1
|
Kharbanda N, Sachdeva M, Ghorai N, Kaur A, Kumar V, Ghosh HN. Plasmon-Induced Ultrafast Hot Hole Transfer in Nonstoichiometric Cu xIn yS/CdS Heteronanocrystals. J Phys Chem Lett 2024:5056-5062. [PMID: 38701388 DOI: 10.1021/acs.jpclett.4c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Plasmonic semiconductors are promising candidates for developing energy conversion devices due to their tunable band gap, cost-effectiveness, and nontoxicity. Such materials exhibit remarkable capabilities for harvesting infrared photons, which constitute half of the solar energy spectrum. Herein, we have synthesized near-infrared (NIR) active CuxInyS nanocrystals and CuxInyS/CdS heterostructure nanocrystals (HNCs) to investigate plasmon-induced charge transfer dynamics on an ultrafast time scale. Employing femtosecond transient absorption spectroscopy, we demonstrate that upon exciting the HNCs with sub-band gap NIR photons (λ = 840 nm), the hot holes are generated in the valence band of plasmonic CuxInyS and transferred to the adjacent semiconductor. The decreased signal intensity and accelerated hole phonon relaxation dynamics for HNCs reveal efficient transfer of plasmon-induced hot carriers from CuxInyS to CdS under both 840 and 350 nm laser excitations, providing a pathway for enhanced carrier utilization. These findings shed light on the potential of ternary chalcogenides in plasmonic applications, highlighting efficient hot carrier extraction to adjacent semiconductors.
Collapse
Affiliation(s)
- Nitika Kharbanda
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Manvi Sachdeva
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Nandan Ghorai
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Arshdeep Kaur
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Vikas Kumar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Hirendra N Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
2
|
Sakamoto M, Hada M, Ota W, Uesugi F, Sato T. Localised surface plasmon resonance inducing cooperative Jahn-Teller effect for crystal phase-change in a nanocrystal. Nat Commun 2023; 14:4471. [PMID: 37524703 PMCID: PMC10390505 DOI: 10.1038/s41467-023-40153-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/14/2023] [Indexed: 08/02/2023] Open
Abstract
The Jahn-Teller effect, a phase transition phenomenon involving the spontaneous breakdown of symmetry in molecules and crystals, causes important physical and chemical changes that affect various fields of science. In this study, we discovered that localised surface plasmon resonance (LSPR) induced the cooperative Jahn-Teller effect in covellite CuS nanocrystals (NCs), causing metastable displacive ion movements. Electron diffraction measurements under photo illumination, ultrafast time-resolved electron diffraction analyses, and theoretical calculations of semiconductive plasmonic CuS NCs showed that metastable displacive ion movements due to the LSPR-induced cooperative Jahn-Teller effect delayed the relaxation of LSPR in the microsecond region. Furthermore, the displacive ion movements caused photo-switching of the conductivity in CuS NC films at room temperature (22 °C), such as in transparent variable resistance infrared sensors. This study pushes the limits of plasmonics from tentative control of collective oscillation to metastable crystal structure manipulation.
Collapse
Affiliation(s)
- Masanori Sakamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| | - Masaki Hada
- Tsukuba Research Center for Energy Materials Science (TREMS), Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan.
