1
|
Cavagna A, Eder M, Chowdhury E, Kalouguine A, Kaur J, Mourou G, Haessler S, Lopez-Martens R. Continuous relativistic high-harmonic generation from a kHz liquid-sheet plasma mirror. OPTICS LETTERS 2025; 50:165-168. [PMID: 39718879 DOI: 10.1364/ol.545912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024]
Abstract
We report on continuous high-harmonic generation (HHG) at 1 kHz repetition rate from a liquid-sheet plasma mirror driven by relativistic-intensity near-single-cycle light transients. Through precise control of both the surface plasma density gradient and the driving light waveform, we can produce highly stable and reproducible extreme ultraviolet spectral quasi-continua, expected to correspond to the generation of stable kHz-trains of isolated attosecond pulses in the time domain. This confirms the exciting potential of liquid-sheet targets as one of the building blocks of future high-power attosecond lasers.
Collapse
|
2
|
Ouillé M, Kaur J, Cheng Z, Haessler S, Lopez-Martens R. Lightwave-controlled relativistic plasma mirrors. OPTICS LETTERS 2024; 49:4847-4850. [PMID: 39207979 DOI: 10.1364/ol.534255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
We report on attosecond-scale control of high-harmonic and fast electron emission from plasma mirrors driven by relativistic-intensity near-single-cycle light waves at a kHz repetition rate. By controlling the waveform of the intense light transient, we reproducibly form a sub-cycle temporal intensity gate at the plasma mirror surface, leading to the observation of extreme ultraviolet spectral continua, characteristic of isolated attosecond pulse (IAP) generation. We also observe the correlated emission of a waveform-dependent relativistic electron beam, paving the way toward fully lightwave-controlled dynamics of relativistic plasma mirrors.
Collapse
|
3
|
Kim YH, Kim H, Park SC, Kwon Y, Yeom K, Cho W, Kwon T, Yun H, Sung JH, Lee SK, Luu TT, Nam CH, Kim KT. High-harmonic generation from a flat liquid-sheet plasma mirror. Nat Commun 2023; 14:2328. [PMID: 37087465 PMCID: PMC10122666 DOI: 10.1038/s41467-023-38087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023] Open
Abstract
High-harmonic radiation can be generated when an ultra-intense laser beam is reflected from an over-dense plasma, known as a plasma mirror. It is considered a promising technique for generating intense attosecond pulses in the extreme ultraviolet and X-ray wavelength ranges. However, a solid target used for the formation of the over-dense plasma is completely damaged by the interaction. Thus, it is challenging to use a solid target for applications such as time-resolved studies and attosecond streaking experiments that require a large amount of data. Here we demonstrate that high-harmonic radiation can be continuously generated from a liquid plasma mirror in both the coherent wake emission and relativistic oscillating mirror regimes. These results will pave the way for the development of bright, stable, and high-repetition-rate attosecond light sources, which can greatly benefit the study of ultrafast laser-matter interactions.
Collapse
Affiliation(s)
- Yang Hwan Kim
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, 61005, Republic of Korea
| | - Hyeon Kim
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, 61005, Republic of Korea
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Seong Cheol Park
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, 61005, Republic of Korea
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Yongjin Kwon
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, 61005, Republic of Korea
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Kyunghoon Yeom
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, 61005, Republic of Korea
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Wosik Cho
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, 61005, Republic of Korea
| | - Taeyong Kwon
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, 61005, Republic of Korea
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyeok Yun
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jae Hee Sung
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, 61005, Republic of Korea
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Seong Ku Lee
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, 61005, Republic of Korea
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Tran Trung Luu
- Department of Physics, The University of Hong Kong, SAR Hong Kong, China
| | - Chang Hee Nam
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, 61005, Republic of Korea
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Kyung Taec Kim
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, 61005, Republic of Korea.
