1
|
Tessmer MH, Stoll S. Protein Modeling with DEER Spectroscopy. Annu Rev Biophys 2025; 54:35-57. [PMID: 39689263 DOI: 10.1146/annurev-biophys-030524-013431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Double electron-electron resonance (DEER) combined with site-directed spin labeling can provide distance distributions between selected protein residues to investigate protein structure and conformational heterogeneity. The utilization of the full quantitative information contained in DEER data requires effective protein and spin label modeling methods. Here, we review the application of DEER data to protein modeling. First, we discuss the significance of spin label modeling for accurate extraction of protein structural information and review the most popular label modeling methods. Next, we review several important aspects of protein modeling with DEER, including site selection, how DEER restraints are applied, common artifacts, and the unique potential of DEER data for modeling structural ensembles and conformational landscapes. Finally, we discuss common applications of protein modeling with DEER data and provide an outlook.
Collapse
Affiliation(s)
- Maxx H Tessmer
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
2
|
Chan MC, Alfawaz Y, Paul A, Shukla D. Molecular insights into the elevator-type mechanism of the cyanobacterial bicarbonate transporter BicA. Biophys J 2025; 124:379-392. [PMID: 39674889 PMCID: PMC11788499 DOI: 10.1016/j.bpj.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/17/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024] Open
Abstract
Cyanobacteria are responsible for up to 80% of aquatic carbon dioxide fixation and have evolved a specialized carbon concentrating mechanism to increase photosynthetic yield. As such, cyanobacteria are attractive targets for synthetic biology and engineering approaches to address the demands of global energy security, food production, and climate change for an increasing world's population. The bicarbonate transporter BicA is a sodium-dependent, low-affinity, high-flux bicarbonate symporter expressed in the plasma membrane of cyanobacteria. Despite extensive biochemical characterization of BicA, including the resolution of the BicA crystal structure, the dynamic understanding of the bicarbonate transport mechanism remains elusive. To this end, we have collected over 1 ms of all-atom molecular dynamics simulation data of the BicA dimer to elucidate the structural rearrangements involved in the substrate transport process. We further characterized the energetics of the transition of BicA protomers and investigated potential mutations that are shown to decrease the free energy barrier of conformational transitions. In all, our study illuminates a detailed mechanistic understanding of the conformational dynamics of bicarbonate transporters and provides atomistic insights to engineering these transporters for enhanced photosynthetic production.
Collapse
Affiliation(s)
- Matthew C Chan
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Yazeed Alfawaz
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Arnav Paul
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois; Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois; Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, Illinois; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
3
|
Giangregorio N, Tonazzi A, Pierri CL, Indiveri C. Insights into Transient Dimerisation of Carnitine/Acylcarnitine Carrier (SLC25A20) from Sarkosyl/PAGE, Cross-Linking Reagents, and Comparative Modelling Analysis. Biomolecules 2024; 14:1158. [PMID: 39334924 PMCID: PMC11430254 DOI: 10.3390/biom14091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The carnitine/acylcarnitine carrier (CAC) is a crucial protein for cellular energy metabolism, facilitating the exchange of acylcarnitines and free carnitine across the mitochondrial membrane, thereby enabling fatty acid β-oxidation and oxidative phosphorylation (OXPHOS). Although CAC has not been crystallised, structural insights are derived from the mitochondrial ADP/ATP carrier (AAC) structures in both cytosolic and matrix conformations. These structures underpin a single binding centre-gated pore mechanism, a common feature among mitochondrial carrier (MC) family members. The functional implications of this mechanism are well-supported, yet the structural organization of the CAC, particularly the formation of dimeric or oligomeric assemblies, remains contentious. Recent investigations employing biochemical techniques on purified and reconstituted CAC, alongside molecular modelling based on crystallographic AAC dimeric structures, suggest that CAC can indeed form dimers. Importantly, this dimerization does not alter the transport mechanism, a phenomenon observed in various other membrane transporters across different protein families. This observation aligns with the ping-pong kinetic model, where the dimeric form potentially facilitates efficient substrate translocation without necessitating mechanistic alterations. The presented findings thus contribute to a deeper understanding of CAC's functional dynamics and its structural parallels with other MC family members.
Collapse
Affiliation(s)
- Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Ciro Leonardo Pierri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Cesare Indiveri
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
4
|
Kuhn BT, Zöller J, Zimmermann I, Gemeinhardt T, Özkul DH, Langer JD, Seeger MA, Geertsma ER. Interdomain-linkers control conformational transitions in the SLC23 elevator transporter UraA. Nat Commun 2024; 15:7518. [PMID: 39209842 PMCID: PMC11362169 DOI: 10.1038/s41467-024-51814-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Uptake of nucleobases and ascorbate is an essential process in all living organisms mediated by SLC23 transport proteins. These transmembrane carriers operate via the elevator alternating-access mechanism, and are composed of two rigid domains whose relative motion drives transport. The lack of large conformational changes within these domains suggests that the interdomain-linkers act as flexible tethers. Here, we show that interdomain-linkers are not mere tethers, but have a key regulatory role in dictating the conformational space of the transporter and defining the rotation axis of the mobile transport domain. By resolving a wide inward-open conformation of the SLC23 elevator transporter UraA and combining biochemical studies using a synthetic nanobody as conformational probe with hydrogen-deuterium exchange mass spectrometry, we demonstrate that interdomain-linkers control the function of transport proteins by influencing substrate affinity and transport rate. These findings open the possibility to allosterically modulate the activity of elevator proteins by targeting their linkers.
Collapse
Affiliation(s)
- Benedikt T Kuhn
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jonathan Zöller
- Proteomics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Iwan Zimmermann
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Tim Gemeinhardt
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Dogukan H Özkul
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Julian D Langer
- Proteomics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Proteomics, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Eric R Geertsma
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
5
|
Broutzakis G, Pyrris Y, Akrani I, Neuhaus A, Mikros E, Diallinas G, Gatsogiannis C. High-resolution structures of the UapA purine transporter reveal unprecedented aspects of the elevator-type transport mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609436. [PMID: 39229210 PMCID: PMC11370611 DOI: 10.1101/2024.08.23.609436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
UapA is an extensively studied elevator-type purine transporter from the model fungus Aspergillus nidulans . Determination of a 3.6Å inward-facing crystal structure lacking the cytoplasmic N-and C-tails, molecular dynamics (MD), and functional studies have led to speculative models of its transport mechanism and determination of substrate specificity. Here, we report full-length cryo-EM structures of UapA in new inward-facing apo- and substrate-loaded conformations at 2.05-3.5 Å in detergent and lipid nanodiscs. The structures reveal in an unprecedented level of detail the role of water molecules and lipids in substrate binding, specificity, dimerization, and activity, rationalizing accumulated functional data. Unexpectedly, the N-tail is structured and interacts with both the core and scaffold domains. This finding, combined with mutational and functional studies and MD, points out how N-tail interactions couple proper subcellular trafficking and transport activity by wrapping UapA in a conformation necessary for ER-exit and but also critical for elevator-type conformational changes associated with substrate translocation once UapA has integrated into the plasma membrane. Our study provides detailed insights into important aspects of the elevator-type transport mechanism and opens novel issues on how the evolution of extended cytosolic tails in eukaryotic transporters, apparently needed for subcellular trafficking, might have been integrated into the transport mechanism.
Collapse
|
6
|
Currie MJ, Davies JS, Scalise M, Gulati A, Wright JD, Newton-Vesty MC, Abeysekera GS, Subramanian R, Wahlgren WY, Friemann R, Allison JR, Mace PD, Griffin MDW, Demeler B, Wakatsuki S, Drew D, Indiveri C, Dobson RCJ, North RA. Structural and biophysical analysis of a Haemophilus influenzae tripartite ATP-independent periplasmic (TRAP) transporter. eLife 2024; 12:RP92307. [PMID: 38349818 PMCID: PMC10942642 DOI: 10.7554/elife.92307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are secondary-active transporters that receive their substrates via a soluble-binding protein to move bioorganic acids across bacterial or archaeal cell membranes. Recent cryo-electron microscopy (cryo-EM) structures of TRAP transporters provide a broad framework to understand how they work, but the mechanistic details of transport are not yet defined. Here we report the cryo-EM structure of the Haemophilus influenzae N-acetylneuraminate TRAP transporter (HiSiaQM) at 2.99 Å resolution (extending to 2.2 Å at the core), revealing new features. The improved resolution (the previous HiSiaQM structure is 4.7 Å resolution) permits accurate assignment of two Na+ sites and the architecture of the substrate-binding site, consistent with mutagenic and functional data. Moreover, rather than a monomer, the HiSiaQM structure is a homodimer. We observe lipids at the dimer interface, as well as a lipid trapped within the fusion that links the SiaQ and SiaM subunits. We show that the affinity (KD) for the complex between the soluble HiSiaP protein and HiSiaQM is in the micromolar range and that a related SiaP can bind HiSiaQM. This work provides key data that enhances our understanding of the 'elevator-with-an-operator' mechanism of TRAP transporters.