| | - Wataru Ota
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto, 606-8103, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Fumihiko Uesugi
- National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Tohru Sato
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto, 606-8103, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
3
|
Yu Y, Gao L, Niu X, Liu K, Li R, Yang D, Zeng H, Wang HQ, Ni Z, Lu J. Deciphering Adverse Detrapped Hole Transfer in Hot-Electron Photoelectric Conversion at Infrared Wavelengths. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210157. [PMID: 36732915 DOI: 10.1002/adma.202210157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/01/2023] [Indexed: 06/18/2023]
Abstract
Hot-carrier devices are promising alternatives for enabling path breaking photoelectric conversion. However, existing hot-carrier devices suffer from low efficiencies, particularly in the infrared region, and ambiguous physical mechanisms. In this work, the competitive interfacial transfer mechanisms of detrapped holes and hot electrons in hot-carrier devices are discovered. Through photocurrent polarity research and optical-pump-THz-probe (OPTP) spectroscopy, it is verified that detrapped hole transfer (DHT) and hot-electron transfer (HET) dominate the low- and high-density excitation responses, respectively. The photocurrent ratio assigned to DHT and HET increases from 6.6% to over 1133.3% as the illumination intensity decreases. DHT induces severe degeneration of the external quantum efficiency (EQE), especially at low illumination intensities. The EQE of a hot-electron device can theoretically increase by over two orders of magnitude at 10 mW cm-2 through DHT elimination. The OPTP results show that competitive transfer arises from the carrier oscillation type and carrier-density-related Coulomb screening. The screening intensity determines the excitation weight and hot-electron cooling scenes and thereby the transfer dynamics.
Collapse
Affiliation(s)
- Yuanfang Yu
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 211189, P. R. China
| | - Lei Gao
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 211189, P. R. China
| | - Xianghong Niu
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Kaiyang Liu
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 211189, P. R. China
| | - Ruizhi Li
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 211189, P. R. China
| | - Dandan Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
- Institute of Optoelectronics and Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Haibo Zeng
- Institute of Optoelectronics and Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Hui-Qiong Wang
- Department of Physics and Department of New Energy Science and Engineering, Xiamen University Malaysia, Sepang, 43900, Malaysia
- Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhenhua Ni
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 211189, P. R. China
- Purple Mountain Laboratories, Nanjing, 211111, P. R. China
| | - Junpeng Lu
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
4
|
Gutiérrez M, Lian Z, Cohen B, Sakamoto M, Douhal A. Hot hole transfer at the plasmonic semiconductor/semiconductor interface. NANOSCALE 2023; 15:657-666. [PMID: 36515217 DOI: 10.1039/d2nr05044g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Localized surface plasmon resonance (LSPR)-induced hot-carrier transfer provides an attractive alternative for light-harvesting using the full solar spectrum. This defect-mediated hot-carrier transfer is identical at the plasmonic semiconductor/semiconductor interface and can overcome the low efficiency of plasmonic energy conversion, thus boosting the efficiency of IR-light towards energy conversion. Here, using femtosecond transient absorption (TA) measurements, we directly observe the ultrafast non-radiative carrier dynamics of LSPR-driven hot holes created in CuS nanocrystals (NCs) and CuS/CdS hetero nanocrystals (HNCs). We demonstrate that in the CuS NCs, the relaxation dynamics follows multiple relaxation pathways. Two trap states are populated by the LSPR-induced hot holes in times (100-500 fs) that efficiently compete with the conventional LSPR mechanism (250 fs). The trapped hot holes intrinsically relax in 20-40 ps and then decay in 80 ns and 700 ns. In the CuS/CdS HNCs, once the CuS trap states have been populated by the LSPR-generated hot holes, the holes get transferred through plasmon induced transit hole transfer (PITCT) mechanism in 200-300 ps to the CdS acceptor phase and relax in 1-8 and 40-50 μs. The LSPR-recovery shows a weak excitation wavelength and fluence dependence, while the dynamics of the trap states remains largely unaffected. The direct observation of formation and decay processes of trap states and hole transfer from trap states provides important insight into controlling the LSPR-induced relaxation of degenerate semiconductors.
