Organic Crystals: Recent Advances and Future Applications. Angew Chem Int Ed Engl 2022; 61:e202208768. [DOI: 10.1002/anie.202208768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Ying‐Li Shi
- Department of Electrical and Electronic Engineering Xi'an Jiaotong-Liverpool University Suzhou Jiangsu 215123 P. R. China
| | - Qiang Lv
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Yi‐Chen Tao
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Ying‐Xin Ma
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo Shandong 255000 P. R. China
| | - Xue‐Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
13
|
Zhou S, Zhou L, Chen Y, Shen W, Li M, He R. Boosting Blue Emission of Organic Cations in a Sn(IV)-Based Perovskite by Constructing Intermolecular Interactions. J Phys Chem Lett 2022; 13:8717-8724. [PMID: 36094405 DOI: 10.1021/acs.jpclett.2c02413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Improving the photoluminescence (PL) efficiency of organic luminescent molecules is still a great challenge. Herein, a novel zero-dimensional Sn(IV)-based halide (C9H8N)2SnCl6 is prepared by assembling inactive quinoline cations and stable [SnCl6]2- polyhedra. Experimental characterizations and theoretical calculations show that the blue emission of (C9H8N)2SnCl6 centered at 433 nm is derived from the organic cations. Surprisingly, the PL efficiency of the as-prepared halide is nearly 50 times higher than that of the organic precursor and exhibits ultrahigh stability. Structural analysis shows that the introduction of inorganic clusters regulates the stacking mode of organic components and forms hydrogen bonds. This strong intermolecular interaction enhances the structural rigidity of (C9H8N)2SnCl6, inhibits concentration quenching and vibrational dissipation, and thus significantly improves the PL efficiency and stability of the organic cations. This work provides an important way to improve the PL performance and stability of organic species by constructing efficient intermolecular interactions.
Collapse
Affiliation(s)
- Shuigen Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Lei Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yihao Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wei Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Li J, Qin Z, Sun Y, Zhen Y, Liu J, Zou Y, Li C, Lu X, Jiang L, Zhang X, Ji D, Li L, Dong H, Hu W. Regulating Crystal Packing by Terminal
tert
‐Butylation for Enhanced Solid‐State Emission and Efficacious Charge Transport in an Anthracene‐Based Molecular Crystal. Angew Chem Int Ed Engl 2022; 61:e202206825. [DOI: 10.1002/anie.202206825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Zhengsheng Qin
- Beijing National Laboratory for Molecular Sciences Key laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yajing Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Yonggang Zhen
- Beijing National Laboratory for Molecular Sciences Key laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Jie Liu
- Beijing National Laboratory for Molecular Sciences Key laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Ye Zou
- Beijing National Laboratory for Molecular Sciences Key laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Chunlei Li
- Beijing National Laboratory for Molecular Sciences Key laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Xueying Lu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences Key laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Deyang Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Liqiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City 350207 China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences Key laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City 350207 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| |
Collapse
|
15
|
Hu W, Li J, Qin Z, Sun Y, Zhen Y, Liu J, Zou Y, Li C, Lu X, Jiang L, Zhang X, Ji D, Li L, Dong H. Regulating Crystal Packing by Terminal Tert‐butylation toward Enhanced Solid‐State Emission and Efficacious Charge Transport in an Anthracene‐based Molecular Crystal. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wenping Hu
- Tianjin University School of Science Weijin Road 92#Key Lab. of Molecular Optoelectronic ScienceThe 3rd Teaching Building, Weijin Campus, Weijin RoadNankai District 300072 Tianjin CHINA
| | - Jie Li
- Tianjin University Chemistry CHINA
| | - Zhengsheng Qin
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Chemistry CHINA
| | | | - Yonggang Zhen
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Chemistry CHINA
| | - Jie Liu
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Chemistry CHINA
| | - Ye Zou
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Chemistry CHINA
| | - Chunlei Li
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Chemistry CHINA
| | | | - Lang Jiang
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Chemistry CHINA
| | | | | | | | - Huanli Dong
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Chemistry CHINA
| |
Collapse
|
16
|
Li Z, Ma D, Xu F, Dan T, Gong Z, Shao J, Zhao YS, Yao J, Zhong Y. Selective, Anisotropic, or Consistent Polarized‐Photon Out‐Coupling of 2D Organic Microcrystals. Angew Chem Int Ed Engl 2022; 61:e202205033. [DOI: 10.1002/anie.202205033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Zhong‐Qiu Li
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Dian‐Xue Ma
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Fa‐Feng Xu
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Ti‐Xiong Dan
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhong‐Liang Gong
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Jiang‐Yang Shao
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiannian Yao
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Yu‐Wu Zhong
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
17
|
Shi YL, Lv Q, Tao YC, Ma YX, Wang XD. Design and Growth of Branched Organic Crystals: Recent Advances and Future Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ying-Li Shi
- The University of Hong Kong Physics The University of Hong Kong 999077 Hong Kong HONG KONG
| | - Qiang Lv
- Soochow University Institute of Functional Nano & Soft Materials (FUNSOM) CHINA
| | - Yi-Chen Tao
- Soochow University Institute of Functional Nano & Soft Materials (FUNSOM) CHINA
| | - Ying-Xin Ma
- Shandong University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Xue-Dong Wang
- Soochow University Institute of Functional Nano and Soft Materials 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, Jiangsu 215123 Suzhou CHINA
| |
Collapse
|
18
|
Liu D, Wu X, Gao C, Li C, Zheng Y, Li Y, Xie Z, Ji D, Liu X, Zhang X, Li L, Peng Q, Hu W, Dong H. Integrating Unexpected High Charge-Carrier Mobility and Low-Threshold Lasing Action in an Organic Semiconductor. Angew Chem Int Ed Engl 2022; 61:e202200791. [PMID: 35298062 DOI: 10.1002/anie.202200791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 12/17/2022]
Abstract
Integrating high charge-carrier mobility and low-threshold lasing action in an organic semiconductor is crucial for the realization of an electrically pumped laser, but remains a great challenge. Herein, we present an organic semiconductor, named as 2,7-di(2-naphthyl)-9H-fluorene (LD-2), which shows an unexpected high charge-carrier mobility of 2.7 cm2 V-1 s-1 and low-threshold lasing characteristic of 9.43 μJ cm-2 and 9.93 μJ cm-2 and high-quality factor (Q) of 2131 and 1684 at emission peaks of 420 and 443 nm, respectively. Detailed theoretical calculations and photophysical data analysis demonstrate that a large intermolecular transfer integral of 10.36-45.16 meV together with a fast radiative transition rate of 8.0×108 s-1 are responsible for the achievement of the superior integrated optoelectronic properties in the LD-2 crystal. These optoelectronic performances of LD-2 are among the highest reported low-threshold lasing organic semiconductors with efficient charge transport, suggesting its promise for research of electrically pumped organic lasers (EPOLs).