Collapse
Affiliation(s)
- Michael J Currie
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - James S Davies
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of CalabriaArcavacata di RendeItaly
| | - Ashutosh Gulati
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Joshua D Wright
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - Michael C Newton-Vesty
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - Gayan S Abeysekera
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - Ramaswamy Subramanian
- Biological Sciences and Biomedical Engineering, Bindley Bioscience Center, Purdue University West LafayetteWest LafayetteUnited States
| | - Weixiao Y Wahlgren
- Department of Chemistry and Molecular Biology, Biochemistry and Structural Biology, University of GothenburgGothenburgSweden
| | - Rosmarie Friemann
- Centre for Antibiotic Resistance Research (CARe) at University of GothenburgGothenburgSweden
| | - Jane R Allison
- Biomolecular Interaction Centre, Digital Life Institute, Maurice Wilkins Centre for Molecular Biodiscovery, and School of Biological Sciences, University of AucklandAucklandNew Zealand
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of OtagoDunedinNew Zealand
| | - Michael DW Griffin
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio Molecular Science and Biotechnology Institute, Department of Biochemistry and Pharmacology, University of MelbourneMelbourneAustralia
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of MontanaMissoulaUnited States
- Department of Chemistry and Biochemistry, University of LethbridgeLethbridgeCanada
| | - Soichi Wakatsuki
- Biological Sciences Division, SLAC National Accelerator LaboratoryMenlo ParkUnited States
- Department of Structural Biology, Stanford University School of MedicineStanfordUnited States
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of CalabriaArcavacata di RendeItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Renwick CJ Dobson
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio Molecular Science and Biotechnology Institute, Department of Biochemistry and Pharmacology, University of MelbourneMelbourneAustralia
| | - Rachel A North
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
- School of Medical Sciences, Faculty of Medicine and Health, University of SydneySydneyAustralia
| |
Collapse
|
7
|
Geertsma ER, Oliver D. SLC26 Anion Transporters. Handb Exp Pharmacol 2024; 283:319-360. [PMID: 37947907 DOI: 10.1007/164_2023_698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Solute carrier family 26 (SLC26) is a family of functionally diverse anion transporters found in all kingdoms of life. Anions transported by SLC26 proteins include chloride, bicarbonate, and sulfate, but also small organic dicarboxylates such as fumarate and oxalate. The human genome encodes ten functional homologs, several of which are causally associated with severe human diseases, highlighting their physiological importance. Here, we review novel insights into the structure and function of SLC26 proteins and summarize the physiological relevance of human members.
Collapse
Affiliation(s)
- Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Marburg, Giessen, Germany.
| |
Collapse
|
8
|
Kuwabara MF, Haddad BG, Lenz-Schwab D, Hartmann J, Longo P, Huckschlag BM, Fuß A, Questino A, Berger TK, Machtens JP, Oliver D. Elevator-like movements of prestin mediate outer hair cell electromotility. Nat Commun 2023; 14:7145. [PMID: 37932294 PMCID: PMC10628124 DOI: 10.1038/s41467-023-42489-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/12/2023] [Indexed: 11/08/2023] Open
Abstract
The outstanding acuity of the mammalian ear relies on cochlear amplification, an active mechanism based on the electromotility (eM) of outer hair cells. eM is a piezoelectric mechanism generated by little-understood, voltage-induced conformational changes of the anion transporter homolog prestin (SLC26A5). We used a combination of molecular dynamics (MD) simulations and biophysical approaches to identify the structural dynamics of prestin that mediate eM. MD simulations showed that prestin samples a vast conformational landscape with expanded (ES) and compact (CS) states beyond previously reported prestin structures. Transition from CS to ES is dominated by the translational-rotational movement of prestin's transport domain, akin to elevator-type substrate translocation by related solute carriers. Reversible transition between CS and ES states was supported experimentally by cysteine accessibility scanning, cysteine cross-linking between transport and scaffold domains, and voltage-clamp fluorometry (VCF). Our data demonstrate that prestin's piezoelectric dynamics recapitulate essential steps of a structurally conserved ion transport cycle.
Collapse
Affiliation(s)
- Makoto F Kuwabara
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037, Marburg, Germany
| | - Bassam G Haddad
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
| | - Dominik Lenz-Schwab
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037, Marburg, Germany
| | - Julia Hartmann
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037, Marburg, Germany
| | - Piersilvio Longo
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
| | - Britt-Marie Huckschlag
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037, Marburg, Germany
| | - Anneke Fuß
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037, Marburg, Germany
| | - Annalisa Questino
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037, Marburg, Germany
| | - Thomas K Berger
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037, Marburg, Germany
| | - Jan-Philipp Machtens
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany.
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany.
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037, Marburg, Germany.
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps University, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Marburg, Germany.
| |
Collapse
|
9
|
Rudolph M, Tampé R, Joseph B. Time-Resolved Mn 2+ -NO and NO-NO Distance Measurements Reveal That Catalytic Asymmetry Regulates Alternating Access in an ABC Transporter. Angew Chem Int Ed Engl 2023; 62:e202307091. [PMID: 37459565 DOI: 10.1002/anie.202307091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
ATP-binding cassette (ABC) transporters shuttle diverse substrates across biological membranes. Transport is often achieved through a transition between an inward-facing (IF) and an outward-facing (OF) conformation of the transmembrane domains (TMDs). Asymmetric nucleotide-binding sites (NBSs) are present among several ABC subfamilies and their functional role remains elusive. Here we addressed this question using concomitant NO-NO, Mn2+ -NO, and Mn2+ -Mn2+ pulsed electron-electron double-resonance spectroscopy of TmrAB in a time-resolved manner. This type-IV ABC transporter undergoes a reversible transition in the presence of ATP with a significantly faster forward transition. The impaired degenerate NBS stably binds Mn2+ -ATP, and Mn2+ is preferentially released at the active consensus NBS. ATP hydrolysis at the consensus NBS considerably accelerates the reverse transition. Both NBSs fully open during each conformational cycle and the degenerate NBS may regulate the kinetics of this process.
Collapse
Affiliation(s)
- Michael Rudolph
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Benesh Joseph
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| |
Collapse
|
10
|
Li J, Huang S, Liu S, Liao X, Yan S, Liu Q. SLC26 family: a new insight for kidney stone disease. Front Physiol 2023; 14:1118342. [PMID: 37304821 PMCID: PMC10247987 DOI: 10.3389/fphys.2023.1118342] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
The solute-linked carrier 26 (SLC26) protein family is comprised of multifunctional transporters of substrates that include oxalate, sulphate, and chloride. Disorders of oxalate homeostasis cause hyperoxalemia and hyperoxaluria, leading to urinary calcium oxalate precipitation and urolithogenesis. SLC26 proteins are aberrantly expressed during kidney stone formation, and consequently may present therapeutic targets. SLC26 protein inhibitors are in preclinical development. In this review, we integrate the findings of recent reports with clinical data to highlight the role of SLC26 proteins in oxalate metabolism during urolithogenesis, and discuss limitations of current studies and potential directions for future research.
Collapse
Affiliation(s)
- Jialin Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Sigen Huang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shengyin Liu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xinzhi Liao
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Sheng Yan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Quanliang Liu
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
11
|
Roden A, Engelin MK, Pos KM, Geertsma ER. Membrane-anchored substrate binding proteins are deployed in secondary TAXI transporters. Biol Chem 2023:hsz-2022-0337. [PMID: 36916166 DOI: 10.1515/hsz-2022-0337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/10/2023] [Indexed: 03/16/2023]
Abstract
Substrate-binding proteins (SBPs) are part of solute transport systems and serve to increase substrate affinity and uptake rates. In contrast to primary transport systems, the mechanism of SBP-dependent secondary transport is not well understood. Functional studies have thus far focused on Na+-coupled Tripartite ATP-independent periplasmic (TRAP) transporters for sialic acid. Herein, we report the in vitro functional characterization of TAXIPm-PQM from the human pathogen Proteus mirabilis. TAXIPm-PQM belongs to a TRAP-subfamily using a different type of SBP, designated TRAP-associated extracytoplasmic immunogenic (TAXI) protein. TAXIPm-PQM catalyzes proton-dependent α-ketoglutarate symport and its SBP is an essential component of the transport mechanism. Importantly, TAXIPm-PQM represents the first functionally characterized SBP-dependent secondary transporter that does not rely on a soluble SBP, but uses a membrane-anchored SBP instead.
