1
|
Chen HM, Zhao H, Zhu QY, Yan C, Liu YQ, Si S, Jamal MA, Xu KX, Jiao DL, Lv MJ, Wang W, Zhao HY, Chen L, Wang MS, Wei HJ. Genomic consequences of intensive inbreeding in miniature inbred pigs. BMC Genomics 2025; 26:154. [PMID: 39962408 PMCID: PMC11834389 DOI: 10.1186/s12864-025-11333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Inbreeding, a central theme in evolutionary and conservation biology, is a crucial practice in breeding to stabilize and enhance the specific traits or to establish inbred lines. It also carries the risk of inbreeding depression, reduced fitness, and increased potential for extinction. Nevertheless, inbreeding has been extensively studied in small and endangered populations but its effects in large domesticated animals are poorly understood. Here, we aim to investigate the genomic consequences of inbreeding in the Banna miniature inbred pig (BN), a breed that has been inbred for over 40 years. RESULTS We have sequenced 41 genomes of BN and Diannan miniature pig (DN) at high-coverage (> 31×) and combined them with published whole-genomes of swine to comprehensively investigate the genetic consequences of inbreeding. We find that BN is genetically closely related to DN, which is consistent with breeding records. All families of BN have undergone an extreme bottleneck due to intensive inbreeding, resulting in higher genomic inbreeding coefficients, reduced genetic diversity, and a lower effective population size (Ne) compare to non-inbred pigs. Furthermore, BN and DN exhibit an increased genetic load relative to Asian wild boars. Prolonged inbreeding and bottlenecks have led to some purging of deleterious mutations in BN compared to DN, and a conversion from masked load to realized load. CONCLUSIONS We present a comprehensive analysis to understand and assess the consequences of inbreeding in miniature inbred pigs from a perspective of population genomics. Utilizing genomic measurements proves effective in estimating the consequences of inbreeding, especially when a detailed and accurate historical record of pedigree are lacking. Our results provide valuable resources and a detailed perspective on the genomic impacts of inbreeding, potentially guiding efforts in breeding, breed improvement, and conservation.
Collapse
Affiliation(s)
- Hong-Man Chen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Heng Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Qun-Yao Zhu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Chen Yan
- Key Laboratory of Genetic Evolution & Animal Models, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Ya-Qi Liu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Si Si
- Key Laboratory of Genetic Evolution & Animal Models, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Muhammad Ameen Jamal
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Genetic Evolution & Animal Models, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Kai-Xiang Xu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - De-Ling Jiao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Min-Juan Lv
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Wen Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hong-Ye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Lei Chen
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Ming-Shan Wang
- Key Laboratory of Genetic Evolution & Animal Models, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Hong-Jiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China.
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China.
- Key Laboratory of Genetic Evolution & Animal Models, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
2
|
Lv FH, Wang DF, Zhao SY, Lv XY, Sun W, Nielsen R, Li MH. Deep Ancestral Introgressions between Ovine Species Shape Sheep Genomes via Argali-Mediated Gene Flow. Mol Biol Evol 2024; 41:msae212. [PMID: 39404100 PMCID: PMC11542629 DOI: 10.1093/molbev/msae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 09/12/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Previous studies revealed extensive genetic introgression between Ovis species, which affects genetic adaptation and morphological traits. However, the exact evolutionary scenarios underlying the hybridization between sheep and allopatric wild relatives remain unknown. To address this problem, we here integrate the reference genomes of several ovine and caprine species: domestic sheep, argali, bighorn sheep, snow sheep, and domestic goats. Additionally, we use 856 whole genomes representing 169 domestic sheep populations and their six wild relatives: Asiatic mouflon, urial, argali, snow sheep, thinhorn sheep, and bighorn sheep. We implement a comprehensive set of analyses to test introgression among these species. We infer that the argali lineage originated ∼3.08 to 3.35 Mya and hybridized with the ancestor of Pachyceriforms (e.g. bighorn sheep and snow sheep) at ∼1.56 Mya. Previous studies showed apparent introgression from North American Pachyceriforms into the Bashibai sheep, a Chinese native sheep breed, despite of their wide geographic separation. We show here that, in fact, the apparent introgression from the Pachyceriforms into Bashibai can be explained by the old introgression from Pachyceriforms into argali and subsequent recent introgression from argali into Bashibai. Our results illustrate the challenges of estimating complex introgression histories and provide an example of how indirect and direct introgression can be distinguished.