Collapse
Affiliation(s)
- Dan Liu
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianxin Wu
- University of Chinese Academy of Sciences, Beijing, 100049, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Can Gao
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenguang Li
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Yingshuang Zheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yang Li
- Normal College, Shenyang University, Shenyang, 110044, China
| | - Ziyi Xie
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deyang Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Xinfeng Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Liqiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Qian Peng
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), Tianjin, 300072, China
| | - Huanli Dong
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
19
|
Zhao Y, Feng J, Chen G, Wu JJ, Wang XD, Jiang L, Wu Y. Deterministic Assembly of Colloidal Quantum Dots for Multifunctional Integrated Photonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110695. [PMID: 35411618 DOI: 10.1002/adma.202110695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Colloidal quantum dots (CQDs) are promising for photonic applications toward lasers, waveguides, and photodetectors. However, integration of high-quality photonic elements into multifunctional devices is still restricted by optical losses stemming from the accumulation of defects and disorder in the solution process. Herein, a platform with a directional Laplace pressure is created for eliminating undesired pinning of liquid fronts in the solution process and boosting ordered assembly of CQDs into designable micro-/nanostructures. The versatility and robustness of this method are demonstrated by deterministic patterning of CQDs with different components and photoluminescence spectra onto various substrates. On the basis of this platform, microring lasers with tunable emission modes, low-loss waveguides, and their coupled structures have been reached for direct on-chip generation and propagation of coherent light. A proof-of-concept demonstration of integrated circuits is also conducted by combining microcavity lasers with waveguides for encoding photonic outputs into information bits.
Collapse
Affiliation(s)
- Yuyan Zhao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jiangang Feng
- Department of Chemical and Biomolecular Sciences, National University of Singapore, Singapore, 117585, Singapore
| | - Gaosong Chen
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jun-Jie Wu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xue-Dong Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yuchen Wu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
20
|
Li ZQ, Ma DX, Xu FF, Dan TX, Gong ZL, Shao JY, Zhao YS, Yao J, Zhong YW. Selective, Anisotropic, or Consistent Polarized‐Photon Out‐Coupling of 2D Organic Microcrystals. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhong-Qiu Li
- Institute of Chemistry Chinese Academy of Sciences Laboratory of Photochemistry CHINA
| | - Dian-Xue Ma
- Institute of Chemistry Chinese Academy of Sciences Laboratory of Photochemistry CHINA
| | - Fa-Feng Xu
- Institute of Chemistry Chinese Academy of Sciences Laboratory of Photochemistry CHINA
| | - Ti-Xiong Dan
- Institute of Chemistry Chinese Academy of Sciences Laboratory of Photochemistry CHINA
| | - Zhong-Liang Gong
- Institute of Chemistry Chinese Academy of Sciences Laboratory of Photochemistry CHINA
| | - Jiang-Yang Shao
- Institute of Chemistry Chinese Academy of Sciences Laboratory of Photochemistry CHINA
| | - Yong Sheng Zhao
- Institute of Chemistry Chinese Academy of Sciences Laboratory of Photochemistry CHINA
| | - Jiannian Yao
- Institute of Chemistry Chinese Academy of Sciences Laboratory of Photochemistry CHINA
| | - Yu-Wu Zhong
- Chinese Academy of Sciences Institute of Chemistry 2 Bei Yi Jie, Zhong Guan Cun 100190 Beijing CHINA
| |
Collapse
|
21
|
Identification of dyes and matrices for dye doped polymer waveguide emitters covering the visible spectrum. Sci Rep 2022; 12:6142. [PMID: 35414649 PMCID: PMC9005527 DOI: 10.1038/s41598-022-10145-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
Polymer based photonic devices offer the possibility cost effective roll-to-roll manufacture of photonic devices. The incorporation of luminescent dopants within a solid polymer waveguide allows for the generation of light within the device avoiding tedious mechanical light coupling. However, when a dopant is embedded in a solid matrix, depending on its concentration and the nature of materials involved, the emitted light may be quenched due to aggregation effects. In this work, thin films and ridge waveguides processed by UV-photolithography have been successfully obtained from a selection of standard photopolymerizable organic monomers, SU8, EpoCore and OrmoStamp doped with a selection of standard dyes like Rhodamine-B, Coumarin-540A and Pyrromethene-580. All structures were manufactured on glass substrates. An analysis of the solubility and optical properties including band gap energy, absorption coefficient (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha $$\end{document}α) and fluorescence of the doped photoresists at different concentrations has been performed. Photoresists doped with Rhodamine-B shows a higher energy of indirect allowed band gap transition (2.04–2.09 eV) compared to previously reported pure Rhodamine-B thin films (1.95–1.98 eV). Fabrication protocols of dye doped photoresists covering the entire visible spectrum is established.