Collapse
Affiliation(s)
- Anja Roden
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Melanie K Engelin
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Klaas M Pos
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Eric R Geertsma
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| |
Collapse
|
12
|
Beltran JL, McGrath LG, Caruso S, Bain RK, Hendrix CE, Kamran H, Johnston HG, Collings RM, Henry MCN, Abera TAL, Donoso VA, Carriker EC, Thurtle-Schmidt BH. Borate Transporters and SLC4 Bicarbonate Transporters Share Key Functional Properties. MEMBRANES 2023; 13:235. [PMID: 36837738 PMCID: PMC9959716 DOI: 10.3390/membranes13020235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/03/2023]
Abstract
Borate transporters are membrane transport proteins that regulate intracellular borate levels. In plants, borate is a micronutrient essential for growth but is toxic in excess, while in yeast, borate is unnecessary for growth and borate export confers tolerance. Borate transporters share structural homology with human bicarbonate transporters in the SLC4 family despite low sequence identity and differences in transported solutes. Here, we characterize the S. cerevisiae borate transporter Bor1p and examine whether key biochemical features of SLC4 transporters extend to borate transporters. We show that borate transporters and SLC4 transporters share multiple properties, including lipid-promoted dimerization, sensitivity to stilbene disulfonate-derived inhibitors, and a requirement for an acidic residue at the solute binding site. We also identify several amino acids critical for Bor1p function and show that disease-causing mutations in human SLC4A1 will eliminate in vivo function when their homologous mutations are introduced in Bor1p. Our data help elucidate mechanistic features of Bor1p and reveal significant functional properties shared between borate transporters and SLC4 transporters.
Collapse
|
13
|
Futamata H, Fukuda M, Umeda R, Yamashita K, Tomita A, Takahashi S, Shikakura T, Hayashi S, Kusakizako T, Nishizawa T, Homma K, Nureki O. Cryo-EM structures of thermostabilized prestin provide mechanistic insights underlying outer hair cell electromotility. Nat Commun 2022; 13:6208. [PMID: 36266333 PMCID: PMC9584906 DOI: 10.1038/s41467-022-34017-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/11/2022] [Indexed: 01/11/2023] Open
Abstract
Outer hair cell elecromotility, driven by prestin, is essential for mammalian cochlear amplification. Here, we report the cryo-EM structures of thermostabilized prestin (PresTS), complexed with chloride, sulfate, or salicylate at 3.52-3.63 Å resolutions. The central positively-charged cavity allows flexible binding of various anion species, which likely accounts for the known distinct modulations of nonlinear capacitance (NLC) by different anions. Comparisons of these PresTS structures with recent prestin structures suggest rigid-body movement between the core and gate domains, and provide mechanistic insights into prestin inhibition by salicylate. Mutations at the dimeric interface severely diminished NLC, suggesting that stabilization of the gate domain facilitates core domain movement, thereby contributing to the expression of NLC. These findings advance our understanding of the molecular mechanism underlying mammalian cochlear amplification.
Collapse
Affiliation(s)
- Haon Futamata
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masahiro Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo; Meguro-ku, Tokyo, 153-8503, Japan
| | - Rie Umeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Keitaro Yamashita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Atsuhiro Tomita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoe Takahashi
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Takafumi Shikakura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.
| | - Kazuaki Homma
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL, 60608, USA.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
14
|
Homodimerized cytoplasmic domain of PD-L1 regulates its complex glycosylation in living cells. Commun Biol 2022; 5:887. [PMID: 36042378 PMCID: PMC9427764 DOI: 10.1038/s42003-022-03845-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Whether membrane-anchored PD-L1 homodimerizes in living cells is controversial. The biological significance of the homodimer waits to be expeditiously explored. However, characterization of the membrane-anchored full-length PD-L1 homodimer is challenging, and unconventional approaches are needed. By using genetically incorporated crosslinkers, we showed that full length PD-L1 forms homodimers and tetramers in living cells. Importantly, the homodimerized intracellular domains of PD-L1 play critical roles in its complex glycosylation. Further analysis identified three key arginine residues in the intracellular domain of PD-L1 as the regulating unit. In the PD-L1/PD-L1-3RE homodimer, mutations result in a decrease in the membrane abundance and an increase in the Golgi of wild-type PD-L1. Notably, PD-1 binding to abnormally glycosylated PD-L1 on cancer cells was attenuated, and subsequent T-cell induced toxicity increased. Collectively, our study demonstrated that PD-L1 indeed forms homodimers in cells, and the homodimers play important roles in PD-L1 complex glycosylation and T-cell mediated toxicity. Membrane-anchored PD-L1 homodimerizes in cells. N-glycosylation of PD-L1 regulates its homodimerization. The formation of PD-L1 homodimers further regulates their glycan processing, localization to the plasma membrane, and binding to PD-1.
Collapse
|
15
|
Remigante A, Spinelli S, Pusch M, Sarikas A, Morabito R, Marino A, Dossena S. Role of SLC4 and SLC26 solute carriers during oxidative stress. Acta Physiol (Oxf) 2022; 235:e13796. [PMID: 35143116 PMCID: PMC9542443 DOI: 10.1111/apha.13796] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022]
Abstract
Bicarbonate is one of the major anions in mammalian tissues and fluids, is utilized by various exchangers to transport other ions and organic substrates across cell membranes and plays a critical role in cell and systemic pH homoeostasis. Chloride/bicarbonate (Cl−/HCO3−) exchangers are abundantly expressed in erythrocytes and epithelial cells and, as a consequence, are particularly exposed to oxidants in the systemic circulation and at the interface with the external environment. Here, we review the physiological functions and pathophysiological alterations of Cl−/HCO3− exchangers belonging to the solute carriers SLC4 and SLC26 superfamilies in relation to oxidative stress. Particularly well studied is the impact of oxidative stress on the red blood cell SLC4A1/AE1 (Band 3 protein), of which the function seems to be directly affected by oxidative stress and possibly involves oxidation of the transporter itself or its interacting proteins, with detrimental consequences in oxidative stress‐related diseases including inflammation, metabolic dysfunctions and ageing. The effect of oxidative stress on SLC26 members was less extensively explored. Indirect evidence suggests that SLC26 transporters can be target as well as determinants of oxidative stress, especially when their expression is abolished or dysregulated.
Collapse
Affiliation(s)
- Alessia Remigante
- Biophysics Institute National Research Council Genova Italy
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Sara Spinelli
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Michael Pusch
- Biophysics Institute National Research Council Genova Italy
| | - Antonio Sarikas
- Institute of Pharmacology and Toxicology Paracelsus Medical University Salzburg Austria
| | - Rossana Morabito
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Angela Marino
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology Paracelsus Medical University Salzburg Austria
| |
Collapse
|
16
|
Kalli AC, Reithmeier RAF. Organization and Dynamics of the Red Blood Cell Band 3 Anion Exchanger SLC4A1: Insights From Molecular Dynamics Simulations. Front Physiol 2022; 13:817945. [PMID: 35283786 PMCID: PMC8914234 DOI: 10.3389/fphys.2022.817945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/27/2022] [Indexed: 01/16/2023] Open
Abstract
Molecular dynamics (MD) simulations have provided new insights into the organization and dynamics of the red blood cell Band 3 anion exchanger (AE1, SLC4A1). Band 3, like many solute carriers, works by an alternating access mode of transport where the protein rapidly (104/s) changes its conformation between outward and inward-facing states via a transient occluded anion-bound intermediate. While structural studies of membrane proteins usually reveal valuable structural information, these studies provide a static view often in the presence of detergents. Membrane transporters are embedded in a lipid bilayer and associated lipids play a role in their folding and function. In this review, we highlight MD simulations of Band 3 in realistic lipid bilayers that revealed specific lipid and protein interactions and were used to re-create a model of the Wright (Wr) blood group antigen complex of Band 3 and Glycophorin A. Current MD studies of Band 3 and related transporters are focused on describing the trajectory of substrate binding and translocation in real time. A structure of the intact Band 3 protein has yet to be achieved experimentally, but cryo-electron microscopy in combination with MD simulations holds promise to capture the conformational changes associated with anion transport in exquisite molecular detail.
Collapse
Affiliation(s)
- Antreas C. Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Reinhart A. F. Reithmeier
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- *Correspondence: Reinhart A. F. Reithmeier,
| |
Collapse
|
17
|
Butan C, Song Q, Bai JP, Tan WJT, Navaratnam D, Santos-Sacchi J. Single particle cryo-EM structure of the outer hair cell motor protein prestin. Nat Commun 2022; 13:290. [PMID: 35022426 PMCID: PMC8755724 DOI: 10.1038/s41467-021-27915-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
The mammalian outer hair cell (OHC) protein prestin (Slc26a5) differs from other Slc26 family members due to its unique piezoelectric-like property that drives OHC electromotility, the putative mechanism for cochlear amplification. Here, we use cryo-electron microscopy to determine prestin’s structure at 3.6 Å resolution. Prestin is structurally similar to the anion transporter Slc26a9. It is captured in an inward-open state which may reflect prestin’s contracted state. Two well-separated transmembrane (TM) domains and two cytoplasmic sulfate transporter and anti-sigma factor antagonist (STAS) domains form a swapped dimer. The transmembrane domains consist of 14 transmembrane segments organized in two 7+7 inverted repeats, an architecture first observed in the bacterial symporter UraA. Mutation of prestin’s chloride binding site removes salicylate competition with anions while retaining the prestin characteristic displacement currents (Nonlinear Capacitance), undermining the extrinsic voltage sensor hypothesis for prestin function. Prestin, expressed in outer hair cell (OHC), belongs to the Slc26 transporter family and functions as a voltage-driven motor that drives OHC electromotility. Here, the authors report cryo-EM structure and characterization of gerbil prestin, with insights into its mechanism of action.
