1
|
Cantarero A, Fernandez-Eslava B, Alonso D, Camarero P, Mateo R, Alonso-Alvarez C. Could alternative pathways for carotenoid transformation affect colour production efficiency? A correlative study in wild birds. Comp Biochem Physiol B Biochem Mol Biol 2024:111032. [PMID: 39265722 DOI: 10.1016/j.cbpb.2024.111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
In many vertebrates, dietary yellow carotenoids are enzymatically transformed into 4C-ketocarotenoid pigments, leading to conspicuous red colourations. These colourations may evolve as signals of individual quality under sexual selection. To evolve as signals, they must transmit reliable information benefiting both the receiver and the signaler. Some argue that the reliability of 4C-ketocarotenoid-based colourations is ensured by the tight link between individual quality and mitochondrial metabolism, which is supposedly involved in transforming yellow carotenoids. We studied how a range of carotenoids covary in the feathers and blood plasma of a large number (n > 140) of wild male common crossbills (Loxia curvirostra). Plumage redness was mainly due to 3-hydroxy-echinenone (3HOE). Two other, less abundant, red 4C-ketocarotenoids (astaxanthin and canthaxanthin) could have contributed to feather colour as they are redder pigments. This was demonstrated for astaxanthin but not canthaxanthin, whose feather levels were clearly uncorrelated to colouration. Moreover, moulting crossbills carried more 3HOE and astaxanthin in blood than non-moulting ones, whereas canthaxanthin did not differ. Canthaxanthin and 3HOE can be formed from echinenone, a probable product of dietary β-carotene ketolation. Echinenone could thus be ketolated or hydroxylated to produce canthaxanthin or 3HOE, respectively. In moulting birds, 3HOE blood levels positively correlated to astaxanthin, its product, but negatively to canthaxanthin levels. Redder crossbills also had lower plasma canthaxanthin values. A decrease in hydroxylation relative to ketolation could explain canthaxanthin production. We hypothesize that red colouration could indicate birds' ability to avoid inefficient deviations within the complex enzymatic pathways.
Collapse
Affiliation(s)
- Alejandro Cantarero
- Department of Physiology, Veterinary School, Complutense University of Madrid, Avenida Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Blanca Fernandez-Eslava
- Department of Ornithology, Aranzadi Sciences Society, Zorroagagaina 11, E-20014 Donostia-San Sebastián, Spain
| | - Daniel Alonso
- Department of Ornithology, Aranzadi Sciences Society, Zorroagagaina 11, E-20014 Donostia-San Sebastián, Spain
| | - Pablo Camarero
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC - UCLM - JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC - UCLM - JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Carlos Alonso-Alvarez
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales - CSIC, C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain; IPE, Pyrenean Institute of Ecology (CSIC), Avda. Nuestra Señora de la Victoria 16, 22700 Jaca, Spain.
| |
Collapse
|
2
|
Price-Waldman R, Stoddard MC. Avian Coloration Genetics: Recent Advances and Emerging Questions. J Hered 2021; 112:395-416. [PMID: 34002228 DOI: 10.1093/jhered/esab015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
The colorful phenotypes of birds have long provided rich source material for evolutionary biologists. Avian plumage, beaks, skin, and eggs-which exhibit a stunning range of cryptic and conspicuous forms-inspired early work on adaptive coloration. More recently, avian color has fueled discoveries on the physiological, developmental, and-increasingly-genetic mechanisms responsible for phenotypic variation. The relative ease with which avian color traits can be quantified has made birds an attractive system for uncovering links between phenotype and genotype. Accordingly, the field of avian coloration genetics is burgeoning. In this review, we highlight recent advances and emerging questions associated with the genetic underpinnings of bird color. We start by describing breakthroughs related to 2 pigment classes: carotenoids that produce red, yellow, and orange in most birds and psittacofulvins that produce similar colors in parrots. We then discuss structural colors, which are produced by the interaction of light with nanoscale materials and greatly extend the plumage palette. Structural color genetics remain understudied-but this paradigm is changing. We next explore how colors that arise from interactions among pigmentary and structural mechanisms may be controlled by genes that are co-expressed or co-regulated. We also identify opportunities to investigate genes mediating within-feather micropatterning and the coloration of bare parts and eggs. We conclude by spotlighting 2 research areas-mechanistic links between color vision and color production, and speciation-that have been invigorated by genetic insights, a trend likely to continue as new genomic approaches are applied to non-model species.