Collapse
Affiliation(s)
- Feng-Hua Lv
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dong-Feng Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Si-Yi Zhao
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiao-Yang Lv
- International Joint Research Laboratory, Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225001, China
| | - Wei Sun
- International Joint Research Laboratory, Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225001, China
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Statistics, UC Berkeley, Berkeley, CA 94707, USA
- Globe Institute, University of Copenhagen, Copenhagen 1350, Denmark
| | - Meng-Hua Li
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Martiniano R, Haber M, Almarri MA, Mattiangeli V, Kuijpers MCM, Chamel B, Breslin EM, Littleton J, Almahari S, Aloraifi F, Bradley DG, Lombard P, Durbin R. Ancient genomes illuminate Eastern Arabian population history and adaptation against malaria. CELL GENOMICS 2024; 4:100507. [PMID: 38417441 PMCID: PMC10943591 DOI: 10.1016/j.xgen.2024.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/01/2023] [Accepted: 01/31/2024] [Indexed: 03/01/2024]
Abstract
The harsh climate of Arabia has posed challenges in generating ancient DNA from the region, hindering the direct examination of ancient genomes for understanding the demographic processes that shaped Arabian populations. In this study, we report whole-genome sequence data obtained from four Tylos-period individuals from Bahrain. Their genetic ancestry can be modeled as a mixture of sources from ancient Anatolia, Levant, and Iran/Caucasus, with variation between individuals suggesting population heterogeneity in Bahrain before the onset of Islam. We identify the G6PD Mediterranean mutation associated with malaria resistance in three out of four ancient Bahraini samples and estimate that it rose in frequency in Eastern Arabia from 5 to 6 kya onward, around the time agriculture appeared in the region. Our study characterizes the genetic composition of ancient Arabians, shedding light on the population history of Bahrain and demonstrating the feasibility of studies of ancient DNA in the region.
Collapse
Affiliation(s)
- Rui Martiniano
- School of Biological and Environmental Sciences, Liverpool John Moores University, L3 3AF Liverpool, UK.
| | - Marc Haber
- Institute of Cancer and Genomic Sciences, University of Birmingham Dubai, Dubai, United Arab Emirates
| | - Mohamed A Almarri
- Department of Forensic Science and Criminology, Dubai Police GHQ, Dubai, United Arab Emirates; College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Mirte C M Kuijpers
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Berenice Chamel
- Institut Français du Proche-Orient (MEAE/CNRS), Beirut, Lebanon
| | - Emily M Breslin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Judith Littleton
- School of Social Sciences, University of Auckland, Auckland, New Zealand
| | - Salman Almahari
- Bahrain Authority for Culture and Antiquities, Manama, Kingdom of Bahrain
| | - Fatima Aloraifi
- Mersey and West Lancashire Teaching Hospitals NHS Trust, Whiston Hospital, Warrington Road, Prescot, L35 5DR Liverpool, UK
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Pierre Lombard
- Bahrain Authority for Culture and Antiquities, Manama, Kingdom of Bahrain; Archéorient UMR 5133, CNRS, Université Lyon 2, Maison de l'Orient et de la Méditerranée - Jean Pouilloux, Lyon, France
| | - Richard Durbin
- Department of Genetics, University of Cambridge, CB2 3EH Cambridge, UK.