Collapse
|
22
|
Deng W, Lei H, Zhang X, Sheng F, Shi J, Zhang X, Liu X, Grigorian S, Zhang X, Jie J. Scalable Growth of Organic Single-Crystal Films via an Orientation Filter Funnel for High-Performance Transistors with Excellent Uniformity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109818. [PMID: 35073612 DOI: 10.1002/adma.202109818] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Organic single-crystal films (OSCFs) provide an unprecedented opportunity for the development of new-generation organic single-crystal electronics. However, crystallization of organic films is normally governed by stochastic nucleation and incoherent growth, posing a formidable challenge to grow large-sized OSCFs. Here, an "orientation filter funnel" concept is presented for the scalable growth of OSCFs with well-aligned, singly orientated crystals. By rationally designing solvent wetting/dewetting patterns on the substrate, this approach can produce seed crystals with the same crystallographic orientation and then maintain epitaxial growth of these crystals, enabling the formation of large-area OSCFs. As a result, this unique concept for crystal growth not only enhances the average mobility of organic film by 4.5-fold but also improves its uniformity of electrical properties, with a low mobility variable coefficient of 9.8%, the new lowest record among organic devices. The method offers a general and scalable route to produce OSCFs toward real-word electronic applications.
Collapse
Affiliation(s)
- Wei Deng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Hemeng Lei
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiujuan Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Fangming Sheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jialin Shi
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiali Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xinyue Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Souren Grigorian
- Department of Physics, University of Siegen, 57072, Siegen, Germany
| | - Xiaohong Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jiansheng Jie
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, P. R. China
| |
Collapse
|
23
|
Liu D, Wu X, Gao C, Li C, Zheng Y, Li Y, Xie Z, Ji D, Liu X, Zhang X, Li L, Peng Q, Hu W, Dong H. Integrating unexpected high charge‐carrier mobility and low‐threshold lasing action in an organic semiconductor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dan Liu
- Institute of Chemistry Chinese Academy of Sciences Key laboratory of organic solids CHINA
| | - Xianxin Wu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology CHINA
| | - Can Gao
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Organic Solids CHINA
| | - Chenguang Li
- Henan University Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering ,Collaborative Innovation Centre of Nano Functional Materials and Applications CHINA
| | - yingshuang Zheng
- tian jin da xue: Tianjin University Tian jin Key Laboratory of Molecular Optoelectronic Department of Chemistry, Insititue of Molecular Aggregation Science CHINA
| | - Yang Li
- Shenyang University Normal College CHINA
| | - Ziyi Xie
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Organic Solids CHINA
| | - Deyang Ji
- Tianjin University Tianjin Key Laboratory of Molecular Optoelectrinic Sciences, Department of Chemistry, Institute of Molecular Aggregation Sciencs CHINA
| | - Xinfeng Liu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechlolgy CHINA
| | - Xiaotao Zhang
- Tianjin University Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry,Institute of Molecular Aggregation Science CHINA
| | - Liqiang Li
- Tianjin University Tianjin Key Laboratory of Mecular Optoelectronic Sciences,Deportment of Chemistry, Institute of Melecular Aggregation Science CHINA
| | - Qian Peng
- University of Chinese Academy of Sciences School of Computer and Control Engineering: University of the Chinese Academy of Sciences School of Computer Science and Technology School of Chemical Science CHINA
| | - Wenping Hu
- Tianjin University Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University &Collaborative Innovation Center od Chemical Science and Enginering CHINA
| | - Huanli Dong
- Institute of Chemistry, Chinese Academy of Sciences Key laboratory of organic solids zhongguancun 100190 Beijing CHINA
| |
Collapse
|
24
|
Chen S, Wang XD, Zhuo MP, Lv Q, Liu JF, Liao LS. Organic white-light sources: multiscale construction of organic luminescent materials from molecular to macroscopic level. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1214-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Yin H, Ma Y, Lin H, Chen S, Zhou Z, Zhuo S, Wang X. Precise synthesis of organic heterostructures via the synergy approach of polymorphism and cocrystal engineering for optical applications. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huiling Yin
- School of chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255000 P. R. China
| | - Yingxin Ma
- School of chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255000 P. R. China
| | - Hongtao Lin
- School of chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255000 P. R. China
| | - Shuhai Chen
- School of chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255000 P. R. China
| | - Ziyan Zhou
- School of chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255000 P. R. China
| | - Shuping Zhuo
- School of chemistry and Chemical Engineering, Shandong University of Technology Zibo Shandong 255000 P. R. China
| | - Xuedong Wang
- Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
26
|
Gao H, Miao Z, Hu W, Dong H. Research on Key Materials and Devices of Organic Light-emitting Transistors ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Chaaban M, Ben-Akacha A, Worku M, Lee S, Neu J, Lin X, Vellore Winfred JSR, Delzer CJ, Hayward JP, Du MH, Siegrist T, Ma B. Metal Halide Scaffolded Assemblies of Organic Molecules with Enhanced Emission and Room Temperature Phosphorescence. J Phys Chem Lett 2021; 12:8229-8236. [PMID: 34423990 DOI: 10.1021/acs.jpclett.1c02354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ionically bonded organic metal halide hybrids have emerged as versatile multicomponent material systems exhibiting unique and useful properties. The unlimited combinations of organic cations and metal halides lead to the tremendous structural diversity of this class of materials, which could unlock many undiscovered properties of both organic cations and metal halides. Here we report the synthesis and characterization of a series benzoquinolinium (BZQ) metal halides with a general formula (BZQ)Pb2X5 (X = Cl, Br), in which metal halides form a unique two-dimensional (2D) structure. These BZQ metal halides are found to exhibit enhanced photoluminescence and stability as compared to the pristine BZQ halides, due to the scaffolding effects of 2D metal halides. Optical characterizations and theoretical calculations reveal that BZQ+ cations are responsible for the emissions in these hybrid materials. Changing the halide from Cl to Br introduces heavy atom effects, resulting in yellow room temperature phosphorescence (RTP) from BZQ+ cations.