Collapse
Affiliation(s)
- Mario Gutiérrez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain.
| | - Zichao Lian
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain.
| | - Masanori Sakamoto
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain.
| |
Collapse
|
5
|
Guizzardi M, Ghini M, Villa A, Rebecchi L, Li Q, Mancini G, Marangi F, Ross AM, Zhu X, Kriegel I, Scotognella F. Near-Infrared Plasmon-Induced Hot Electron Extraction Evidence in an Indium Tin Oxide Nanoparticle/Monolayer Molybdenum Disulfide Heterostructure. J Phys Chem Lett 2022; 13:9903-9909. [PMID: 36256582 PMCID: PMC9619877 DOI: 10.1021/acs.jpclett.2c02358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
In this work, we observe plasmon-induced hot electron extraction in a heterojunction between indium tin oxide nanocrystals and monolayer molybdenum disulfide. We study the sample with ultrafast differential transmission, exciting the sample at 1750 nm where the intense localized plasmon surface resonance of the indium tin oxide nanocrystals is and where the monolayer molybdenum disulfide does not absorb light. With the excitation at 1750 nm, we observe the excitonic features of molybdenum disulfide in the visible range, close to the exciton of molybdenum disulfide. Such a phenomenon can be ascribed to a charge transfer between indium tin oxide nanocrystals and monolayer molybdenum disulfide upon plasmon excitation. These results are a first step toward the implementation of near-infrared plasmonic materials for photoconversion.
Collapse
Affiliation(s)
- Michele Guizzardi
- Dipartimento
di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133Milano, Italy
| | - Michele Ghini
- Functional
Nanosystems, Istituto Italiano di Tecnologia, via Morego 30, 16163Genova, Italy
- Nanoelectronic
Devices Laboratory, Ecole Polytechnique
Federale de Lausanne (EPFL), Rt. Cantonale, 1015Lausanne, Switzerland
| | - Andrea Villa
- Dipartimento
di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133Milano, Italy
| | - Luca Rebecchi
- Functional
Nanosystems, Istituto Italiano di Tecnologia, via Morego 30, 16163Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146Genova, Italy
| | - Qiuyang Li
- Department
of Chemistry, Columbia University, 3000 Broadway,
Havemeyer Hall, New York, New York10027, United States
- Department
of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan48109-1040, United States
| | - Giorgio Mancini
- Smart Materials, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163Genova, Italy
| | - Fabio Marangi
- Dipartimento
di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133Milano, Italy
| | - Aaron M. Ross
- Dipartimento
di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133Milano, Italy
| | - Xiaoyang Zhu
- Department
of Chemistry, Columbia University, 3000 Broadway,
Havemeyer Hall, New York, New York10027, United States
| | - Ilka Kriegel
- Functional
Nanosystems, Istituto Italiano di Tecnologia, via Morego 30, 16163Genova, Italy
| | - Francesco Scotognella
- Dipartimento
di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133Milano, Italy
| |
Collapse
|
6
|
Shu C, Zhang N, Gao Y, An J, Wen X, Ma W, Liu Z, Sun B, Li S. Multifunctional Sensors Based on Doped Indium Oxide Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24648-24658. [PMID: 35581001 DOI: 10.1021/acsami.2c05280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There is an increasing need for multifunctional sensors that can detect radiation, biological activity, gas, etc. for efficient health monitoring, neurological medical devices, and human-machine interfaces in recent years. Herein, we demonstrated a multifunctional Sn-doped In2O3 nanocrystal (ITO NC) based device for ulyoutraviolet (UV)/infrared (IR) dual-band photodetection and light-activated efficient nitrogen dioxide (NO2) gas sensing at room temperature (RT). The effects of different surface ligands and annealing process of ITO NCs on their photodetection performance were investigated. The ITO NCs capped with 1,2-ethanedithiol (EDT) show a responsivity of 31.3/177.7 mA W-1 and normalized detectivity of ∼1 × 1010/109 cm Hz1/2 W-1 under UV/IR illumination at 375/2200 nm at RT. The potential of the ITO NCs sensors to monitor low concentrations of NO2 is activated by light illumination. The sensor has a higher response (4.2) to 1 ppm of NO2, shorter response/recovery time (156.8/554.2 s), and a lower detection limit (LOD) (219 ppb) under UV illumination compared within a dark environment. The LOD of the sensor is lower than the allowable exposure limit of NO2 specified in "Air Pollutant Limits" of the Occupational Safety and Health Administration (OSHA). Our work paves an alternative platform for the development of low-cost, integration-friendly multifunctional devices.