| |
Collapse
|
4
|
Bolner M, Bertolini F, Bovo S, Schiavo G, Fontanesi L. Investigation of ABO Gene Variants across More Than 60 Pig Breeds and Populations and Other Suidae Species Using Whole-Genome Sequencing Datasets. Animals (Basel) 2023; 14:5. [PMID: 38200737 PMCID: PMC10778222 DOI: 10.3390/ani14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Polymorphisms in the human ABO gene determine the major blood classification system based on the three well-known forms: A; B; and O. In pigs that carry only two main alleles in this gene (A and O), we still need to obtain a more comprehensive distribution of variants, which could also impact its function. In this study, we mined more than 500 whole-genome sequencing datasets to obtain information on the ABO gene in different Suidae species, pig breeds, and populations and provide (i) a comprehensive distribution of the A and O alleles, (ii) evolutionary relationships of ABO gene sequences across Suidae species, and (iii) an exploratory evaluation of the effect of the different ABO gene variants on production traits and blood-related parameters in Italian Large White pigs. We confirmed that allele O is likely under balancing selection, present in all Sus species investigated, without being fixed in any of them. We reported a novel structural variant in perfect linkage disequilibrium with allele O that made it possible to estimate the evolutionary time window of occurrence of this functional allele. We also identified two single nucleotide polymorphisms that were suggestively associated with plasma magnesium levels in pigs. Other studies can also be constructed over our results to further evaluate the effect of this gene on economically relevant traits and basic biological functions.
Collapse
Affiliation(s)
| | | | | | | | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (M.B.); (S.B.); (G.S.)
| |
Collapse
|
5
|
Sun X, Liu YC, Tiunov MP, Gimranov DO, Zhuang Y, Han Y, Driscoll CA, Pang Y, Li C, Pan Y, Velasco MS, Gopalakrishnan S, Yang RZ, Li BG, Jin K, Xu X, Uphyrkina O, Huang Y, Wu XH, Gilbert MTP, O'Brien SJ, Yamaguchi N, Luo SJ. Ancient DNA reveals genetic admixture in China during tiger evolution. Nat Ecol Evol 2023; 7:1914-1929. [PMID: 37652999 DOI: 10.1038/s41559-023-02185-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/02/2023] [Indexed: 09/02/2023]
Abstract
The tiger (Panthera tigris) is a charismatic megafauna species that originated and diversified in Asia and probably experienced population contraction and expansion during the Pleistocene, resulting in low genetic diversity of modern tigers. However, little is known about patterns of genomic diversity in ancient populations. Here we generated whole-genome sequences from ancient or historical (100-10,000 yr old) specimens collected across mainland Asia, including a 10,600-yr-old Russian Far East specimen (RUSA21, 8× coverage) plus six ancient mitogenomes, 14 South China tigers (0.1-12×) and three Caspian tigers (4-8×). Admixture analysis showed that RUSA21 clustered within modern Northeast Asian phylogroups and partially derived from an extinct Late Pleistocene lineage. While some of the 8,000-10,000-yr-old Russian Far East mitogenomes are basal to all tigers, one 2,000-yr-old specimen resembles present Amur tigers. Phylogenomic analyses suggested that the Caspian tiger probably dispersed from an ancestral Northeast Asian population and experienced gene flow from southern Bengal tigers. Lastly, genome-wide monophyly supported the South China tiger as a distinct subspecies, albeit with mitochondrial paraphyly, hence resolving its longstanding taxonomic controversy. The distribution of mitochondrial haplogroups corroborated by biogeographical modelling suggested that Southwest China was a Late Pleistocene refugium for a relic basal lineage. As suitable habitat returned, admixture between divergent lineages of South China tigers took place in Eastern China, promoting the evolution of other northern subspecies. Altogether, our analysis of ancient genomes sheds light on the evolutionary history of tigers and supports the existence of nine modern subspecies.