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
4
|
Mondal S, Shirozhan M, Choudhary S, Nelissen K, Tzallas P, Charalambidis D, Varjú K, Kahaly S. Intense isolated attosecond pulses from two-color few-cycle laser driven relativistic surface plasma. Sci Rep 2022; 12:13668. [PMID: 35953509 PMCID: PMC9372060 DOI: 10.1038/s41598-022-17762-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/30/2022] [Indexed: 11/08/2022] Open
Abstract
Ultrafast plasma dynamics play a pivotal role in the relativistic high harmonic generation, a phenomenon that can give rise to intense light fields of attosecond duration. Controlling such plasma dynamics holds key to optimize the relevant sub-cycle processes in the high-intensity regime. Here, we demonstrate that the optimal coherent combination of two intense ultrashort pulses centered at two-colors (fundamental frequency, [Formula: see text] and second harmonic, [Formula: see text]) can lead to an optimal shape in relativistic intensity driver field that yields such an extraordinarily sensitive control. Conducting a series of two-dimensional (2D) relativistic particle-in-cell (PIC) simulations carried out for currently achievable laser parameters and realistic experimental conditions, we demonstrate that an appropriate combination of [Formula: see text] along with a precise delay control can lead to more than three times enhancement in the resulting high harmonic flux. Finally, the two-color multi-cycle field synthesized with appropriate delay and polarization can all-optically suppress several attosecond bursts while favourably allowing one burst to occur, leading to the generation of intense isolated attosecond pulses without the need of any sophisticated gating techniques.
Collapse
Affiliation(s)
- Sudipta Mondal
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary.
| | - Mojtaba Shirozhan
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary
- Institute of Physics, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Shivani Choudhary
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary
| | - Kwinten Nelissen
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary
| | - Paraskevas Tzallas
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary
- Foundation for Research and Technology-Hellas, Institute of Electronic Structure & Laser, 70013, Heraklion (Crete), Greece
| | - Dimitris Charalambidis
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary
- Foundation for Research and Technology-Hellas, Institute of Electronic Structure & Laser, 70013, Heraklion (Crete), Greece
- Department of Physics, University of Crete, PO Box 2208, 71003, Heraklion (Crete), Greece
| | - Katalin Varjú
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary
- Department of Optics and Quantum Electronics, University of Szeged, Dóm Tér 9, Szeged, 6720, Hungary
| | - Subhendu Kahaly
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary.
- Institute of Physics, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary.
| |
Collapse
|
5
|
Rodimkov Y, Bhadoria S, Volokitin V, Efimenko E, Polovinkin A, Blackburn T, Marklund M, Gonoskov A, Meyerov I. Towards ML-Based Diagnostics of Laser-Plasma Interactions. SENSORS (BASEL, SWITZERLAND) 2021; 21:6982. [PMID: 34770288 PMCID: PMC8588203 DOI: 10.3390/s21216982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
The power of machine learning (ML) in feature identification can be harnessed for determining quantities in experiments that are difficult to measure directly. However, if an ML model is trained on simulated data, rather than experimental results, the differences between the two can pose an obstacle to reliable data extraction. Here we report on the development of ML-based diagnostics for experiments on high-intensity laser-matter interactions. With the intention to accentuate robust, physics-governed features, the presence of which is tolerant to such differences, we test the application of principal component analysis, data augmentation and training with data that has superimposed noise of gradually increasing amplitude. Using synthetic data of simulated experiments, we identify that the approach based on the noise of increasing amplitude yields the most accurate ML models and thus is likely to be useful in similar projects on ML-based diagnostics.
Collapse
Affiliation(s)
- Yury Rodimkov
- Department of Mathematical Software and Supercomputing Technologies, Lobachevsky University, 603950 Nizhni Novgorod, Russia; (Y.R.); (V.V.)
| | - Shikha Bhadoria
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden; (S.B.); (T.B.); (M.M.)
| | - Valentin Volokitin
- Department of Mathematical Software and Supercomputing Technologies, Lobachevsky University, 603950 Nizhni Novgorod, Russia; (Y.R.); (V.V.)