Collapse
Affiliation(s)
- Chang Shu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Nan Zhang
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Yiyuan Gao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Junru An
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Xin Wen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Wanli Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Zeke Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Baoquan Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Shaojuan Li
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| |
Collapse
|
7
|
Wang Y, Gu Y, Cui A, Li Q, He T, Zhang K, Wang Z, Li Z, Zhang Z, Wu P, Xie R, Wang F, Wang P, Shan C, Li H, Ye Z, Zhou P, Hu W. Fast Uncooled Mid-Wavelength Infrared Photodetectors with Heterostructures of van der Waals on Epitaxial HgCdTe. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107772. [PMID: 34812559 DOI: 10.1002/adma.202107772] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Indexed: 05/06/2023]
Abstract
Uncooled infrared photodetectors have evoked widespread interest in basic research and military manufacturing because of their low-cost, compact detection systems. However, existing uncooled infrared photodetectors utilize the photothermoelectric effect of infrared radiation operating at 8-12 µm, with a slow response time in the millisecond range. Hence, the exploration of new uncooled mid-wavelength infrared (MWIR) heterostructures is conducive to the development of ultrafast and high-performance nano-optoelectronics. This study explores a van der Waals heterojunction on epitaxial HgCdTe (vdWs-on-MCT) as an uncooled MWIR photodetector, which achieves fast response as well as high detectivity for spectral blackbody detection. Specifically, the vdWs-on-MCT photodetector has a fast response time of 13 ns (77 MHz), which is approximately an order of magnitude faster than commercial uncooled MCT photovoltaic photodetectors. Importantly, the device exhibits a photoresponsivity of 2.5 A W-1 , quantum efficiency as high as 85%, peak detectivity of 2 × 1010 cm Hz1/2 W-1 under blackbody radiation at room temperature, and peak detectivity of up to 1011 cm Hz1/2 W-1 at 77 K. Thereby, this work facilitates the effective design of high-speed and high-performance heterojunction uncooled MWIR photodetectors.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Yue Gu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ailiang Cui
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Qing Li
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Ting He
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Kun Zhang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Zhen Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Ziping Li
- Key Laboratory of Terahertz Solid State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhenhan Zhang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Peisong Wu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Runzhang Xie
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Fang Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Peng Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Hua Li
- Key Laboratory of Terahertz Solid State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhenhua Ye
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Peng Zhou
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Yang W, Liu Y, Cullen DA, McBride JR, Lian T. Harvesting Sub-Bandgap IR Photons by Photothermionic Hot Electron Transfer in a Plasmonic p-n Junction. NANO LETTERS 2021; 21:4036-4043. [PMID: 33877837 DOI: 10.1021/acs.nanolett.1c00932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plasmonic semiconductors are an emerging class of low-cost plasmonic materials, and the presence of a bandgap and band-bending in these materials offer new opportunities to overcome some of the limitations of plasmonic metals. Here, we demonstrate that in a plasmonic p-n heterojunction (Cu2-xSe-CdSe) the near-IR excitation (1.1 eV) of the hole plasmon in the p-Cu2-xSe phase results in rapid hot electron transfer to n-CdSe, with an energy 2.2 eV above the Fermi level. This hot electron generation and energy upconversion process can be well-described by a photothermionic mechanism, where the presence of a bandgap in p-Cu2-xSe facilitates the generation of energetic photothermal electrons. The lifetime of the transferred electrons in Cu2-xSe-CdSe can reach ∼130 ps, which is nearly 100× longer than that of its metal-semiconductor counterpart. This result demonstrates a novel approach for harvesting the sub-bandgap near IR photons using plasmonic p-n junctions and the potential advantages of plasmonic semiconductors for hot carrier-based devices.