Collapse
Affiliation(s)
- Xin Sun
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Yue-Chen Liu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Mikhail P Tiunov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Dmitry O Gimranov
- Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
- Ural Federal University, Yekaterinburg, Russia
| | - Yan Zhuang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yu Han
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Carlos A Driscoll
- Section of Comparative Behavioral Genomics, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, MD, USA
| | - Yuhong Pang
- Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Chunmei Li
- Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Yan Pan
- School of Archaeology and Museology, Peking University, Beijing, China
| | - Marcela Sandoval Velasco
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rui-Zheng Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bao-Guo Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Kun Jin
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Xiao Xu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Olga Uphyrkina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Yanyi Huang
- Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Guangdong, China
| | - Xiao-Hong Wu
- School of Archaeology and Museology, Peking University, Beijing, China
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stephen J O'Brien
- Guy Harvey Oceanographic Center, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA.
| | - Nobuyuki Yamaguchi
- Institute of Tropical Biodiversity and Sustainable Development, University of Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia.
| | - Shu-Jin Luo
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
6
|
Yan C, Xie HB, Adeola AC, Fu Y, Liu X, Zhao S, Han J, Peng MS, Zhang YP. Inference of ancestral alleles in the pig reference genome. Anim Genet 2023; 54:649-651. [PMID: 37329125 DOI: 10.1111/age.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Chen Yan
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Hai-Bing Xie
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
| | - Yuhua Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Xiaolei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jianlin Han
- International Livestock Research Institute, Nairobi, Kenya
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
7
|
Ciucani MM, Ramos-Madrigal J, Hernández-Alonso G, Carmagnini A, Aninta SG, Sun X, Scharff-Olsen CH, Lanigan LT, Fracasso I, Clausen CG, Aspi J, Kojola I, Baltrūnaitė L, Balčiauskas L, Moore J, Åkesson M, Saarma U, Hindrikson M, Hulva P, Bolfíková BČ, Nowak C, Godinho R, Smith S, Paule L, Nowak S, Mysłajek RW, Lo Brutto S, Ciucci P, Boitani L, Vernesi C, Stenøien HK, Smith O, Frantz L, Rossi L, Angelici FM, Cilli E, Sinding MHS, Gilbert MTP, Gopalakrishnan S. The extinct Sicilian wolf shows a complex history of isolation and admixture with ancient dogs. iScience 2023; 26:107307. [PMID: 37559898 PMCID: PMC10407145 DOI: 10.1016/j.isci.2023.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/04/2022] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
The Sicilian wolf remained isolated in Sicily from the end of the Pleistocene until its extermination in the 1930s-1960s. Given its long-term isolation on the island and distinctive morphology, the genetic origin of the Sicilian wolf remains debated. We sequenced four nuclear genomes and five mitogenomes from the seven existing museum specimens to investigate the Sicilian wolf ancestry, relationships with extant and extinct wolves and dogs, and diversity. Our results show that the Sicilian wolf is most closely related to the Italian wolf but carries ancestry from a lineage related to European Eneolithic and Bronze Age dogs. The average nucleotide diversity of the Sicilian wolf was half of the Italian wolf, with 37-50% of its genome contained in runs of homozygosity. Overall, we show that, by the time it went extinct, the Sicilian wolf had high inbreeding and low-genetic diversity, consistent with a population in an insular environment.