- Mathematical Center, Lobachevsky University, 603950 Nizhni Novgorod, Russia
| | - Evgeny Efimenko
- Institute of Applied Physics of the Russian Academy of Sciences, 603950 Nizhni Novgorod, Russia;
| | | | - Thomas Blackburn
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden; (S.B.); (T.B.); (M.M.)
| | - Mattias Marklund
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden; (S.B.); (T.B.); (M.M.)
| | - Arkady Gonoskov
- Department of Mathematical Software and Supercomputing Technologies, Lobachevsky University, 603950 Nizhni Novgorod, Russia; (Y.R.); (V.V.)
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden; (S.B.); (T.B.); (M.M.)
| | - Iosif Meyerov
- Department of Mathematical Software and Supercomputing Technologies, Lobachevsky University, 603950 Nizhni Novgorod, Russia; (Y.R.); (V.V.)
- Mathematical Center, Lobachevsky University, 603950 Nizhni Novgorod, Russia
| |
Collapse
|
6
|
Quantum-Optical Spectrometry in Relativistic Laser–Plasma Interactions Using the High-Harmonic Generation Process: A Proposal. PHOTONICS 2021. [DOI: 10.3390/photonics8060192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Quantum-optical spectrometry is a recently developed shot-to-shot photon correlation-based method, namely using a quantum spectrometer (QS), that has been used to reveal the quantum optical nature of intense laser–matter interactions and connect the research domains of quantum optics (QO) and strong laser-field physics (SLFP). The method provides the probability of absorbing photons from a driving laser field towards the generation of a strong laser–field interaction product, such as high-order harmonics. In this case, the harmonic spectrum is reflected in the photon number distribution of the infrared (IR) driving field after its interaction with the high harmonic generation medium. The method was implemented in non-relativistic interactions using high harmonics produced by the interaction of strong laser pulses with atoms and semiconductors. Very recently, it was used for the generation of non-classical light states in intense laser–atom interaction, building the basis for studies of quantum electrodynamics in strong laser-field physics and the development of a new class of non-classical light sources for applications in quantum technology. Here, after a brief introduction of the QS method, we will discuss how the QS can be applied in relativistic laser–plasma interactions and become the driving factor for initiating investigations on relativistic quantum electrodynamics.
Collapse
|
7
|
Jiang Y, Chen ZY, Liu Z, Cao L, Zheng C, Xie R, Chao Y, He X. Direct generation of relativistic isolated attosecond pulses in transmission from laser-driven plasmas. OPTICS LETTERS 2021; 46:1285-1288. [PMID: 33720168 DOI: 10.1364/ol.418144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Isolated attosecond pulses are useful to perform pump-probe experiments at a high temporal resolution, and provide a new tool for ultrafast metrology. However, it is still a challenging task to generate such pulses of high intensity, even for a few-cycle laser. Through particle-in-cell simulations, we show that it is possible to directly generate a giant isolated attosecond pulse in the transmission direction from relativistic laser-driven plasmas. Compared to attosecond pulse generation in the reflection direction, no further spectral filtering is needed. The underlying radiation mechanism is coherent synchrotron emission, and the transmitted isolated attosecond pulse can reach relativistic intensity. This provides a promising alternative to generate intense isolated attosecond pulses for ultrafast studies.
Collapse
|
8
|
Fischer P, Muschet A, Lang T, Salh R, Veisz L. Saturation control of an optical parametric chirped-pulse amplifier. OPTICS EXPRESS 2021; 29:4210-4218. [PMID: 33771005 DOI: 10.1364/oe.415564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Optical parametric chirped-pulse amplification (OPCPA) is a light amplification technique that provides the combination of broad spectral gain bandwidth and large energy, directly supporting few-cycle pulses with multi-terawatt (TW) peak powers. Saturation in an OPCPA increases the stability and conversion efficiency of the system. However, distinct spectral components experience different gain and do not saturate under the same conditions, which reduces performance. Here, we describe a simple and robust approach to control the saturation for all spectral components. The demonstrated optimal saturation increases the overall gain, conversion efficiency and spectral bandwidth. We experimentally obtain an improvement of the pulse energy by more than 18%. This technique is easily implemented in any existing OPCPA system with a pulse shaper to maximize its output.