Collapse
Affiliation(s)
- Wenxing Yang
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
- Department of Chemistry, Ångström Laboratory, Physical Chemistry, Uppsala University, SE-75120 Uppsala, Sweden
| | - Yawei Liu
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - David A Cullen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - James R McBride
- Department of Chemistry, The Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| |
Collapse
|
9
|
S. S. dos Santos P, M. M. M. de Almeida J, Pastoriza-Santos I, C. C. Coelho L. Advances in Plasmonic Sensing at the NIR-A Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:2111. [PMID: 33802958 PMCID: PMC8002678 DOI: 10.3390/s21062111] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 03/12/2021] [Indexed: 11/21/2022]
Abstract
Surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) are among the most common and powerful label-free refractive index-based biosensing techniques available nowadays. Focusing on LSPR sensors, their performance is highly dependent on the size, shape, and nature of the nanomaterial employed. Indeed, the tailoring of those parameters allows the development of LSPR sensors with a tunable wavelength range between the ultra-violet (UV) and near infra-red (NIR). Furthermore, dealing with LSPR along optical fiber technology, with their low attenuation coefficients at NIR, allow for the possibility to create ultra-sensitive and long-range sensing networks to be deployed in a variety of both biological and chemical sensors. This work provides a detailed review of the key science underpinning such systems as well as recent progress in the development of several LSPR-based biosensors in the NIR wavelengths, including an overview of the LSPR phenomena along recent developments in the field of nanomaterials and nanostructure development towards NIR sensing. The review ends with a consideration of key advances in terms of nanostructure characteristics for LSPR sensing and prospects for future research and advances in this field.
Collapse
Affiliation(s)
- Paulo S. S. dos Santos
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, and Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
- Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - José M. M. M. de Almeida
- Department of Physics, School of Science and Technology, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal;
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain;
- SERGAS-UVIGO, Galicia Sur Health Research Institute (IIS Galicia Sur), 36312 Vigo, Spain
| | - Luís C. C. Coelho
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, and Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
| |
Collapse
|
10
|
Li J, Li Z, Liu X, Li C, Zheng Y, Yeung KWK, Cui Z, Liang Y, Zhu S, Hu W, Qi Y, Zhang T, Wang X, Wu S. Interfacial engineering of Bi 2S 3/Ti 3C 2T x MXene based on work function for rapid photo-excited bacteria-killing. Nat Commun 2021; 12:1224. [PMID: 33619276 PMCID: PMC7900204 DOI: 10.1038/s41467-021-21435-6] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
In view of increasing drug resistance, ecofriendly photoelectrical materials are promising alternatives to antibiotics. Here we design an interfacial Schottky junction of Bi2S3/Ti3C2Tx resulting from the contact potential difference between Ti3C2Tx and Bi2S3. The different work functions induce the formation of a local electrophilic/nucleophilic region. The self-driven charge transfer across the interface increases the local electron density on Ti3C2Tx. The formed Schottky barrier inhibits the backflow of electrons and boosts the charge transfer and separation. The photocatalytic activity of Bi2S3/Ti3C2Tx intensively improved the amount of reactive oxygen species under 808 nm near-infrared radiation. They kill 99.86% of Staphylococcus aureus and 99.92% of Escherichia coli with the assistance of hyperthermia within 10 min. We propose the theory of interfacial engineering based on work function and accordingly design the ecofriendly photoresponsive Schottky junction using two kinds of components with different work functions to effectively eradicate bacterial infection.
Collapse
Affiliation(s)
- Jianfang Li
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, China
| | - Xiangmei Liu
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, China.
| | - Changyi Li
- Stomatological Hospital, Tianjin Medical University, Tianjin, China
| | - Yufeng Zheng
- College of Engineering, State Key Laboratory for Turbulence and Complex System, Department of Materials Science and Engineering, Peking University, Beijing, China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, China
| | - Yanqin Liang
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, China
| | - Shengli Zhu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, China
| | - Wenbin Hu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, China
| | - Yajun Qi
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, China
| | - Tianjin Zhang
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, China
| | - Xianbao Wang
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, China
| | - Shuilin Wu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, China.