Collapse
Affiliation(s)
- Marta Maria Ciucani
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jazmín Ramos-Madrigal
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Germán Hernández-Alonso
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alberto Carmagnini
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Sabhrina Gita Aninta
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Xin Sun
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Liam Thomas Lanigan
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ilaria Fracasso
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Cecilie G. Clausen
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jouni Aspi
- Ecology and Genetics Research Unit, University of Oulu, Finland
| | - Ilpo Kojola
- Natural Resources Institute Finland, Rovaniemi, Finland
| | | | | | - Jane Moore
- Società Amatori Cirneco dell’Etna, Modica (RG), Italy
| | - Mikael Åkesson
- Swedish University of Agricultural Sciences, Grimsö Wildlife Research Station, Department of Ecology, Riddarhyttan, Sweden
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Maris Hindrikson
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Pavel Hulva
- Charles University, Department of Zoology, Faculty of Science, Prague 2, Czech Republic
| | | | - Carsten Nowak
- Center for Wildlife Genetics, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Raquel Godinho
- CIBIO/InBIO, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Steve Smith
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Ladislav Paule
- Faculty of Forestry, Technical University, Zvolen, Slovakia
| | - Sabina Nowak
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Biological and Chemical Research Centre, Warszawa, Poland
| | - Robert W. Mysłajek
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Biological and Chemical Research Centre, Warszawa, Poland
| | - Sabrina Lo Brutto
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
- Museum of Zoology "P. Doderlein", SIMUA, University of Palermo, Palermo, Italy
| | - Paolo Ciucci
- Università di Roma La Sapienza, Department Biology and Biotechnologies "Charles Darwin", Roma, Italy
| | - Luigi Boitani
- Università di Roma La Sapienza, Department Biology and Biotechnologies "Charles Darwin", Roma, Italy
| | - Cristiano Vernesi
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Hans K. Stenøien
- NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Oliver Smith
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Laurent Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - Francesco Maria Angelici
- FIZV, Via Marco Aurelio 2, Roma, Italy
- National Center for Wildlife, Al Imam Faisal Ibn Turki Ibn Abdullah, Ulaishah, Saudi Arabia
| | - Elisabetta Cilli
- Laboratory of Ancient DNA, Department of Cultural Heritage (DBC), University of Bologna, Bologna, Italy
| | - Mikkel-Holger S. Sinding
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - M. Thomas P. Gilbert
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Louis M, Korlević P, Nykänen M, Archer F, Berrow S, Brownlow A, Lorenzen ED, O'Brien J, Post K, Racimo F, Rogan E, Rosel PE, Sinding MHS, van der Es H, Wales N, Fontaine MC, Gaggiotti OE, Foote AD. Ancient dolphin genomes reveal rapid repeated adaptation to coastal waters. Nat Commun 2023; 14:4020. [PMID: 37463880 DOI: 10.1038/s41467-023-39532-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Parallel evolution provides strong evidence of adaptation by natural selection due to local environmental variation. Yet, the chronology, and mode of the process of parallel evolution remains debated. Here, we harness the temporal resolution of paleogenomics to address these long-standing questions, by comparing genomes originating from the mid-Holocene (8610-5626 years before present, BP) to contemporary pairs of coastal-pelagic ecotypes of bottlenose dolphin. We find that the affinity of ancient samples to coastal populations increases as the age of the samples decreases. We assess the youngest genome (5626 years BP) at sites previously inferred to be under parallel selection to coastal habitats and find it contained coastal-associated genotypes. Thus, coastal-associated variants rose to detectable frequencies close to the emergence of coastal habitat. Admixture graph analyses reveal a reticulate evolutionary history between pelagic and coastal populations, sharing standing genetic variation that facilitated rapid adaptation to newly emerged coastal habitats.
Collapse
Affiliation(s)
- Marie Louis
- Centre for Biological Diversity, Sir Harold Mitchell Building and Dyers Brae, University of St Andrews, St Andrews, KY16 9TH, Scotland, UK.
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark.
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103 CC, Groningen, The Netherlands.
- Greenland Institute of Natural Resources, Kivioq 2, Nuuk, 3900, Greenland.