Collapse
Affiliation(s)
- Carmen Butan
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA
| | - Qiang Song
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA
| | - Jun-Ping Bai
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Winston J T Tan
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA
| | - Dhasakumar Navaratnam
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA. .,Department of Neurology, Yale University School of Medicine, New Haven, CT, USA. .,Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| | - Joseph Santos-Sacchi
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA. .,Neuroscience, Yale University School of Medicine, New Haven, CT, USA. .,Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
18
|
Progress in understanding the structural mechanism underlying prestin's electromotile activity. Hear Res 2021; 423:108423. [PMID: 34987017 DOI: 10.1016/j.heares.2021.108423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/17/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022]
Abstract
Prestin (SLC26A5), a member of the SLC26 transporter family, is the molecular actuator that drives OHC electromotility (eM). A wealth of biophysical data indicates that eM is mediated by an area motor mechanism, in which prestin molecules act as elementary actuators by changing their area in the membrane in response to changes in membrane potential. The area changes of a large and densely packed population of prestin molecules sum up, resulting in macroscopic cellular movement. At the single protein level, this model implies major voltage-driven conformational rearrangements. However, the nature of these structural dynamics remained unknown. A main obstacle in elucidating the eM mechanism has been the lack of structural information about SLC26 transporters. The recent emergence of several high-resolution cryo-EM structures of prestin as well as other SLC26 transporter family members now provides a reliable picture of prestin's molecular architecture. Thus, SLC26 transporters including prestin generally are dimers, and each protomer is folded according to a 7+7 transmembrane domain inverted repeat (7TMIR) architecture. Here, we review these structural findings and discuss insights into a potential molecular mechanism. Most important, distinct conformations were observed when purifying and imaging prestin bound to either its physiological ligand, chloride, or to competitively inhibitory anions, sulfate or salicylate. Despite differences in detail, these structural snapshots indicate that the conformational landscape of prestin includes rearrangements between the two major domains of prestin's transmembrane region (TMD), core and scaffold ('gate') domains. Notably, distinct conformations differ in the area the TMD occupies in the membrane and in their impact on the immediate lipid environment. Both effects can contribute to generate membrane deformation and thus may underly electromotility. Further functional studies will be necessary to determine whether these or similar structural rearrangements are driven by membrane potential to mediate piezoelectric activity. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.
Collapse
|
19
|
Holzhüter K, Geertsma ER. Uniport, Not Proton-Symport, in a Non-Mammalian SLC23 Transporter. J Mol Biol 2021; 434:167393. [PMID: 34896363 DOI: 10.1016/j.jmb.2021.167393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 10/25/2022]
Abstract
SLC23 family members are transporters of either nucleobases or ascorbate. While the mammalian SLC23 ascorbate transporters are sodium-coupled, the non-mammalian nucleobase transporters have been proposed, but not formally shown, to be proton-coupled symporters. This assignment is exclusively based on in vivo transport assays using protonophores. Here, by establishing the first in vitro transport assay for this protein family, we demonstrate that a representative member of the SLC23 nucleobase transporters operates as a uniporter instead. We explain these conflicting assignments by identifying a critical role of uracil phosphoribosyltransferase, the enzyme converting uracil to UMP, in driving uracil uptake in vivo. Detailed characterization of uracil phosphoribosyltransferase reveals that the sharp reduction of uracil uptake in whole cells in presence of protonophores is caused by acidification-induced enzyme inactivation. The SLC23 family therefore consists of both uniporters and symporters in line with the structurally related SLC4 and SLC26 families that have previously been demonstrated to accommodate both transport modes as well.
Collapse
Affiliation(s)
- Katharina Holzhüter
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt am Main, Germany
| | - Eric R Geertsma
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt am Main, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.
| |
Collapse
|
20
|
Ito T, Fujikawa T, Honda K, Makabe A, Watanabe H, Bai J, Kawashima Y, Miwa T, Griffith AJ, Tsutsumi T. Cochlear Pathomorphogenesis of Incomplete Partition Type II in Slc26a4-Null Mice. J Assoc Res Otolaryngol 2021; 22:681-691. [PMID: 34622375 DOI: 10.1007/s10162-021-00812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
Incomplete partition type II (IP-II) is frequently identified in ears with SLC26A4 mutations. Cochleae with IP-II are generally observed to have 1½ turns; the basal turns are normally formed, and the apical turn is dilated or cystic. The objective of this study was to characterize the pathomorphogenesis of the IP-II cochlear anomaly in Slc26a4-null mice. Otic capsules were dissected from Slc26a4Δ/+ and Slc26a4Δ/Δ mice at 1 and 8 days of age and at 1 and 3 months of age. X-ray micro-computed tomography was used to image samples. We used a multiplanar view and three-dimensional reconstructed models to calculate the cochlear duct length, cochlear turn rotation angle, and modiolus tilt angle. The number of inner hair cells was counted, and the length of the cochlear duct was measured in a whole-mount preparation of the membranous labyrinth. X-ray micro-computed tomography mid-modiolar planar views demonstrated cystic apical turns in Slc26a4Δ/Δ mice resulting from the loss or deossification of the interscalar septum, which morphologically resembles IP-II in humans. Planes vertical to the modiolus showed a similar mean rotation angle between Slc26a4Δ/+ and Slc26a4Δ/Δ mice. In contrast, the mean cochlear duct length and mean number of inner hair cells in Slc26a4Δ/Δ mice were significantly smaller than in Slc26a4Δ/+ mice. In addition, there were significant differences in the mean tilt angle and mean width of the modiolus. Our analysis of Slc26a4-null mice suggests that IP-II in humans reflects loss or deossification of the interscalar septum but not a decreased number of cochlear turns.
Collapse
Affiliation(s)
- Taku Ito
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan.
| | - Taro Fujikawa
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
| | - Keiji Honda
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
| | - Ayane Makabe
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
| | - Hiroki Watanabe
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
| | - Jing Bai
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
| | - Yoshiyuki Kawashima
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
| | - Toru Miwa
- Department of Otolaryngology, Tazuke Kofukai Medical Research Institute, Kitano Hospital, 2-4-20 Ogimachi, Kita-ku, Osaka, 530-8480, Japan
| | - Andrew J Griffith
- Molecular Biology and Genetics Section, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA.,Departments of Otolaryngology and Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Takeshi Tsutsumi
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
| |
Collapse
|
21
|
Comparative Molecular Dynamics Investigation of the Electromotile Hearing Protein Prestin. Int J Mol Sci 2021; 22:ijms22158318. [PMID: 34361083 PMCID: PMC8347359 DOI: 10.3390/ijms22158318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023] Open
Abstract
The mammalian protein prestin is expressed in the lateral membrane wall of the cochlear hair outer cells and is responsible for the electromotile response of the basolateral membrane, following hyperpolarisation or depolarisation of the cells. Its impairment marks the onset of severe diseases, like non-syndromic deafness. Several studies have pointed out possible key roles of residues located in the Transmembrane Domain (TMD) that differentiate mammalian prestins as incomplete transporters from the other proteins belonging to the same solute-carrier (SLC) superfamily, which are classified as complete transporters. Here, we exploit the homology of a prototypical incomplete transporter (rat prestin, rPres) and a complete transporter (zebrafish prestin, zPres) with target structures in the outward open and inward open conformations. The resulting models are then embedded in a model membrane and investigated via a rigorous molecular dynamics simulation protocol. The resulting trajectories are analyzed to obtain quantitative descriptors of the equilibration phase and to assess a structural comparison between proteins in different states, and between different proteins in the same state. Our study clearly identifies a network of key residues at the interface between the gate and the core domains of prestin that might be responsible for the conformational change observed in complete transporters and hindered in incomplete transporters. In addition, we study the pathway of Cl− ions in the presence of an applied electric field towards their putative binding site in the gate domain. Based on our simulations, we propose a tilt and shift mechanism of the helices surrounding the ion binding cavity as the working principle of the reported conformational changes in complete transporters.