Collapse
Affiliation(s)
- Maya Chaaban
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Azza Ben-Akacha
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Michael Worku
- Materials Science and Engineering Program, Florida State University, Tallahassee, Florida 32306, United States
| | - Sujin Lee
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Jennifer Neu
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Xinsong Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - J S Raaj Vellore Winfred
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Cordell J Delzer
- Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jason P Hayward
- Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Mao-Hua Du
- Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Theo Siegrist
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States
| | - Biwu Ma
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- Materials Science and Engineering Program, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
28
|
Liu D, Liao Q, Peng Q, Gao H, Sun Q, De J, Gao C, Miao Z, Qin Z, Yang J, Fu H, Shuai Z, Dong H, Hu W. High Mobility Organic Lasing Semiconductor with Crystallization‐Enhanced Emission for Light‐Emitting Transistors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dan Liu
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Qian Peng
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Haikuo Gao
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qi Sun
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jianbo De
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Can Gao
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhagen Miao
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhengsheng Qin
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiaxin Yang
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Zhigang Shuai
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Huanli Dong
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry, School of Sciences Tianjin University&Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| |
Collapse
|
29
|
Liu D, Liao Q, Peng Q, Gao H, Sun Q, De J, Gao C, Miao Z, Qin Z, Yang J, Fu H, Shuai Z, Dong H, Hu W. High Mobility Organic Lasing Semiconductor with Crystallization-Enhanced Emission for Light-Emitting Transistors. Angew Chem Int Ed Engl 2021; 60:20274-20279. [PMID: 34278668 DOI: 10.1002/anie.202108224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 11/12/2022]
Abstract
The development of high mobility organic laser semiconductors with strong emission is of great scientific and technical importance, but challenging. Herein, we present a high mobility organic laser semiconductor, 2,7-diphenyl-9H-fluorene (LD-1) showing unique crystallization-enhanced emission guided by elaborately modulating its crystal growth process. The obtained one-dimensional nanowires of LD-1 show outstanding integrated properties including: high absolute photoluminescence quantum yield (PLQY) approaching 80 %, high charge carrier mobility of 0.08 cm2 V-1 s-1 , Fabry-Perot lasing characters with a low threshold of 86 μJ cm-2 and a high-quality factor of ≈2400. Furthermore, electrically induced emission was obtained from an individual LD-1 crystal nanowire-based light-emitting transistor due to the recombination of holes and electrons simultaneously injected into the nanowire, which provides a good platform for the study of electrically pumped organic lasers and other related ultrasmall integrated electrical-driven photonic devices.
Collapse
Affiliation(s)
- Dan Liu
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Qian Peng
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haikuo Gao
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Sun
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jianbo De
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Can Gao
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhagen Miao
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengsheng Qin
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaxin Yang
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zhigang Shuai
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Huanli Dong
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University&Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
30
|
Qin Z, Gao H, Dong H, Hu W. Organic Light-Emitting Transistors Entering a New Development Stage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007149. [PMID: 34021637 DOI: 10.1002/adma.202007149] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/03/2021] [Indexed: 05/25/2023]
Abstract
Organic light-emitting transistors (OLETs) are possibly the smallest integrated optoelectronic devices that combine the switching and amplification mechanisms of organic field-effect transistors (OFETs) and the electroluminescent characteristic of organic light-emitting diodes (OLEDs). Such a unique architecture of OLETs makes them ideal for developing the next-generation display technology and electrically pumped lasers for miniaturized photonic devices and circuits. However, the development of OLETs has been slow. Recently, some exciting progress has been made with breakthroughs in high mobility emissive organic semiconductors, construction of high-performance OLETs, and fabrication of novel multifunctional OLETs. This recent slew of advances may represent the advent of a new development stage of OLETs and their related devices and circuits. In this paper, a detailed review of these fantastic advances is presented, with a special focus on the key points for developing high-performance OLETs. Finally, a brief conclusion is provided with a discussion on the challenges and future perspectives in this field.