| | - Petra Korlević
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Milaja Nykänen
- Department of Environmental and Biological Sciences, PO Box 111, FI-80101, Joensuu, Finland
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork, Ireland
| | - Frederick Archer
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, NOAA, 8901 La Jolla Shores Drive, La Jolla, CA, 92037, USA
| | - Simon Berrow
- Irish Whale and Dolphin Group, Kilrush, Co Clare, Ireland
- Marine and Freshwater Research Centre, Department of Natural Sciences, School of Science and Computing, Atlantic Technological University, Dublin Road, H91 T8NW, Galway, Ireland
| | - Andrew Brownlow
- Scottish Marine Animal Stranding Scheme, Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Eline D Lorenzen
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark
| | - Joanne O'Brien
- Irish Whale and Dolphin Group, Kilrush, Co Clare, Ireland
- Marine and Freshwater Research Centre, Department of Natural Sciences, School of Science and Computing, Atlantic Technological University, Dublin Road, H91 T8NW, Galway, Ireland
| | - Klaas Post
- Natural History Museum Rotterdam, Westzeedijk 345, 3015 AA, Rotterdam, Netherlands
| | - Fernando Racimo
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark
| | - Emer Rogan
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork, Ireland
| | - Patricia E Rosel
- Marine Mammal and Turtle Division, Southeast Fisheries Science Center, NOAA, 646 Cajundome Boulevard, Lafayette, LA, 70506, USA
| | - Mikkel-Holger S Sinding
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Henry van der Es
- Natural History Museum Rotterdam, Westzeedijk 345, 3015 AA, Rotterdam, Netherlands
| | - Nathan Wales
- University of York, BioArCh, Environment Building, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Michael C Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103 CC, Groningen, The Netherlands
- MIVEGEC (Université de Montpellier, CNRS 5290, IRD 229) Institut de Recherche pour le Développement (IRD), F-34394, Montpellier, France
| | - Oscar E Gaggiotti
- Centre for Biological Diversity, Sir Harold Mitchell Building and Dyers Brae, University of St Andrews, St Andrews, KY16 9TH, Scotland, UK
| | - Andrew D Foote
- Department of Natural History, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway.
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316, Oslo, Norway.
| |
Collapse
|
9
|
Banayo JB, Manese KLV, Salces AJ, Yamagata T. Phylogeny and Genetic Diversity of Philippine Native Pigs (Sus scrofa) as Revealed by Mitochondrial DNA Analysis. Biochem Genet 2023:10.1007/s10528-022-10318-0. [PMID: 36624353 PMCID: PMC10372134 DOI: 10.1007/s10528-022-10318-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023]
Abstract
Philippine native pigs (PhNP) are small black pigs domesticated in rural communities in the Philippines. They are valued locally for their various sociocultural roles. Recently, considerable literature has accumulated in the field of native pig production and marketing. However, there is limited research on the genetic diversity of PhNP. No previous study has investigated the evolutionary relatedness among native pigs from various islands and provinces in Luzon and the Visayas, Philippines. In addition, a much debated question is whether the PhNP were interbreeding with or even domesticated from endemic wild pigs. This study aims to clarify some of the uncertainties surrounding the identity and classification of PhNP based on mitochondrial DNA (mtDNA) signatures. Native pig samples (n = 157) were collected from 10 provinces in Luzon and the Visayas. Approximately 650 base pairs of the mtDNA D-loop region were sequenced and analyzed together with publicly available sequences. Pairwise-distance analysis showed genetic separation of North and South Luzon (SL) and the clustering of SL with Visayan pigs. Phylogenetic analysis showed that the PhNP clustered within 3 recognized Asian pig domestication centers: D2 (East Asia), D7 (Southeast Asia) and the Cordillera clade (sister to the Lanyu). We identified 19 haplotypes (1-38 samples each), forming 4 haplogroups, i.e., North Luzon, South Luzon and Visayas, Asian mix and the Cordillera cluster. No endemic wild pig mtDNA was detected in the native pig population, but evidence of interspecific hybridization was observed. This study showed that the Philippine native pigs have originated from at least 3 Sus scrofa lineage and that they were not domesticated from the endemic wild pigs of the Philippines.