Collapse
|
3
|
Shakya SB, Haryoko T, Irham M, Suparno, Prawiradilaga DM, Sheldon FH. Genomic investigation of colour polymorphism and phylogeographic variation among populations of black-headed bulbul (Brachypodius atriceps) in insular southeast Asia. Mol Ecol 2021; 30:4757-4770. [PMID: 34297854 DOI: 10.1111/mec.16089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/27/2022]
Abstract
Intraspecific polymorphism in birds, especially plumage colour polymorphism, and the mechanisms that control it are an area of active research in evolutionary biology. The black-headed bulbul (Brachypodius atriceps) is a polymorphic species with two distinct morphs, yellow and grey. This species inhabits the mainland and virtually all continental islands of Southeast Asia where yellow morphs predominate, but on two islands in the Sunda region, Bawean and Maratua, grey morphs are common or exclusive. Here, we generated a high-quality reference genome of a yellow individual and resequenced genomes of multiple individuals of both yellow and grey morphs to study the genetic basis of coloration and population history of the species. Using PCA and STRUCTURE analysis, we found the Maratua Island population (which is exclusively grey) to be distinct from all other B. atriceps populations, having been isolated c. 1.9 million years ago (Ma). In contrast, Bawean grey individuals (a subset of yellow and grey individuals on that island) are embedded within an almost panmictic Sundaic clade of yellow birds. Using FST and dxy to compare variable genomic segments between Maratua and yellow individuals, we located peaks of divergence and identified candidate loci involved in the colour polymorphism. Tests of selection among coding-proteins in high FST regions, however, did not indicate selection on the candidate genes. Overall, we report on some loci that are potentially responsible for the grey/yellow polymorphism in a species that otherwise shows little genetic diversification across most of its range.
Collapse
Affiliation(s)
- Subir B Shakya
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Tri Haryoko
- Museum Zoologicum Bogoriense, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Mohammad Irham
- Museum Zoologicum Bogoriense, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Suparno
- Museum Zoologicum Bogoriense, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Dewi M Prawiradilaga
- Museum Zoologicum Bogoriense, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Frederick H Sheldon
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
4
|
Twining CW, Bernhardt JR, Derry AM, Hudson CM, Ishikawa A, Kabeya N, Kainz MJ, Kitano J, Kowarik C, Ladd SN, Leal MC, Scharnweber K, Shipley JR, Matthews B. The evolutionary ecology of fatty-acid variation: Implications for consumer adaptation and diversification. Ecol Lett 2021; 24:1709-1731. [PMID: 34114320 DOI: 10.1111/ele.13771] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/20/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
The nutritional diversity of resources can affect the adaptive evolution of consumer metabolism and consumer diversification. The omega-3 long-chain polyunsaturated fatty acids eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) have a high potential to affect consumer fitness, through their widespread effects on reproduction, growth and survival. However, few studies consider the evolution of fatty acid metabolism within an ecological context. In this review, we first document the extensive diversity in both primary producer and consumer fatty acid distributions amongst major ecosystems, between habitats and amongst species within habitats. We highlight some of the key nutritional contrasts that can shape behavioural and/or metabolic adaptation in consumers, discussing how consumers can evolve in response to the spatial, seasonal and community-level variation of resource quality. We propose a hierarchical trait-based approach for studying the evolution of consumers' metabolic networks and review the evolutionary genetic mechanisms underpinning consumer adaptation to EPA and DHA distributions. In doing so, we consider how the metabolic traits of consumers are hierarchically structured, from cell membrane function to maternal investment, and have strongly environment-dependent expression. Finally, we conclude with an outlook on how studying the metabolic adaptation of consumers within the context of nutritional landscapes can open up new opportunities for understanding evolutionary diversification.
Collapse
Affiliation(s)
- Cornelia W Twining
- Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Limnological Institute, University of Konstanz, Konstanz-Egg, Germany
| | - Joey R Bernhardt
- Department of Biology, McGill University, Montréal, QC, Canada.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Alison M Derry
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Cameron M Hudson
- Department of Fish Ecology and Evolution, Eawag, Center of Ecology, Evolution and Biochemistry, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Naoki Kabeya
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology (TUMSAT, Tokyo, Japan
| | - Martin J Kainz
- WasserCluster Lunz-Inter-university Center for Aquatic Ecosystems Research, Lunz am See, Austria
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Carmen Kowarik
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Sarah Nemiah Ladd
- Ecosystem Physiology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Miguel C Leal
- ECOMARE and CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Kristin Scharnweber
- Department of Ecology and Genetics; Limnology, Uppsala University, Uppsala, Sweden.,University of Potsdam, Plant Ecology and Nature Conservation, Potsdam-Golm, Germany
| | - Jeremy R Shipley
- Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Fish Ecology and Evolution, Eawag, Center of Ecology, Evolution and Biochemistry, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag, Center of Ecology, Evolution and Biochemistry, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| |
Collapse
|
5
|
Lewens T. The Extended Evolutionary Synthesis: what is the debate about, and what might success for the extenders look like? Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Abstract
Debate over the Extended Evolutionary Synthesis (EES) ranges over three quite different domains of enquiry. Protagonists are committed to substantive positions regarding (1) empirical questions concerning (for example) the properties and prevalence of systems of epigenetic inheritance; (2) historical characterizations of the modern synthesis; and (3) conceptual/philosophical matters concerning (among other things) the nature of evolutionary processes, and the relationship between selection and adaptation. With these different aspects of the debate in view, it is possible to demonstrate the range of cross-cutting positions on offer when well-informed evolutionists consider their stance on the EES. This overview of the multiple dimensions of debate also enables clarification of two philosophical elements of the EES debate, regarding the status of niche-construction and the role of selection in explaining adaptation. Finally, it points the way to a possible resolution of the EES debate, via a pragmatic approach to evolutionary enquiry.
Collapse
Affiliation(s)
- Tim Lewens
- University of Cambridge – History and Philosophy of Science, Cambridge, UK
| |
Collapse
|