Collapse
|
9
|
Siminos E, Thiele I, Olofsson C. Laser Wakefield Driven Generation of Isolated Carrier-Envelope-Phase Tunable Intense Subcycle Pulses. PHYSICAL REVIEW LETTERS 2021; 126:044801. [PMID: 33576683 DOI: 10.1103/physrevlett.126.044801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 09/02/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Sources of intense, ultrashort electromagnetic pulses enable applications such as attosecond pulse generation, control of electron motion in solids, and the observation of reaction dynamics at the electronic level. For such applications, both high intensity and carrier-envelope-phase (CEP) tunability are beneficial, yet hard to obtain with current methods. In this Letter, we present a new scheme for generation of isolated CEP tunable intense subcycle pulses with central frequencies that range from the midinfrared to the ultraviolet. It utilizes an intense laser pulse that drives a wake in a plasma, copropagating with a long-wavelength seed pulse. The moving electron density spike of the wake amplifies the seed and forms a subcycle pulse. Controlling the CEP of the seed pulse or the delay between driver and seed leads to CEP tunability, while frequency tunability can be achieved by adjusting the laser and plasma parameters. Our 2D and 3D particle-in-cell simulations predict laser-to-subcycle-pulse conversion efficiencies up to 1%, resulting in relativistically intense subcycle pulses.
Collapse
Affiliation(s)
- E Siminos
- Department of Physics, University of Gothenburg, SE-412 96 Göteborg, Sweden
| | - I Thiele
- Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - C Olofsson
- Department of Physics, University of Gothenburg, SE-412 96 Göteborg, Sweden
- Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
10
|
Wang J, Bulanov SV, Chen M, Lei B, Zhang Y, Zagidullin R, Zorina V, Yu W, Leng Y, Li R, Zepf M, Rykovanov SG. Relativistic slingshot: A source for single circularly polarized attosecond x-ray pulses. Phys Rev E 2021; 102:061201. [PMID: 33466060 DOI: 10.1103/physreve.102.061201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 12/01/2020] [Indexed: 11/07/2022]
Abstract
We propose a mechanism to generate a single intense circularly polarized attosecond x-ray pulse from the interaction of a circularly polarized relativistic few-cycle laser pulse with an ultrathin foil at normal incidence. Analytical modeling and particle-in-cell simulation demonstrate that a huge charge-separation field can be produced when all the electrons are displaced from the target by the incident laser, resulting in a high-quality relativistic electron mirror that propagates against the tail of the laser pulse. The latter is efficiently reflected as well as compressed into an attosecond pulse that is also circularly polarized.
Collapse
Affiliation(s)
- Jingwei Wang
- State Key Laboratory of High Field Laser Physics, CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China.,Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sergei V Bulanov
- Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, 182 21 Prague, Czech Republic
| | - Min Chen
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bifeng Lei
- Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena, Germany.,Faculty of Physics and Astronomy, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Yuxue Zhang
- Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena, Germany.,Faculty of Physics and Astronomy, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Rishat Zagidullin
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Veronika Zorina
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Wei Yu
- State Key Laboratory of High Field Laser Physics, CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
| | - Yuxin Leng
- State Key Laboratory of High Field Laser Physics, CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
| | - Ruxin Li
- State Key Laboratory of High Field Laser Physics, CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
| | - Matt Zepf
- Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena, Germany.,Faculty of Physics and Astronomy, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Sergey G Rykovanov
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| |
Collapse
|
11
|
Ouillé M, Vernier A, Böhle F, Bocoum M, Jullien A, Lozano M, Rousseau JP, Cheng Z, Gustas D, Blumenstein A, Simon P, Haessler S, Faure J, Nagy T, Lopez-Martens R. Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate. LIGHT, SCIENCE & APPLICATIONS 2020; 9:47. [PMID: 32218918 PMCID: PMC7089946 DOI: 10.1038/s41377-020-0280-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 06/01/2023]
Abstract
The development of ultra-intense and ultra-short light sources is currently a subject of intense research driven by the discovery of novel phenomena in the realm of relativistic optics, such as the production of ultrafast energetic particle and radiation beams for applications. It has been a long-standing challenge to unite two hitherto distinct classes of light sources: those achieving relativistic intensity and those with pulse durations approaching a single light cycle. While the former class traditionally involves large-scale amplification chains, the latter class places high demand on the spatiotemporal control of the electromagnetic laser field. Here, we present a light source producing waveform-controlled 1.5-cycle pulses with a 719 nm central wavelength that can be focused to relativistic intensity at a 1 kHz repetition rate based on nonlinear post-compression in a long hollow-core fiber. The unique capabilities of this source allow us to observe the first experimental indications of light waveform effects in laser wakefield acceleration of relativistic energy electrons.