Collapse
Affiliation(s)
- Zhengsheng Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haikuo Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
31
|
Yang J, Liu Q, Hu M, Ding S, Liu J, Wang Y, Liu D, Gao H, Hu W, Dong H. Well-balanced ambipolar diketopyrrolopyrrole-based copolymers for OFETs, inverters and frequency doublers. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1037-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Ding Z, Shang H, Geng Y, Zhang ST, Huo Z, Yang Z, Li B, Xu W, Jiang S. Tuning Organic Microcrystal Morphologies through Crystal Engineering Strategies toward Anisotropic Optical Waveguide. J Phys Chem Lett 2021; 12:4585-4592. [PMID: 33970623 DOI: 10.1021/acs.jpclett.1c00769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The construction of organic optoelectronic materials with desirable size and morphology remains a challenge now. Crystal engineering strategies (polymorphs and cocrystals) provide convenience for tailoring molecular packing and further controlling the growth morphology and photofunctionality of materials. Herein, we prepare polymorphic 2D plate crystals and 3D microhelixes by assembly of a cyanostilbene derivative (2-(3',5'-bis(trifluoromethyl)-biphenyl-4-yl)-3-(4-(pyridin-4-yl)phenyl)acrylonitrile, CF3-CN-Py). The former emits blue emission, while the latter emits green emission. Different crystallization environments contribute to the adjustable morphologies. Then, novel cocrystals are fabricated with the introduction of 1,4-diiodotetrafluorobenzene (FDIB) to CF3-CN-Py. Both molecular conformation and packing are totally changed in the cocrystal system. Such cocrystal displays a 1D sky-blue emissive rod shape on account of a long-range ordered π-stacking of molecules. In addition, the 2D plate crystal and 1D rod cocrystal are further applied to optical waveguides. In the plate crystal, a packing of transition dipole moment (μ) inclined to the upper surface leads to an anisotropic optical waveguide. In the cocrystal, owing to the nearly horizontal μ orientation, the cocrystal exhibits light propagation along the primary growth direction and a low optical loss coefficient. The present study supplies an effective way to construct materials with controlled morphology and optical waveguide.
Collapse
Affiliation(s)
- Zeyang Ding
- Engineering Research Center of Organic and Polymer Optoelectronic Materials, Ministry of Education, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hongxing Shang
- Engineering Research Center of Organic and Polymer Optoelectronic Materials, Ministry of Education, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yijia Geng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zepeng Huo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zairan Yang
- Engineering Research Center of Organic and Polymer Optoelectronic Materials, Ministry of Education, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shimei Jiang
- Engineering Research Center of Organic and Polymer Optoelectronic Materials, Ministry of Education, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
33
|
Jones DK, Cheng CH, Li Z, Zhang X, Deotare PB, Gavvalapalli N. Waveguiding properties of perylene microcrystals synthesized by retarding the growth along the π-stack direction. Chem Commun (Camb) 2021; 57:3111-3114. [PMID: 33630005 DOI: 10.1039/d0cc08094b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective, hard to realize growth retardation of the π-stacking direction over the edge-packing direction has been achieved in perylene microcrystals using an aryl amphiphile. The perylene microcrystals grow predominantly along the edge-packing direction resulting in novel and hitherto unknown perylene square rods. The rods show exciton-polariton waveguiding along the rod axis even though it corresponds to pure edge-packing of the molecules, which is unprecedented in organic microcrystals.
Collapse
Affiliation(s)
- Dorothy K Jones
- Department of Chemistry and Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 Ost NW, Washington, D.C. 20057, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Wang J, He Y, Guo S, Ali MU, Zhao C, Zhu Y, Wang T, Wang Y, Miao J, Wei G, Meng H. Multifunctional Benzo[4,5]thieno[3,2- b]benzofuran Derivative with High Mobility and Luminescent Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12250-12258. [PMID: 33682401 DOI: 10.1021/acsami.0c21286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Development of multifunctional materials and devices has garnered enormous attention in the field of organic optoelectronics; nevertheless, achieving high mobility together with strong luminescence in a single semiconductor remains a major bottleneck. Here, a new multifunctional semiconductor molecule, 2,7-diphenylbenzo[4,5]thieno[3,2-b]benzofuran (BTBF-DPh), that integrates high charge transporting [1]benzothieno[3,2-b][1]benzothiophene with a strongly emissive furan group, is synthesized and applied in three types of optoelectronic devices, including organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs), and organic phototransistors (OPTs). OLEDs based on BTBF-DPh as the emissive layer showed a blue emission with CIE coordinates of (0.151, 0.069) and a maximum current efficiency of 2.96 cd A-1 with an external quantum efficiency of 4.23%. Meanwhile, OFETs fabricated with BTBF-DPh thin film manifested a carrier mobility of 0.181 cm2 V-1 s-1, which is comparable to that of thiophene-based counterparts. Additionally, BTBF-DPh-based OPTs exhibited a maximum responsivity and detectivity of 2.07 × 103 A W-1 and of 5.6 × 1015 Jones, respectively. On the one hand, our rationally designed material, BTBF-DPh, has a dense and close-packed structure with an extended π-conjugation, facilitating charge transport through adjacent molecules. On the other hand, the weakened dipole-dipole interactions between BTBF-DPh molecules that resulted from the unambiguous J-aggregation and reduced spin-orbit coupling caused by replacing sulfur atom significantly suppress the exciton quenching, contributing to the improved photoluminescence performance. These results validate that our newly developed BTBF-DPh is a promising multifunctional organic semiconductor for optoelectronic devices.