Collapse
|
22
|
Wang Z, Wang Q, Wu H, Huang Z. Identification and characterization of amphibian SLC26A5 using RNA-Seq. BMC Genomics 2021; 22:564. [PMID: 34294052 PMCID: PMC8296623 DOI: 10.1186/s12864-021-07798-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
Background Prestin (SLC26A5) is responsible for acute sensitivity and frequency selectivity in the vertebrate auditory system. Limited knowledge of prestin is from experiments using site-directed mutagenesis or domain-swapping techniques after the amino acid residues were identified by comparing the sequence of prestin to those of its paralogs and orthologs. Frog prestin is the only representative in amphibian lineage and the studies of it were quite rare with only one species identified. Results Here we report a new coding sequence of SLC26A5 for a frog species, Rana catesbeiana (the American bullfrog). In our study, the SLC26A5 gene of Rana has been mapped, sequenced and cloned successively using RNA-Seq. We measured the nonlinear capacitance (NLC) of prestin both in the hair cells of Rana’s inner ear and HEK293T cells transfected with this new coding gene. HEK293T cells expressing Rana prestin showed electrophysiological features similar to that of hair cells from its inner ear. Comparative studies of zebrafish, chick, Rana and an ancient frog species showed that chick and zebrafish prestin lacked NLC. Ancient frog’s prestin was functionally different from Rana. Conclusions We mapped and sequenced the SLC26A5 of the Rana catesbeiana from its inner ear cDNA using RNA-Seq. The Rana SLC26A5 cDNA was 2292 bp long, encoding a polypeptide of 763 amino acid residues, with 40% identity to mammals. This new coding gene could encode a functionally active protein conferring NLC to both frog HCs and the mammalian cell line. While comparing to its orthologs, the amphibian prestin has been evolutionarily changing its function and becomes more advanced than avian and teleost prestin.
Collapse
Affiliation(s)
- Zhongying Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Qixuan Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Zhiwu Huang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
23
|
Structure and function of an Arabidopsis thaliana sulfate transporter. Nat Commun 2021; 12:4455. [PMID: 34294705 PMCID: PMC8298490 DOI: 10.1038/s41467-021-24778-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
Plant sulfate transporters (SULTR) mediate absorption and distribution of sulfate (SO42-) and are essential for plant growth; however, our understanding of their structures and functions remains inadequate. Here we present the structure of a SULTR from Arabidopsis thaliana, AtSULTR4;1, in complex with SO42- at an overall resolution of 2.8 Å. AtSULTR4;1 forms a homodimer and has a structural fold typical of the SLC26 family of anion transporters. The bound SO42- is coordinated by side-chain hydroxyls and backbone amides, and further stabilized electrostatically by the conserved Arg393 and two helix dipoles. Proton and SO42- are co-transported by AtSULTR4;1 and a proton gradient significantly enhances SO42- transport. Glu347, which is ~7 Å from the bound SO42-, is required for H+-driven transport. The cytosolic STAS domain interacts with transmembrane domains, and deletion of the STAS domain or mutations to the interface compromises dimer formation and reduces SO42- transport, suggesting a regulatory function of the STAS domain.
Collapse
|
24
|
Jodaitis L, van Oene T, Martens C. Assessing the Role of Lipids in the Molecular Mechanism of Membrane Proteins. Int J Mol Sci 2021; 22:7267. [PMID: 34298884 PMCID: PMC8306737 DOI: 10.3390/ijms22147267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
Membrane proteins have evolved to work optimally within the complex environment of the biological membrane. Consequently, interactions with surrounding lipids are part of their molecular mechanism. Yet, the identification of lipid-protein interactions and the assessment of their molecular role is an experimental challenge. Recently, biophysical approaches have emerged that are compatible with the study of membrane proteins in an environment closer to the biological membrane. These novel approaches revealed specific mechanisms of regulation of membrane protein function. Lipids have been shown to play a role in oligomerization, conformational transitions or allosteric coupling. In this review, we summarize the recent biophysical approaches, or combination thereof, that allow to decipher the role of lipid-protein interactions in the mechanism of membrane proteins.
Collapse
Affiliation(s)
| | | | - Chloé Martens
- Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium; (L.J.); (T.v.O.)
| |
Collapse
|
25
|
Structural and functional insights into the mechanism of action of plant borate transporters. Sci Rep 2021; 11:12328. [PMID: 34112901 PMCID: PMC8192573 DOI: 10.1038/s41598-021-91763-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023] Open
Abstract
Boron has essential roles in plant growth and development. BOR proteins are key in the active uptake and distribution of boron, and regulation of intracellular boron concentrations. However, their mechanism of action remains poorly studied. BOR proteins are homologues of the human SLC4 family of transporters, which includes well studied mammalian transporters such as the human Anion Exchanger 1 (hAE1). Here we generated Arabidopsis thaliana BOR1 (AtBOR1) variants based (i) on known disease causing mutations of hAE1 (S466R, A500R) and (ii) a loss of function mutation (D311A) identified in the yeast BOR protein, ScBOR1p. The AtBOR1 variants express in yeast and localise to the plasma membrane, although both S466R and A500R exhibit lower expression than the WT AtBOR1 and D311A. The D311A, S466R and A500R mutations result in a loss of borate efflux activity in a yeast bor1p knockout strain. A. thaliana plants containing these three individual mutations exhibit substantially decreased growth phenotypes in soil under conditions of low boron. These data confirm an important role for D311 in the function of the protein and show that mutations equivalent to disease-causing mutations in hAE1 have major effects in AtBOR1. We also obtained a low resolution cryo-EM structure of a BOR protein from Oryza sativa, OsBOR3, lacking the 30 C-terminal amino acid residues. This structure confirms the gate and core domain organisation previously observed for related proteins, and is strongly suggestive of an inward facing conformation.
Collapse
|
26
|
Wang Z, Ma Q, Lu J, Cui X, Chen H, Wu H, Huang Z. Functional Parameters of Prestin Are Not Correlated With the Best Hearing Frequency. Front Cell Dev Biol 2021; 9:638530. [PMID: 34046403 PMCID: PMC8144510 DOI: 10.3389/fcell.2021.638530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/23/2021] [Indexed: 11/29/2022] Open
Abstract
Among the vertebrate lineages with different hearing frequency ranges, humans lie between the low-frequency hearing (1 kHz) of fish and amphibians and the high-frequency hearing (100 kHz) of bats and dolphins. Little is known about the mechanism underlying such a striking difference in the limits of hearing frequency. Prestin, responsible for cochlear amplification and frequency selectivity in mammals, seems to be the only candidate to date. Mammalian prestin is densely expressed in the lateral plasma membrane of the outer hair cells (OHCs) and functions as a voltage-dependent motor protein. To explore the molecular basis for the contribution of prestin in hearing frequency detection, we collected audiogram data from humans, dogs, gerbils, bats, and dolphins because their average hearing frequency rises in steps. We generated stable cell lines transfected with human, dog, gerbil, bat, and dolphin prestins (hPres, dPres, gPres, bPres, and nPres, respectively). The non-linear capacitance (NLC) of different prestins was measured using a whole-cell patch clamp. We found that the Qmax/Clin of bPres and nPres was significantly higher than that of humans. The V1/2 of hPres was more hyperpolarized than that of nPres. The z values of hPres and bPres were higher than that of nPres. We further analyzed the relationship between the high-frequency hearing limit (Fmax) and the functional parameters (V1/2, z, and Qmax/Clin) of NLC among five prestins. Interestingly, no significant correlation was found between the functional parameters and Fmax. Additionally, a comparative study showed that the amino acid sequences and tertiary structures of five prestins were quite similar. There might be a common fundamental mechanism driving the function of prestins. These findings call for a reconsideration of the leading role of prestin in hearing frequency perception. Other intriguing kinetics underlying the hearing frequency response of auditory organs might exist.
Collapse
Affiliation(s)
- Zhongying Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Qingping Ma
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jiawen Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xiaochen Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Haifeng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Zhiwu Huang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
27
|
Identification of multiple substrate binding sites in SLC4 transporters in the outward-facing conformation: Insights into the transport mechanism. J Biol Chem 2021; 296:100724. [PMID: 33932403 PMCID: PMC8191340 DOI: 10.1016/j.jbc.2021.100724] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 01/17/2023] Open
Abstract
Solute carrier family 4 (SLC4) transporters mediate the transmembrane transport of HCO3-, CO32-, and Cl- necessary for pH regulation, transepithelial H+/base transport, and ion homeostasis. Substrate transport with varying stoichiometry and specificity is achieved through an exchange mechanism and/or through coupling of the uptake of anionic substrates to typically co-transported Na+. Recently solved outward-facing structures of two SLC4 members (human anion exchanger 1 [hAE1] and human electrogenic sodium bicarbonate cotransporter 1 [hNBCe1]) with different transport modes (Cl-/HCO3- exchange versus Na+-CO32- symport) revealed highly conserved three-dimensional organization of their transmembrane domains. However, the exact location of the ion binding sites and their protein-ion coordination motifs are still unclear. In the present work, we combined site identification by ligand competitive saturation mapping and extensive molecular dynamics sampling with functional mutagenesis studies which led to the identification of two substrate binding sites (entry and central) in the outward-facing states of hAE1 and hNBCe1. Mutation of residues in the identified binding sites led to impaired transport in both proteins. We also showed that R730 in hAE1 is crucial for anion binding in both entry and central sites, whereas in hNBCe1, a Na+ acts as an anchor for CO32- binding to the central site. Additionally, protonation of the central acidic residues (E681 in hAE1 and D754 in hNBCe1) alters the ion dynamics in the permeation cavity and may contribute to the transport mode differences in SLC4 proteins. These results provide a basis for understanding the functional differences between hAE1 and hNBCe1 and may facilitate potential drug development for diseases such as proximal and distal renal tubular acidosis.