Collapse
Affiliation(s)
- Marie Ouillé
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
- Ardop Engineering, Cité de la Photonique, 11 Avenue de la Canteranne, bât. Pléione, 33600 Pessac, France
| | - Aline Vernier
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
| | - Frederik Böhle
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
| | - Maïmouna Bocoum
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
| | - Aurélie Jullien
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
| | - Magali Lozano
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
| | - Jean-Philippe Rousseau
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
| | - Zhao Cheng
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
| | - Dominykas Gustas
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
| | - Andreas Blumenstein
- Laser-Laboratorium Göttingen e.V., Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Peter Simon
- Laser-Laboratorium Göttingen e.V., Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Stefan Haessler
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
| | - Jérôme Faure
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
| | - Tamas Nagy
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, 12489 Berlin, Germany
| | - Rodrigo Lopez-Martens
- Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 chemin de la Hunière et des Joncherettes, 91120 Palaiseau, France
| |
Collapse
|
12
|
Gao J, Li B, Liu F, Chen ZY, Chen M, Ge X, Yuan X, Chen L, Sheng Z, Zhang J. Divergence control of relativistic harmonics by an optically shaped plasma surface. Phys Rev E 2020; 101:033202. [PMID: 32289989 DOI: 10.1103/physreve.101.033202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 01/31/2020] [Indexed: 11/07/2022]
Abstract
The unique spatial and temporal properties of relativistic high harmonics generated from a laser-driven plasma surface allow them to be coherently focused to an extremely high intensity reaching the Schwinger limit. The ultimately achievable intensity is limited by the harmonic wavefront distortions during the interactions. Here we demonstrate experimentally that the harmonic divergence can be controlled by an optically shaped plasma surface with a prepulse that has the same spatial and temporal distribution as the main laser pulse. Simulations are also performed to explain the experimental observation, and we find that the harmonic wavefront curvature from a dented surface can be precompensated by a convex plasma. Our work suggests an active approach to control the harmonic divergence and wavefront by an optically shaped target. This can be critical for further high harmonics applications.
Collapse
Affiliation(s)
- Jian Gao
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Boyuan Li
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Liu
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zi-Yu Chen
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China.,Key Laboratory of High Energy Density Physics and Technology (Ministry of Education), College of Physics, Sichuan University, Chengdu 610064, China
| | - Min Chen
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xulei Ge
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaohui Yuan
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liming Chen
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhengming Sheng
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China.,SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom.,Cockcroft Institute, Sci-Tech Daresbury, Cheshire WA4 4AD, United Kingdom.,Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Zhang
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
Leshchenko VE, Kessel A, Jahn O, Krüger M, Münzer A, Trushin SA, Veisz L, Major Z, Karsch S. On-target temporal characterization of optical pulses at relativistic intensity. LIGHT, SCIENCE & APPLICATIONS 2019; 8:96. [PMID: 31666950 PMCID: PMC6813334 DOI: 10.1038/s41377-019-0207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
High-field experiments are very sensitive to the exact value of the peak intensity of an optical pulse due to the nonlinearity of the underlying processes. Therefore, precise knowledge of the pulse intensity, which is mainly limited by the accuracy of the temporal characterization, is a key prerequisite for the correct interpretation of experimental data. While the detection of energy and spatial profile is well established, the unambiguous temporal characterization of intense optical pulses, another important parameter required for intensity evaluation, remains a challenge, especially at relativistic intensities and a few-cycle pulse duration. Here, we report on the progress in the temporal characterization of intense laser pulses and present the relativistic surface second harmonic generation dispersion scan (RSSHG-D-scan)-a new approach allowing direct on-target temporal characterization of high-energy, few-cycle optical pulses at relativistic intensity.