Collapse
Affiliation(s)
- Jiangfeng Wang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yaowu He
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Shenghui Guo
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Muhammad Umair Ali
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Changbin Zhao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yanan Zhu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tao Wang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yunrui Wang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jingsheng Miao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Guodan Wei
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
35
|
Vinay Pradeep V, Tardío C, Torres-Moya I, Rodríguez AM, Vinod Kumar A, Annadhasan M, de la Hoz A, Prieto P, Chandrasekar R. Mechanical Processing of Naturally Bent Organic Crystalline Microoptical Waveguides and Junctions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006795. [PMID: 33354900 DOI: 10.1002/smll.202006795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Precise mechanical processing of optical microcrystals involves complex microscale operations viz. moving, bending, lifting, and cutting of crystals. Some of these mechanical operations can be implemented by applying mechanical force at specific points of the crystal to fabricate advanced crystalline optical junctions. Mechanically compliant flexible optical crystals are ideal candidates for the designing of such microoptical junctions. A vapor-phase growth of naturally bent optical waveguiding crystals of 1,4-bis(2-cyanophenylethynyl)benzene (1) on a surface forming different optical junctions is presented. In the solid-state, molecule 1 interacts with its neighbors via CH⋅⋅⋅N hydrogen bonding and π-π stacking. The microcrystals deposited at a glass surface exhibit moderate flexibility due to substantial surface adherence energy. The obtained network crystals also display mechanical compliance when cut precisely with sharp atomic force microscope cantilever tip, making them ideal candidates for building innovative T- and Δ-shaped optical junctions with multiple outputs. The presented micromechanical processing technique can also be effectively used as a tool to fabricate single-crystal integrated photonic devices and circuits on suitable substrates.
Collapse
Affiliation(s)
- Vuppu Vinay Pradeep
- School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 50046, India
- Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 50046, India
| | - Carlos Tardío
- Department of Biochemistry, Organic and Inorganic Chemistry, Faculty of Chemical and Technologies Sciences, University of Castilla- La Mancha, Ciudad Real, 13071, Spain
| | - Iván Torres-Moya
- Department of Biochemistry, Organic and Inorganic Chemistry, Faculty of Chemical and Technologies Sciences, University of Castilla- La Mancha, Ciudad Real, 13071, Spain
| | - Ana M Rodríguez
- Department of Biochemistry, Organic and Inorganic Chemistry, Faculty of Chemical and Technologies Sciences, University of Castilla- La Mancha, Ciudad Real, 13071, Spain
| | - Avulu Vinod Kumar
- School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 50046, India
- Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 50046, India
| | - Mari Annadhasan
- School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 50046, India
- Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 50046, India
| | - Antonio de la Hoz
- Department of Biochemistry, Organic and Inorganic Chemistry, Faculty of Chemical and Technologies Sciences, University of Castilla- La Mancha, Ciudad Real, 13071, Spain
| | - Pilar Prieto
- Department of Biochemistry, Organic and Inorganic Chemistry, Faculty of Chemical and Technologies Sciences, University of Castilla- La Mancha, Ciudad Real, 13071, Spain
| | - Rajadurai Chandrasekar
- School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 50046, India
- Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 50046, India
| |
Collapse
|
36
|
Ghora M, Majumdar P, Anas M, Varghese S. Enabling Control over Mechanical Conformity and Luminescence in Molecular Crystals: Interaction Engineering in Action. Chemistry 2020; 26:14488-14495. [PMID: 32761653 DOI: 10.1002/chem.202003311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 11/11/2022]
Abstract
Molecular crystals of π-conjugated molecules are of great interest as the highly ordered dense packing offers superior charge and exciton transport compared with its amorphous counterparts. However, integration into optoelectronic devices remains a major challenge owing to its inherently brittle nature. Herein, control over the mechanical conformity in single crystals of pyridine-appended thiazolothiazole derivatives is reported by modulating the molecular packing through interaction engineering. Two polymorphs were prepared by achieving control over the thermodynamic/kinetic factors of crystallization; one of the polymorphs exhibits elastic bending whereas the other is brittle. The control over the bending ability was achieved by forming co-crystals with hydrogen/halogen bond donors. A seamless extended crisscross pattern with respect to the bend plane through a ditopic hydrogen-bonding motif showed the highest compliance towards mechanical bending, whereas the co-crystals with a layered crisscross arrangement with segregated layers of co-formers exhibit slightly lower bending conformity. These results update the rationale behind the plastic/elastic bending in molecular crystals. The co-crystals of ditopic halogen bond co-assemblies are particularly appealing for waveguiding applications as the co-crystals blend high mechanical flexibility and luminescence properties. The hydrogen bonded co-crystals are non-emissive in nature owing to excited state proton transfer dynamics. The rationale behind the fluorescence properties of these materials was also established from DFT calculations in a quantum mechanics/molecular mechanics (QM/MM) framework.
Collapse
Affiliation(s)
- Madhubrata Ghora
- Technical Research Centre and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of, Science, Kolkata, 700032, India
| | - Prabhat Majumdar
- Technical Research Centre and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of, Science, Kolkata, 700032, India
| | - Mohammed Anas
- Technical Research Centre and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of, Science, Kolkata, 700032, India
| | - Shinto Varghese
- Technical Research Centre and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of, Science, Kolkata, 700032, India
| |
Collapse
|
37
|
Gao H, Liu J, Qin Z, Wang T, Gao C, Dong H, Hu W. High-performance amorphous organic semiconductor-based vertical field-effect transistors and light-emitting transistors. NANOSCALE 2020; 12:18371-18378. [PMID: 32870223 DOI: 10.1039/d0nr03569f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, two kinds of vertical organic optoelectronic devices, vertical organic field-effect transistors (VOFETs) and light-emitting transistors (VOLETs), were constructed based on amorphous organic semiconductors of N,N'-di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB) as hole injecting and transport layers and tris(8-hydroxy-quinolinato) aluminum (Alq3) as the emitting layer. High device performances with a large on/off ratio of ∼6 × 103, current density of ∼40 mA cm-2, and fast response of ∼5 ms at a frequency of 20 Hz and a brightness of 126 cd m-2 were demonstrated for these two vertical devices with good device stability and repeatability. These results suggest the potential applications of amorphous organic semiconductors with good film-forming characteristics and easy device fabrication ability in vertical optoelectronic circuits.