Collapse
Affiliation(s)
- Joy B Banayo
- Animal Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa, Nagoya, 464-8601, Japan.,Animal Breeding Division, Institute of Animal Science, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Kathlyn Louise V Manese
- Animal Breeding Division, Institute of Animal Science, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Agapita J Salces
- Animal Breeding Division, Institute of Animal Science, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Takahiro Yamagata
- Animal Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
10
|
Xie HB, Yan C, Adeola AC, Wang K, Huang CP, Xu MM, Qiu Q, Yin X, Fan CY, Ma YF, Yin TT, Gao Y, Deng JK, Okeyoyin AO, Oluwole OO, Omotosho O, Okoro VMO, Omitogun OG, Dawuda PM, Olaogun SC, Nneji LM, Ayoola AO, Sanke OJ, Luka PD, Okoth E, Lekolool I, Mijele D, Bishop RP, Han J, Wang W, Peng MS, Zhang YP. African Suid Genomes Provide Insights into the Local Adaptation to Diverse African Environments. Mol Biol Evol 2022; 39:6840307. [PMID: 36413509 PMCID: PMC9733430 DOI: 10.1093/molbev/msac256] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/21/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
African wild suids consist of several endemic species that represent ancient members of the family Suidae and have colonized diverse habitats on the African continent. However, limited genomic resources for African wild suids hinder our understanding of their evolution and genetic diversity. In this study, we assembled high-quality genomes of a common warthog (Phacochoerus africanus), a red river hog (Potamochoerus porcus), as well as an East Asian Diannan small-ear pig (Sus scrofa). Phylogenetic analysis showed that common warthog and red river hog diverged from their common ancestor around the Miocene/Pliocene boundary, putatively predating their entry into Africa. We detected species-specific selective signals associated with sensory perception and interferon signaling pathways in common warthog and red river hog, respectively, which contributed to their local adaptation to savannah and tropical rainforest environments, respectively. The structural variation and evolving signals in genes involved in T-cell immunity, viral infection, and lymphoid development were identified in their ancestral lineage. Our results provide new insights into the evolutionary histories and divergent genetic adaptations of African suids.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming-Min Xu
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Xue Yin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Chen-Yu Fan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yun-Fei Ma
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ting-Ting Yin
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun Gao
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Jia-Kun Deng
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Agboola O Okeyoyin
- National Park Service Headquarter, Federal Capital Territory, Abuja 900108, Nigeria
| | - Olufunke O Oluwole
- Institute of Agricultural Research and Training, Obafemi Awolowo University, Ibadan, Nigeria
| | - Oladipo Omotosho
- Department of Veterinary Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Victor M O Okoro
- Department of Animal Science and Technology, School of Agriculture and Agricultural Technology, Federal University of Technology, Owerri 460114, Nigeria
| | - Ofelia G Omitogun
- Department of Animal Sciences, Obafemi Awolowo University, Ile-Ife 220282, Nigeria
| | - Philip M Dawuda
- Department of Veterinary Surgery and Theriogenology, College of Veterinary Medicine, University of Agriculture Makurdi, Makurdi 970001, Nigeria
| | - Sunday C Olaogun
- Department of Veterinary Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Lotanna M Nneji
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming 650204, China
| | - Adeola O Ayoola
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming 650204, China
| | - Oscar J Sanke
- Taraba State Ministry of Agriculture and Natural Resources, Jalingo 660213, Nigeria
| | - Pam D Luka
- National Veterinary Research Institute, Vom 930103, Nigeria
| | - Edward Okoth
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | | | | | - Richard P Bishop
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | | | - Wen Wang
- Corresponding authors: E-mails: ; ; ;
| | | | | |
Collapse
|
11
|
Wu MY, Lau CJ, Ng EYX, Baveja P, Gwee CY, Sadanandan K, Ferasyi TR, Haminuddin, Ramadhan R, Menner JK, Rheindt FE. Genomes From Historic DNA Unveil Massive Hidden Extinction and Terminal Endangerment in a Tropical Asian Songbird Radiation. Mol Biol Evol 2022; 39:6692815. [PMID: 36124912 PMCID: PMC9486911 DOI: 10.1093/molbev/msac189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Quantifying the magnitude of the global extinction crisis is important but remains challenging, as many extinction events pass unnoticed owing to our limited taxonomic knowledge of the world's organisms. The increasing rarity of many taxa renders comprehensive sampling difficult, further compounding the problem. Vertebrate lineages such as birds, which are thought to be taxonomically well understood, are therefore used as indicator groups for mapping and quantifying global extinction. To test whether extinction patterns are adequately gauged in well-studied groups, we implemented ancient-DNA protocols and retrieved whole genomes from the historic DNA of museum specimens in a widely known songbird radiation of shamas (genus Copsychus) that is assumed to be of least conservation concern. We uncovered cryptic diversity and an unexpected degree of hidden extinction and terminal endangerment. Our analyses reveal that >40% of the phylogenetic diversity of this radiation is already either extinct in the wild or nearly so, including the two genomically most distinct members of this group (omissus and nigricauda), which have so far flown under the conservation radar as they have previously been considered subspecies. Comparing the genomes of modern samples with those from roughly a century ago, we also found a significant decrease in genetic diversity and a concomitant increase in homozygosity affecting various taxa, including small-island endemics that are extinct in the wild as well as subspecies that remain widespread across the continental scale. Our application of modern genomic approaches demonstrates elevated levels of allelic and taxonomic diversity loss in a songbird clade that has not been listed as globally threatened, highlighting the importance of ongoing reassessments of extinction incidence even across well-studied animal groups. Key words: extinction, introgression, white-rumped shama, conservation.