| |
Collapse
|
11
|
Chen Y, Li Z, Chen J. Abnormal Electron Emission in a Vertical Graphene/Hexagonal Boron Nitride van der Waals Heterostructure Driven by a Hot Hole-Induced Auger Process. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57505-57513. [PMID: 33258372 DOI: 10.1021/acsami.0c13352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the scattering process of field injection hot carriers is important for modulating their behaviors, which is the key for improving the efficiency of charge transfer and energy conversion in hot carrier devices. In this work, a significant electron thermalization induced by Auger scattering between a field injection hot hole and a native cold electron has been observed in a vertical single layer graphene/hexagonal boron nitride/few layer graphene (Gr/hBN/FLG) device by measuring the vacuum electron emission characteristics. For the first time, it is found that vacuum electron emission can be measured under both directions of bias within the device. Furthermore, electrons can be emitted even when the applied bias energy is smaller than the work function of the Gr cathode. Further analysis of the emission electron kinetic energy indicates that the low turn-on bias results from the emission of energetic electrons that are ∼3 eV higher than the Fermi level. A semiquantitative model based on hot hole-induced Auger electron emission is established to reproduce the results. All of these findings not only expand our understanding of the hot carrier scattering process in graphene but also provide insights into the applications of hot carrier devices.
Collapse
Affiliation(s)
- Yicong Chen
- State Key Lab of Optoelectronic Materials and Technologies, Guangdong Province Key Lab of Display Material and Technology, Sun Yat-sen University, Guangdong 510275, People's Republic of China
- School of Electronics and Information Technology, Sun Yat-sen University, Guangdong 510275, People's Republic of China
| | - Zhibing Li
- State Key Lab of Optoelectronic Materials and Technologies, Guangdong Province Key Lab of Display Material and Technology, Sun Yat-sen University, Guangdong 510275, People's Republic of China
- School of Physics, Sun Yat-sen University, Guangdong 510275, People's Republic of China
| | - Jun Chen
- State Key Lab of Optoelectronic Materials and Technologies, Guangdong Province Key Lab of Display Material and Technology, Sun Yat-sen University, Guangdong 510275, People's Republic of China
- School of Electronics and Information Technology, Sun Yat-sen University, Guangdong 510275, People's Republic of China
| |
Collapse
|
12
|
Kim E, Baek S, Park JY, Kim KH, Lee JL. Highly transparent all-dielectric metasurface to block the near-infrared region of the solar spectrum. OPTICS EXPRESS 2020; 28:30466-30477. [PMID: 33115047 DOI: 10.1364/oe.403559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Blocking the near-infrared region (NIR) is indispensable for saving energy consumed to maintain the interior temperature in buildings. However, simultaneously enhancing transmission in visible light and blocking in the NIR remains challenging. Here, we theoretically demonstrate a transparent all-dielectric metasurface selectively blocking the NIR by using TiO2 nanocylinders and an indium tin oxide (ITO) layer. The ITO layer is implemented as a back reflector because ITO is transparent in visible light, whereas the ITO becomes a reflective material in the long-wavelength region (λ > 1500 nm). The designed metasurface exhibits high average transmittance of 70% in visible light and high solar energy rejection (SER) of 90% in the NIR. Furthermore, the blocking capability in the NIR of the designed metasurface is maintained over a wide range of an incident angle and polarization angle of light. Therefore, the metasurface gives a guideline for designing energy-saving applications.