Collapse
Affiliation(s)
- Haikuo Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyu Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengsheng Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenping Hu
- Department of Chemistry, School of Science, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
38
|
Gebers J, Özen B, Hartmann L, Schaer M, Suàrez S, Bugnon P, Scopelliti R, Steinrück H, Konovalov O, Magerl A, Brinkmann M, Petraglia R, Silva P, Corminboeuf C, Frauenrath H. Crystallization and Organic Field‐Effect Transistor Performance of a Hydrogen‐Bonded Quaterthiophene. Chemistry 2020; 26:10265-10275. [DOI: 10.1002/chem.201904562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 04/23/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Jan Gebers
- Institute of Materials École Polytechnique Fédérale de Lausanne (EPFL), EPFL-STI-IMX-LMOM, MXG 135 Station 12 1015 Lausanne Switzerland
| | - Bilal Özen
- Institute of Materials École Polytechnique Fédérale de Lausanne (EPFL), EPFL-STI-IMX-LMOM, MXG 135 Station 12 1015 Lausanne Switzerland
| | - Lucia Hartmann
- Institute of Materials École Polytechnique Fédérale de Lausanne (EPFL), EPFL-STI-IMX-LMOM, MXG 135 Station 12 1015 Lausanne Switzerland
| | - Michel Schaer
- Institute of Materials École Polytechnique Fédérale de Lausanne (EPFL), EPFL-STI-IMX-LMOM, MXG 135 Station 12 1015 Lausanne Switzerland
| | - Stéphane Suàrez
- Institute of Materials École Polytechnique Fédérale de Lausanne (EPFL), EPFL-STI-IMX-LMOM, MXG 135 Station 12 1015 Lausanne Switzerland
| | - Philippe Bugnon
- Institute of Condensed Matter Physics École Polytechnique Fédérale de Lausanne (EPFL), EPFL-PH J0 491 Station 3 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL), EPFL-BCH 2111, Batochime UNIL Avenue Forel 2 1015 Lausanne Switzerland
| | - Hans‐Georg Steinrück
- Crystallography and Structural Physics University of Erlangen-Nürnberg Staudtstrasse 3 91058 Erlangen Germany
- Present address: Department Chemie Universität Paderborn Warburger Strasse 100 33098 Paderborn Germany
| | - Oleg Konovalov
- European Synchrotron Radiation Facility (ESRF) 6 rue Jules Horowitz, BP220 38043 Grenoble Cedex France
| | - Andreas Magerl
- Crystallography and Structural Physics University of Erlangen-Nürnberg Staudtstrasse 3 91058 Erlangen Germany
| | - Martin Brinkmann
- Institut Charles Sadron CNRS Université de Strasbourg Rue du Loess 23 67034 Strasbourg France
| | - Riccardo Petraglia
- Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL), EPFL-BCH 5312, Batochime UNIL Avenue Forel 2 1015 Lausanne Switzerland
| | - Piotr Silva
- Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL), EPFL-BCH 5312, Batochime UNIL Avenue Forel 2 1015 Lausanne Switzerland
- present address: Department of Energy Conversion and Storage Technical University of Denmark Anker Engelunds Vej 301 2800 Kongens Lyngby Denmark
| | - Clémence Corminboeuf
- Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL), EPFL-BCH 5312, Batochime UNIL Avenue Forel 2 1015 Lausanne Switzerland
| | - Holger Frauenrath
- Institute of Materials École Polytechnique Fédérale de Lausanne (EPFL), EPFL-STI-IMX-LMOM, MXG 135 Station 12 1015 Lausanne Switzerland
| |
Collapse
|
39
|
Lu B, Fang X, Yan D. Luminescent Polymorphic Co-crystals: A Promising Way to the Diversity of Molecular Assembly, Fluorescence Polarization, and Optical Waveguide. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31940-31951. [PMID: 32551468 DOI: 10.1021/acsami.0c06794] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design of molecular optoelectronic materials based on fabricating polymorphs and/or co-crystals has received much recent attention in the fields of luminescence, sensors, nonlinear optics, and so on. If the advantages of the two crystal engineering strategies above were combined, the diversity of self-assembly fashions and the tuning of photofunctional performances would be largely extended. However, such multicomponent examples have still been very limited to date. Herein, we report the construction of luminescent polymorphic co-crystals by assembly of tris(pentafluorophenyl)borane (TPFB) with 9,10-dicyanoanthracene (DCA) and acridine (AC) as paradigms. Different stacking modes and arrangement styles based on identical building block units in polymorphic co-crystals result in adjustable crystalline morphologies and variant photophysical properties (such as fluorescence wavelength, lifetimes, and up-conversion luminescence). The optimized photoluminescence quantum yield (63.1%) and lifetime (57.1 ns) are much higher than those of the pristine assembled units. In addition, two polymorphic co-crystals (DCA@TPFB-1 and AC@TPFB-2) present prominent fluorescence polarization and optical waveguide behaviors due to the highly regulated molecular orientation. Their high one-dimensional luminescence anisotropy (0.652) and low optical waveguide loss (0.0079 dB/μm) outperform most state-of-the-art low-dimensional molecular systems and thus endow them with great opportunities for photonic materials and devices. Therefore, this work not only confirms that constructing polymorphic co-crystals can be an effective way to design new photofunctional materials for luminescence and photonic applications but also discloses a deep understanding on the relationship between variant self-assembled fashions and tunable photofunctional properties of new TPFB-based molecular materials.