Collapse
|
28
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
29
|
Effertz T, Moser T, Oliver D. Recent advances in cochlear hair cell nanophysiology: subcellular compartmentalization of electrical signaling in compact sensory cells. Fac Rev 2021; 9:24. [PMID: 33659956 PMCID: PMC7886071 DOI: 10.12703/r/9-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In recent years, genetics, physiology, and structural biology have advanced into the molecular details of the sensory physiology of auditory hair cells. Inner hair cells (IHCs) and outer hair cells (OHCs) mediate two key functions: active amplification and non-linear compression of cochlear vibrations by OHCs and sound encoding by IHCs at their afferent synapses with the spiral ganglion neurons. OHCs and IHCs share some molecular physiology, e.g. mechanotransduction at the apical hair bundles, ribbon-type presynaptic active zones, and ionic conductances in the basolateral membrane. Unique features enabling their specific function include prestin-based electromotility of OHCs and indefatigable transmitter release at the highest known rates by ribbon-type IHC active zones. Despite their compact morphology, the molecular machineries that either generate electrical signals or are driven by these signals are essentially all segregated into local subcellular structures. This review provides a brief account on recent insights into the molecular physiology of cochlear hair cells with a specific focus on organization into membrane domains.
Collapse
Affiliation(s)
- Thomas Effertz
- InnerEarLab, Department of Otorhinolaryngology, University Medical Center Göttingen, 37099 Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37099 Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Dominik Oliver
- Institute for Physiology and Pathophysiology, Philipps University, Deutschhausstraße 2, 35037 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, GRK 2213, Philipps University, Marburg, Germany
| |
Collapse
|
30
|
The electrogenic sodium bicarbonate cotransporter and its roles in the myocardial ischemia-reperfusion induced cardiac diseases. Life Sci 2021; 270:119153. [PMID: 33539911 DOI: 10.1016/j.lfs.2021.119153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Cardiac tissue ischemia/hypoxia increases glycolysis and lactic acid accumulation in cardiomyocytes, leading to intracellular metabolic acidosis. Sodium bicarbonate cotransporters (NBCs) play a vital role in modulating intracellular pH and maintaining sodium ion concentrations in cardiomyocytes. Cardiomyocytes mainly express electrogenic sodium bicarbonate cotransporter (NBCe1), which has been demonstrated to participate in myocardial ischemia/reperfusion (I/R) injury. This review outlines the structural and functional properties of NBCe1, summarizes the signaling pathways and factors that may regulate the activity of NBCe1, and reviews the roles of NBCe1 in the pathogenesis of I/R-induced cardiac diseases. Further studies revealing the regulatory mechanisms of NBCe1 activity should provide novel therapeutic targets for preventing I/R-induced cardiac diseases.
Collapse
|
31
|
Ashmore J. Tonotopy of cochlear hair cell biophysics (excl. mechanotransduction). CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Su P, Wu H, Wang M, Cai L, Liu Y, Chen LM. IRBIT activates NBCe1-B by releasing the auto-inhibition module from the transmembrane domain. J Physiol 2020; 599:1151-1172. [PMID: 33237573 PMCID: PMC7898672 DOI: 10.1113/jp280578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Key points The electrogenic Na+/HCO3−cotransporter NBCe1‐B is widely expressed in many tissues, including pancreas, submandibular gland, brain, heart, etc. NBCe1‐B has very low activity under basal condition due to auto‐inhibition, but can be fully activated by protein interaction with the IP3R‐binding protein released with inositol 1,4,5‐trisphosphate (IRBIT). The structural components of the auto‐inhibition domain and the IRBIT‐binding domain of NBCe1‐B are finely characterized based on systematic mutations in the present study and data from previous studies. Reducing negative charges on the cytosol side of the transmembrane domain greatly decreases the magnitude of the auto‐inhibition of NBCe1‐B. We propose that the auto‐inhibition domain functions as a brake module that inactivates NBCe1‐B by binding to, via electrostatic attraction, the transmembrane domain; IRBIT activates NBCe1‐B by releasing the brake from the transmembrane domain via competitive binding to the auto‐inhibition domain.
Abstract The electrogenic Na+/HCO3− cotransporter NBCe1‐B is widely expressed in many tissues in the body. NBCe1‐B exhibits only basal activity due to the action of the auto‐inhibition domain (AID) in its unique amino‐terminus. However, NBCe1‐B can be activated by interaction with the IP3R‐binding protein released with inositol 1,4,5‐trisphosphate (IRBIT). Here, we investigate the molecular mechanism underlying the auto‐inhibition of NBCe1‐B and its activation by IRBIT. The IRBIT‐binding domain (IBD) of NBCe1‐B spans residues 1−52, essentially consisting of two arms, one negatively charged (residues 1−24) and the other positively charged (residues 40−52). The AID mainly spans residues 40−85, overlapping with the IBD in the positively charged arm. The magnitude of auto‐inhibition of NBCe1‐B is greatly decreased by manipulating the positively charged residues in the AID or by replacing a set of negatively charged residues with neutral ones in the transmembrane domain. The interaction between IRBIT and NBCe1‐B is abolished by mutating a set of negatively charged Asp/Glu residues (to Asn/Gln) plus a set of Ser/Thr residues (to Ala) in the PEST domain of IRBIT. However, this interaction is not affected by replacing the same set of Ser/Thr residues in the PEST domain with Asp. We propose that: (1) the AID, acting as a brake, binds to the transmembrane domain via electrostatic interaction to slow down NBCe1‐B; (2) IRBIT activates NBCe1‐B by releasing the brake from the transmembrane domain. The electrogenic Na+/HCO3−cotransporter NBCe1‐B is widely expressed in many tissues, including pancreas, submandibular gland, brain, heart, etc. NBCe1‐B has very low activity under basal condition due to auto‐inhibition, but can be fully activated by protein interaction with the IP3R‐binding protein released with inositol 1,4,5‐trisphosphate (IRBIT). The structural components of the auto‐inhibition domain and the IRBIT‐binding domain of NBCe1‐B are finely characterized based on systematic mutations in the present study and data from previous studies. Reducing negative charges on the cytosol side of the transmembrane domain greatly decreases the magnitude of the auto‐inhibition of NBCe1‐B. We propose that the auto‐inhibition domain functions as a brake module that inactivates NBCe1‐B by binding to, via electrostatic attraction, the transmembrane domain; IRBIT activates NBCe1‐B by releasing the brake from the transmembrane domain via competitive binding to the auto‐inhibition domain.
Collapse
Affiliation(s)
- Pan Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Han Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Meng Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Lu Cai
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| |
Collapse
|
33
|
Barth K, Rudolph M, Diederichs T, Prisner TF, Tampé R, Joseph B. Thermodynamic Basis for Conformational Coupling in an ATP-Binding Cassette Exporter. J Phys Chem Lett 2020; 11:7946-7953. [PMID: 32818376 DOI: 10.1021/acs.jpclett.0c01876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
ATP-binding cassette (ABC) transporters constitute one of the largest protein superfamilies, and they mediate the transport of diverse substrates across the membrane. The molecular mechanism for transducing the energy from ATP binding and hydrolysis into the conformational changes remains elusive. Here, we determined the thermodynamics underlying the ATP-induced global conformational switching for the ABC exporter TmrAB using temperature-resolved pulsed electron-electron double resonance (PELDOR or DEER) spectroscopy. We show that a strong entropy-enthalpy compensation mechanism enables the closure of the nucleotide-binding domains (NBDs) over a wide temperature range. This is mechanically coupled with an outward opening of the transmembrane domains (TMDs) accompanied by an entropy gain. The conserved catalytic glutamate plays a key role in the overall energetics. Our results reveal the thermodynamic basis for the chemomechanical energy coupling in an ABC exporter and present a new strategy to explore the energetics of similar membrane protein complexes.