Collapse
Affiliation(s)
- Vyacheslav E. Leshchenko
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Department für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
- Present Address: Department of Physics, The Ohio State University, Columbus, OH 43210 USA
| | - Alexander Kessel
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Department für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Olga Jahn
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Department für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Mathias Krüger
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Department für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Andreas Münzer
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Department für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Sergei A. Trushin
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Department für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Laszlo Veisz
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Department of Physics, Umeå University, Umeå, SE-901 87 Sweden
| | - Zsuzsanna Major
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Department für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany
| | - Stefan Karsch
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Department für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| |
Collapse
|
14
|
Smijesh N, Zhang X, Fischer P, Muschet AA, Salh R, Tajalli A, Morgner U, Veisz L. Contrast improvement of sub-4 fs laser pulses using nonlinear elliptical polarization rotation. OPTICS LETTERS 2019; 44:4028-4031. [PMID: 31415539 DOI: 10.1364/ol.44.004028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Temporal-intensity contrast is crucial in intense laser-matter interaction to circumvent the undesirable expansion of steep high-density plasma prior to the interaction with the main pulse. Nonlinear elliptical polarization rotation in an argon filled hollow-core fiber is used here for cleaning pedestals/satellite pulses of a chirped-pulse-amplifier based Ti:Sapphire laser. This source provides ∼35 μJ energy and sub-4-fs duration, and the process has >50% internal efficiency, more than the most commonly used pulse cleaning methods. Further, the contrast is improved by 3 orders of magnitude when measured after amplifying the pulses to 16 TW using non-collinear optical parametric chirped pulse amplification with a prospect to even further enhancement.
Collapse
|
15
|
Gonoskov A, Wallin E, Polovinkin A, Meyerov I. Employing machine learning for theory validation and identification of experimental conditions in laser-plasma physics. Sci Rep 2019; 9:7043. [PMID: 31065006 PMCID: PMC6504880 DOI: 10.1038/s41598-019-43465-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/23/2019] [Indexed: 11/24/2022] Open
Abstract
The validation of a theory is commonly based on appealing to clearly distinguishable and describable features in properly reduced experimental data, while the use of ab-initio simulation for interpreting experimental data typically requires complete knowledge about initial conditions and parameters. We here apply the methodology of using machine learning for overcoming these natural limitations. We outline some basic universal ideas and show how we can use them to resolve long-standing theoretical and experimental difficulties in the problem of high-intensity laser-plasma interactions. In particular we show how an artificial neural network can “read” features imprinted in laser-plasma harmonic spectra that are currently analysed with spectral interferometry.
Collapse
Affiliation(s)
- A Gonoskov
- University of Gothenburg, SE-41296, Gothenburg, Sweden. .,Chalmers University of Technology, SE-41296, Gothenburg, Sweden. .,Institute of Applied Physics, RAS, Nizhny Novgorod, 603950, Russia. .,Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, 603950, Russia.
| | - E Wallin
- Department of Physics, Umeå University, SE-90187, Umeå, Sweden
| | - A Polovinkin
- Adv Stat & Machine Learning, LTD, Intel, Chandler, Arizona, USA
| | - I Meyerov
- Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, 603950, Russia
| |
Collapse
|