Collapse
Affiliation(s)
- Bo Lu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
40
|
Naumov P, Karothu DP, Ahmed E, Catalano L, Commins P, Mahmoud Halabi J, Al-Handawi MB, Li L. The Rise of the Dynamic Crystals. J Am Chem Soc 2020; 142:13256-13272. [DOI: 10.1021/jacs.0c05440] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Panče Naumov
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
- Radcliffe Institute for Advanced Study, Harvard University, 10 Garden Street, Cambridge, Massachusetts 02138, United States
| | | | - Ejaz Ahmed
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Luca Catalano
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Patrick Commins
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Jad Mahmoud Halabi
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | | | - Liang Li
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
41
|
Liao H, Xiao C, Ravva MK, Yao L, Yu Y, Yang Y, Zhang W, Zhang L, Li Z, McCulloch I, Yue W. Fused Pyrazine- and Carbazole-Containing Azaacenes: Synthesis and Properties. Chempluschem 2020; 84:1257-1262. [PMID: 31944034 DOI: 10.1002/cplu.201900383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/04/2019] [Indexed: 11/07/2022]
Abstract
A new family of azaacenes has been designed and synthesized by incorporating the electron-withdrawing sp2 -hybridized nitrogen of pyrazine and electron-donating nitrogen of carbazole in a molecular skeleton. Two different conjugated lengths of 8-ring aza-nonacene and 10-ring aza-undecene have been achieved by an efficient condensation reaction. The unique optoelectronic properties of these molecules were investigated using both experimental and theoretical techniques. The azaacenes show visible-region absorption and near-infrared (NIR) fluorescence. These compounds can serve as hole-transport semiconductors for solution-processed organic field-effect transistors (OFETs). Single-crystal transistor devices of one of the aza-nonacenes exhibit hole charge transport behavior with a hole mobility of 0.07 cm2 /Vs and an on/off current ratio of 1.3x106 .
Collapse
Affiliation(s)
- Hailiang Liao
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Chengyi Xiao
- College of Energy, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | | | - Liping Yao
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.,College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, P. R. China
| | - Yaping Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yinghe Yang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Weimin Zhang
- College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, P. R. China
| | - Lei Zhang
- College of Energy, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhengke Li
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Iain McCulloch
- King Abdullah University of Science and Technology (KAUST) SPERC, Thuwal, 23955-6900, Saudi Arabia.,Department of Chemistry and Centre for Plastic Electronics, Imperial College London South Kensington, London, SW7 2AZ, United Kingdom
| | - Wan Yue
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
42
|
Huang Y, Wang Z, Chen Z, Zhang Q. Organic Cocrystals: Beyond Electrical Conductivities and Field‐Effect Transistors (FETs). Angew Chem Int Ed Engl 2019; 58:9696-9711. [DOI: 10.1002/anie.201900501] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Yinjuan Huang
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| | - Zongrui Wang
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| | - Zhong Chen
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| | - Qichun Zhang
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| |
Collapse
|
43
|
Huang Y, Wang Z, Chen Z, Zhang Q. Organic Cocrystals: Beyond Electrical Conductivities and Field‐Effect Transistors (FETs). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900501] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yinjuan Huang
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| | - Zongrui Wang
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| | - Zhong Chen
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| | - Qichun Zhang
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| |
Collapse
|
44
|
Jiang M, Mao W, Zhou X, Kan C, Shi D. Wavelength-Tunable Waveguide Emissions from Electrically Driven Single ZnO/ZnO:Ga Superlattice Microwires. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11800-11811. [PMID: 30840431 DOI: 10.1021/acsami.9b00851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Because of the superlattice structures comprising periodic and alternating crystalline layers, one-dimensional photon crystals can be employed to expand immense versatility and practicality of modulating the electronic and photonic propagation behaviors, as well as optical properties. In this work, individual superlattice microwires (MWs) comprising ZnO and Ga-doped ZnO (ZnO/ZnO:Ga) layers were successfully synthesized. Wavelength-tunable multipeak emissions can be realized from electrically driven single superlattice MW-based emission devices, with the dominant wavelengths tuned from ultraviolet to visible spectral regions. To illustrate the multipeak character, single superlattice MWs were selected to construct fluorescent emitters, and the emission wavelength could be tuned from 518 to 562 nm, which is dominated by Ga incorporation. Especially, by introducing Au quasiparticle film decoration, emission characteristics can further be modulated, such as the red shift of the emission wavelengths, and the multipeaks were strongly modified and split into more and narrower subbands. In particular, electrically pumped exciton-polariton emission was realized from heterojunction diodes composed of single ZnO/ZnO:Ga superlattice MWs and p-GaN layers in the blue-ultraviolet spectral regions. With the aid of localized surface plasmons from Au nanoparticles, which deposited on the superlattice MW, significant improvement of emission characteristics, such as enhancement of output efficiencies, blue shift of the dominant emission wavelengths, and narrowing of the spectral linewidth, can be achieved. The multipeak emission characteristics would be originated from the typical optical cavity modes, but not the Fabry-Perot mode optical cavity formed by the bilateral sides of the wire. The resonant modes are likely attributed to the coupled optical microcavities, which formed along the axial direction of the wire; thus, the emitted photons can be propagated and selected longitudinally. Therefore, the novel ZnO/ZnO:Ga superlattice MWs with a quadrilateral cross section can provide a potential platform to construct multicolor emitters and low-threshold exciton-polariton diodes and lasers.
Collapse
|
45
|
Organic field-effect optical waveguides: a new break-through all organic optoelectronics. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9406-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|