Collapse
Affiliation(s)
- Katja Barth
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
- Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Michael Rudolph
- Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
- Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main, Germany
| | - Tim Diederichs
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
- Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Benesh Joseph
- Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
- Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main, Germany
| |
Collapse
|
34
|
An In Vitro Study on Prestin Analog Gene in the Bullfrog Hearing Organs. Neural Plast 2020; 2020:3570732. [PMID: 32714383 PMCID: PMC7352134 DOI: 10.1155/2020/3570732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/22/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022] Open
Abstract
The prestin-based active process in the mammalian outer hair cells (OHCs) is believed to play a crucial role in auditory signal amplification in the cochlea. Prestin belongs to an anion transporter family (SLC26A). It is densely expressed in the OHC lateral plasma membrane and functions as a voltage-dependent motor protein. Analog genes can be found in the genome of nonmammalian species, but their functions in hearing are poorly understood. In the present study, we used the gerbil prestin sequence as a template and identified an analog gene in the bullfrog genome. We expressed the gene in a stable cell line (HEK293T) and performed patch-clamp recording. We found that these cells exhibited prominent nonlinear capacitance (NLC), a widely accepted assay for prestin functioning as a motor protein. Upon close examination, the key parameters of this NLC are comparable to that conferred by the gerbil prestin, and nontransfected cells failed to display NLC. Lastly, we performed patch-clamp recording in HCs of all three hearing organs in bullfrog. HCs in both the sacculus and the amphibian papilla exhibited a capacitance profile that is similar to NLC while HCs in the basilar papilla showed no sign of NLC. Whether or not this NLC-like capacitance change is involved in auditory signal amplification certainly requires further examination; our results represent the first and necessary step in revealing possible roles of prestin in the active hearing processes found in many nonmammalian species.
Collapse
|
35
|
Functional (un)cooperativity in elevator transport proteins. Biochem Soc Trans 2020; 48:1047-1055. [PMID: 32573703 DOI: 10.1042/bst20190970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022]
Abstract
The activity of enzymes is subject to regulation at multiple levels. Cooperativity, the interconnected behavior of active sites within a protein complex, directly affects protein activity. Cooperativity is a mode of regulation that requires neither extrinsic factors nor protein modifications. Instead, it allows enzymes themselves to modulate reaction rates. Cooperativity is an important regulatory mechanism in soluble proteins, but also examples of cooperative membrane proteins have been described. In this review, we summarize the current knowledge on interprotomer cooperativity in elevator-type proteins, a class of membrane transporters characterized by large rigid-body movements perpendicular to the membrane, and highlight well-studied examples and experimental approaches.
Collapse
|
36
|
Galazzo L, Meier G, Timachi MH, Hutter CAJ, Seeger MA, Bordignon E. Spin-labeled nanobodies as protein conformational reporters for electron paramagnetic resonance in cellular membranes. Proc Natl Acad Sci U S A 2020; 117:2441-2448. [PMID: 31964841 PMCID: PMC7007536 DOI: 10.1073/pnas.1913737117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nanobodies are emerging tools in a variety of fields such as structural biology, cell imaging, and drug discovery. Here we pioneer the use of their spin-labeled variants as reporters of conformational dynamics of membrane proteins using DEER spectroscopy. At the example of the bacterial ABC transporter TM287/288, we show that two gadolinium-labeled nanobodies allow us to quantify, via analysis of the modulation depth of DEER traces, the fraction of transporters adopting the outward-facing state under different experimental conditions. Additionally, we quantitatively follow the interconversion from the outward- to the inward-facing state in the conformational ensemble under ATP turnover conditions. We finally show that the specificity of the nanobodies for the target protein allows the direct attainment of structural information on the wild-type TM287/288 expressed in cellular membranes without the need to purify or label the investigated membrane protein.
Collapse
Affiliation(s)
- Laura Galazzo
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Gianmarco Meier
- Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland
| | - M Hadi Timachi
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Cedric A J Hutter
- Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland
| | - Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany;
| |
Collapse
|
37
|
Kourkoulou A, Grevias P, Lambrinidis G, Pyle E, Dionysopoulou M, Politis A, Mikros E, Byrne B, Diallinas G. Specific Residues in a Purine Transporter Are Critical for Dimerization, ER Exit, and Function. Genetics 2019; 213:1357-1372. [PMID: 31611232 PMCID: PMC6893392 DOI: 10.1534/genetics.119.302566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Transporters are transmembrane proteins that mediate the selective translocation of solutes across biological membranes. Recently, we have shown that specific interactions with plasma membrane phospholipids are essential for the formation and/or stability of functional dimers of the purine transporter UapA, a prototypic eukaryotic member of the ubiquitous nucleobase ascorbate transporter (NAT) family. Here, we provide strong evidence that distinct interactions of UapA with membrane lipids are essential for ab initio formation of functional dimers in the ER, or ER exit and further subcellular trafficking. Through genetic screens, we identify mutations that restore defects in dimer formation and/or trafficking. Suppressors of defective dimerization restore ab initio formation of UapA dimers in the ER. Most of these suppressors are located in the movable core domain, but also in the core-dimerization interface and in residues of the dimerization domain exposed to lipids. Molecular dynamics suggest that the majority of suppressors stabilize interhelical interactions in the core domain and thus assist the formation of functional UapA dimers. Among suppressors restoring dimerization, a specific mutation, T401P, was also isolated independently as a suppressor restoring trafficking, suggesting that stabilization of the core domain restores function by sustaining structural defects caused by the abolishment of essential interactions with specific lipids. Importantly, the introduction of mutations topologically equivalent to T401P into a rat homolog of UapA, namely rSNBT1, permitted the functional expression of a mammalian NAT in Aspergillus nidulans Thus, our results provide a potential route for the functional expression and manipulation of mammalian transporters in the model Aspergillus system.
Collapse
Affiliation(s)
- Anezia Kourkoulou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Greece
| | - Pothos Grevias
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Greece
| | - George Lambrinidis
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, 15771, Greece
| | - Euan Pyle
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK
- Department of Chemistry, King's College London, SE1 1DB, UK
| | - Mariangela Dionysopoulou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Greece
| | | | - Emmanuel Mikros
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, 15771, Greece
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Greece
| |
Collapse
|
38
|
Berman HM, Adams PD, Bonvin AA, Burley SK, Carragher B, Chiu W, DiMaio F, Ferrin TE, Gabanyi MJ, Goddard TD, Griffin PR, Haas J, Hanke CA, Hoch JC, Hummer G, Kurisu G, Lawson CL, Leitner A, Markley JL, Meiler J, Montelione GT, Phillips GN, Prisner T, Rappsilber J, Schriemer DC, Schwede T, Seidel CAM, Strutzenberg TS, Svergun DI, Tajkhorshid E, Trewhella J, Vallat B, Velankar S, Vuister GW, Webb B, Westbrook JD, White KL, Sali A. Federating Structural Models and Data: Outcomes from A Workshop on Archiving Integrative Structures. Structure 2019; 27:1745-1759. [PMID: 31780431 DOI: 10.1016/j.str.2019.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/23/2022]
Abstract
Structures of biomolecular systems are increasingly computed by integrative modeling. In this approach, a structural model is constructed by combining information from multiple sources, including varied experimental methods and prior models. In 2019, a Workshop was held as a Biophysical Society Satellite Meeting to assess progress and discuss further requirements for archiving integrative structures. The primary goal of the Workshop was to build consensus for addressing the challenges involved in creating common data standards, building methods for federated data exchange, and developing mechanisms for validating integrative structures. The summary of the Workshop and the recommendations that emerged are presented here.
Collapse
Affiliation(s)
- Helen M Berman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Bridge Institute, Michelson Center, University of Southern California, Los Angeles, CA 90089, USA.
| | - Paul D Adams
- Physical Biosciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720-8235, USA; Department of Bioengineering, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Alexandre A Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, The State University of New Jersey, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences and San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA; Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Bridget Carragher
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Wah Chiu
- Department of Bioengineering, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305-5447, USA; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Frank DiMaio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Thomas E Ferrin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Margaret J Gabanyi
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Thomas D Goddard
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | | | - Juergen Haas
- Swiss Institute of Bioinformatics and Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Christian A Hanke
- Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jeffrey C Hoch
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; Institute for Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Genji Kurisu
- Protein Data Bank Japan (PDBj), Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Catherine L Lawson
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - John L Markley
- BioMagResBank (BMRB), Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37221, USA
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Biochemistry, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytech Institute, Troy, NY 12180, USA
| | - George N Phillips
- BioSciences at Rice and Department of Chemistry, Rice University, Houston, TX 77251, USA
| | - Thomas Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Edinburgh EH9 3JR, Scotland
| | - David C Schriemer
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Torsten Schwede
- Swiss Institute of Bioinformatics and Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Claus A M Seidel
- Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | | | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | - Emad Tajkhorshid
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jill Trewhella
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Brinda Vallat
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sameer Velankar
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire CB10 1SD, UK
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Benjamin Webb
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John D Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, The State University of New Jersey, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kate L White
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Bridge Institute, Michelson Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrej Sali
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
39
|
Alternative chloride transport pathways as pharmacological targets for the treatment of cystic fibrosis. J Cyst Fibros 2019; 19 Suppl 1:S37-S41. [PMID: 31662238 DOI: 10.1016/j.jcf.2019.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/27/2019] [Accepted: 10/18/2019] [Indexed: 01/06/2023]
Abstract
Cystic fibrosis is a hereditary disease that originates from mutations in the epithelial chloride channel CFTR. Whereas established therapies for the treatment of cystic fibrosis target CFTR to repair its function, alternative therapeutic strategies aim for the restoration of chloride transport by the activation of other chloride transport proteins such as TMEM16A or SLC26A9 or by the application of synthetic anionophores. TMEM16A is an anion-selective channel that is activated by the binding of Ca2+ from the cytoplasm. Pharmacological efforts aim for the increase of its open probability at resting Ca2+ concentrations. SLC26 is an uncoupled chloride transporter, which shuttles chloride across the membrane by an alternate-access mechanism. Its activation requires its mobilization from intracellular stores. Finally, anionophores are small synthetic molecules that bind chloride to form lipid-soluble complexes, which shuttle the anion across the membrane. All three approaches are currently pursued and have provided promising initial results.