Collapse
|
13
|
Akiyoshi K, Kameyama T, Yamamoto T, Kuwabata S, Tatsuma T, Torimoto T. Controlling the oxidation state of molybdenum oxide nanoparticles prepared by ionic liquid/metal sputtering to enhance plasmon-induced charge separation. RSC Adv 2020; 10:28516-28522. [PMID: 35520071 PMCID: PMC9055849 DOI: 10.1039/d0ra05165a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022] Open
Abstract
Nanoparticles composed of molybdenum oxide, MoO x , were successfully prepared by room-temperature ionic liquid (RTIL)/metal sputtering followed by heat treatment. Hydroxyl groups in RTIL molecules retarded the coalescence between MoO x NPs during heat treatment at 473 K in air, while the oxidation state of Mo species in MoO x nanoparticles (NPs) could be modified by changing the heat treatment time. An LSPR peak was observed at 840 nm in the near-IR region for MoO x NPs of 55 nm or larger in size that were annealed in a hydroxyl-functionalized RTIL. Photoexcitation of the LSPR peak of MoO x NPs induced electron transfer from NPs to ITO electrodes.
Collapse
Affiliation(s)
- Kazutaka Akiyoshi
- Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Tatsuya Kameyama
- Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Takahisa Yamamoto
- Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Susumu Kuwabata
- Graduate School of Engineering, Osaka University 2-1 Yamada-oka Suita Osaka 565-0871 Japan
| | - Tetsu Tatsuma
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Tsukasa Torimoto
- Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
14
|
Zhou D, Li X, Zhou Q, Zhu H. Infrared driven hot electron generation and transfer from non-noble metal plasmonic nanocrystals. Nat Commun 2020; 11:2944. [PMID: 32522995 PMCID: PMC7287091 DOI: 10.1038/s41467-020-16833-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/28/2020] [Indexed: 11/26/2022] Open
Abstract
Non-noble metal plasmonic materials, e.g. doped semiconductor nanocrystals, compared to their noble metal counterparts, have shown unique advantages, including broadly tunable plasmon frequency (from visible to infrared) and rich surface chemistry. However, the fate and harvesting of hot electrons from these non-noble metal plasmons have been much less explored. Here we report plasmon driven hot electron generation and transfer from plasmonic metal oxide nanocrystals to surface adsorbed molecules by ultrafast transient absorption spectroscopy. We show unambiguously that under infrared light excitation, hot electron transfers in ultrafast timescale (<50 fs) with an efficiency of 1.4%. The excitation wavelength and fluence dependent study indicates that hot electron transfers right after Landau damping before electron thermalization. We revealed the efficiency-limiting factors and provided improvement strategies. This study paves the way for designing efficient infrared light absorption and photochemical conversion applications based on non-noble metal plasmonic materials.
Collapse
Affiliation(s)
- Dongming Zhou
- The Centre for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xufeng Li
- The Centre for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Qiaohui Zhou
- The Centre for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Haiming Zhu
- The Centre for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
- State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| |
Collapse
|
15
|
Tatsuma T, Nishi H. Plasmonic hole ejection involved in plasmon-induced charge separation. NANOSCALE HORIZONS 2020; 5:597-606. [PMID: 32226974 DOI: 10.1039/c9nh00649d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since the finding of plasmon-induced charge separation (PICS) at the interface between a plasmonic metal nanoparticle and a semiconductor, which has been applied to photovoltaics including photodetectors, photocatalysis including water splitting, sensors and data storage in the visible/near-infrared ranges, injection of hot electrons (energetic electrons) into semiconductors has attracted attention almost exclusively. However, it has recently been found that behaviours of holes are also important. In this review, studies on the hot hole ejection from plasmonic nanoparticles are described comprehensively. Hole ejection from plasmonic nanoparticles on electron transport materials including n-type semiconductors allows oxidation reactions to take place at more positive potentials than those involved in a charge accumulation mechanism. Site-selective oxidation is also one of the characteristics of the hole ejection and is applied to photoinduced nanofabrication beyond the diffraction limit. Hole injection into hole transport materials including p-type semiconductors (HTMs) in solid-state cells, hole ejection through a HTM for stabilization of holes, hole ejection to a HTM for efficient hot electron ejection, voltage up-conversion by the use of hot carriers and electrochemically assisted hole ejection are also described.
Collapse
Affiliation(s)
- Tetsu Tatsuma
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | - Hiroyasu Nishi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| |
Collapse
|
16
|
|