Collapse
|
40
|
Touré A. Importance of SLC26 Transmembrane Anion Exchangers in Sperm Post-testicular Maturation and Fertilization Potential. Front Cell Dev Biol 2019; 7:230. [PMID: 31681763 PMCID: PMC6813192 DOI: 10.3389/fcell.2019.00230] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022] Open
Abstract
In mammals, sperm cells produced within the testis are structurally differentiated but remain immotile and are unable to fertilize the oocyte unless they undergo a series of maturation events during their transit in the male and female genital tracts. This post-testicular functional maturation is known to rely on the micro-environment of both male and female genital tracts, and is tightly controlled by the pH of their luminal milieus. In particular, within the epididymis, the establishment of a low bicarbonate (HCO3–) concentration contributes to luminal acidification, which is necessary for sperm maturation and subsequent storage in a quiescent state. Following ejaculation, sperm is exposed to the basic pH of the female genital tract and bicarbonate (HCO3–), calcium (Ca2+), and chloride (Cl–) influxes induce biochemical and electrophysiological changes to the sperm cells (cytoplasmic alkalinization, increased cAMP concentration, and protein phosphorylation cascades), which are indispensable for the acquisition of fertilization potential, a process called capacitation. Solute carrier 26 (SLC26) members are conserved membranous proteins that mediate the transport of various anions across the plasma membrane of epithelial cells and constitute important regulators of pH and HCO3– concentration. Most SLC26 members were shown to physically interact and cooperate with the cystic fibrosis transmembrane conductance regulator channel (CFTR) in various epithelia, mainly by stimulating its Cl– channel activity. Among SLC26 members, the function of SLC26A3, A6, and A8 were particularly investigated in the male genital tract and the sperm cells. In this review, we will focus on SLC26s contributions to ionic- and pH-dependent processes during sperm post-testicular maturation. We will specify the current knowledge regarding their functions, based on data from the literature generated by means of in vitro and in vivo studies in knock-out mouse models together with genetic studies of infertile patients. We will also discuss the limits of those studies, the current research gaps and identify some key points for potential developments in this field.
Collapse
Affiliation(s)
- Aminata Touré
- INSERM U1016, Centre National de la Recherche Scientifique, UMR 8104, Institut Cochin, Université de Paris, Paris, France
| |
Collapse
|
41
|
Diallinas G, Martzoukou O. Transporter membrane traffic and function: lessons from a mould. FEBS J 2019; 286:4861-4875. [DOI: 10.1111/febs.15078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/26/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022]
Affiliation(s)
- George Diallinas
- Department of Biology National and Kapodistrian University of Athens Greece
| | - Olga Martzoukou
- Department of Biology National and Kapodistrian University of Athens Greece
| |
Collapse
|
42
|
Parker JL, Corey RA, Stansfeld PJ, Newstead S. Structural basis for substrate specificity and regulation of nucleotide sugar transporters in the lipid bilayer. Nat Commun 2019; 10:4657. [PMID: 31604945 PMCID: PMC6789118 DOI: 10.1038/s41467-019-12673-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/24/2019] [Indexed: 01/21/2023] Open
Abstract
Nucleotide sugars are the activated form of monosaccharides used by glycosyltransferases during glycosylation. In eukaryotes the SLC35 family of solute carriers are responsible for their selective uptake into the Endoplasmic Reticulum or Golgi apparatus. The structure of the yeast GDP-mannose transporter, Vrg4, revealed a requirement for short chain lipids and a marked difference in transport rate between the nucleotide sugar and nucleoside monophosphate, suggesting a complex network of regulatory elements control transport into these organelles. Here we report the crystal structure of the GMP bound complex of Vrg4, revealing the molecular basis for GMP recognition and transport. Molecular dynamics, combined with biochemical analysis, reveal a lipid mediated dimer interface and mechanism for coordinating structural rearrangements during transport. Together these results provide further insight into how SLC35 family transporters function within the secretory pathway and sheds light onto the role that membrane lipids play in regulating transport across the membrane.
Collapse
Affiliation(s)
- Joanne L Parker
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Phillip J Stansfeld
- School of Life Sciences & Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
43
|
Walter JD, Sawicka M, Dutzler R. Cryo-EM structures and functional characterization of murine Slc26a9 reveal mechanism of uncoupled chloride transport. eLife 2019; 8:46986. [PMID: 31339488 PMCID: PMC6656431 DOI: 10.7554/elife.46986] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
The epithelial anion transporter SLC26A9 contributes to airway surface hydration and gastric acid production. Colocalizing with CFTR, SLC26A9 has been proposed as a target for the treatment of cystic fibrosis. To provide molecular details of its transport mechanism, we present cryo-EM structures and a functional characterization of murine Slc26a9. These structures define the general architecture of eukaryotic SLC26 family members and reveal an unusual mode of oligomerization which relies predominantly on the cytosolic STAS domain. Our data illustrates conformational transitions of Slc26a9, supporting a rapid alternate-access mechanism which mediates uncoupled chloride transport with negligible bicarbonate or sulfate permeability. The characterization of structure-guided mutants illuminates the properties of the ion transport path, including a selective anion binding site located in the center of a mobile module within the transmembrane domain. This study thus provides a structural foundation for the understanding of the entire SLC26 family and potentially facilitates their therapeutic exploitation. Many processes in the human body are regulated by chloride and other charged particles (known as ions) moving in and out of cells. Each cell is surrounded by a membrane barrier, which prevents ions from entering or exiting. Therefore, to control the levels of ions inside the cell, specific proteins in the membrane act as channels or transporters to provide routes for the ions to pass through the membrane. Channel proteins form pores that, when open, allow a steady stream of ions to pass through the membrane. Transporter proteins, on the other hand, generally contain a pocket that is only accessible from one side of the membrane. When individual ions enter this pocket the transporter changes shape. This causes the entrance of the pocket to close and then re-open on the other side of the membrane. Inside the lung, an ion channel known as CFTR provides a route for chloride ions to move out of cells, which helps clear harmful material from the airways. Mutations affecting this protein cause the mucus lining the airways to become very sticky, leading to a severe disease known as cystic fibrosis. CFTR works together with another protein that is also found in the membrane, called SLC26A9. Previous studies have suggested that SLC26A9 also allows chloride ions to pass through the membrane. It was not clear, however, if SLC26A9 operates as an ion channel or a transporter protein, or how the protein is arranged in the membrane. Now, Walter, Sawicka and Dutzler combined two techniques known as cryo-electron microscopy and patch-clamp electrophysiology to reveal the detailed three-dimensional structure of the mouse version of SLC26A9, which is highly similar to the human form. The experiments found that mouse SLC26A9 proteins form pairs in the membrane referred to as homodimers, which arranged themselves in an unexpected way. Further investigation into the structure of these homodimers suggests that despite having many channel-like properties, SLC26A9 operates as a fast transporter, rather than a true channel. These findings help us understand the role of SLC26A9 and other similar proteins in the lung and other parts of the body. In the future it may be possible to develop drugs that target SLC26A9 to treat cystic fibrosis and other severe lung diseases.
Collapse
Affiliation(s)
- Justin D Walter
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Marta Sawicka
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Köfinger J, Różycki B, Hummer G. Inferring Structural Ensembles of Flexible and Dynamic Macromolecules Using Bayesian, Maximum Entropy, and Minimal-Ensemble Refinement Methods. Methods Mol Biol 2019; 2022:341-352. [PMID: 31396910 DOI: 10.1007/978-1-4939-9608-7_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The flexible and dynamic nature of biomolecules and biomolecular complexes is essential for many cellular functions in living organisms but poses a challenge for experimental methods to determine high-resolution structural models. To meet this challenge, experiments are combined with molecular simulations. The latter propose models for structural ensembles, and the experimental data can be used to steer these simulations and to select ensembles that most likely underlie the experimental data. Here, we explain in detail how the "Bayesian Inference Of ENsembles" (BioEn) method can be used to refine such ensembles using a wide range of experimental data. The "Ensemble Refinement of SAXS" (EROS) method is a special case of BioEn, inspired by the Gull-Daniell formulation of maximum entropy image processing and focused originally on X-ray solution scattering experiments (SAXS) and then extended to integrative structural modeling. We also briefly sketch the "minimum ensemble method," a maximum-parsimony refinement method that seeks to represent an ensemble with a minimal number of representative structures.
Collapse
Affiliation(s)
- Jürgen Köfinger
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Gerhard Hummer
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
- Department of Physics, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|