Collapse
Affiliation(s)
- Meng Yue Wu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Clara Jesse Lau
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Elize Ying Xin Ng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Pratibha Baveja
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Chyi Yin Gwee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Keren Sadanandan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Teuku Reza Ferasyi
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Darussalam-Banda Aceh, Indonesia
| | - Haminuddin
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Darussalam-Banda Aceh, Indonesia
| | - Rezky Ramadhan
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Darussalam-Banda Aceh, Indonesia
| | | | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Helleu Q, Roux C, Ross KG, Keller L. Radiation and hybridization underpin the spread of the fire ant social supergene. Proc Natl Acad Sci U S A 2022; 119:e2201040119. [PMID: 35969752 PMCID: PMC9407637 DOI: 10.1073/pnas.2201040119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Supergenes are clusters of tightly linked genes that jointly produce complex phenotypes. Although widespread in nature, how such genomic elements are formed and how they spread are in most cases unclear. In the fire ant Solenopsis invicta and closely related species, a "social supergene controls whether a colony maintains one or multiple queens. Here, we show that the three inversions constituting the Social b (Sb) supergene emerged sequentially during the separation of the ancestral lineages of S. invicta and Solenopsis richteri. The two first inversions arose in the ancestral population of both species, while the third one arose in the S. richteri lineage. Once completely assembled in the S. richteri lineage, the supergene first introgressed into S. invicta, and from there into the other species of the socially polymorphic group of South American fire ant species. Surprisingly, the introgression of this large and important genomic element occurred despite recent hybridization being uncommon between several of the species. These results highlight how supergenes can readily move across species boundaries, possibly because of fitness benefits they provide and/or expression of selfish properties favoring their transmission.
Collapse
Affiliation(s)
- Quentin Helleu
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Camille Roux
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Kenneth G. Ross
- Department of Entomology, University of Georgia, Athens, GA 30605
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Tricou T, Tannier E, de Vienne DM. Ghost Lineages Highly Influence the Interpretation of Introgression Tests. Syst Biol 2022; 71:1147-1158. [PMID: 35169846 PMCID: PMC9366450 DOI: 10.1093/sysbio/syac011] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 02/01/2021] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
Most species are extinct, those that are not are often unknown. Sequenced and sampled species are often a minority of known ones. Past evolutionary events involving horizontal gene flow, such as horizontal gene transfer, hybridization, introgression, and admixture, are therefore likely to involve "ghosts," that is extinct, unknown, or unsampled lineages. The existence of these ghost lineages is widely acknowledged, but their possible impact on the detection of gene flow and on the identification of the species involved is largely overlooked. It is generally considered as a possible source of error that, with reasonable approximation, can be ignored. We explore the possible influence of absent species on an evolutionary study by quantifying the effect of ghost lineages on introgression as detected by the popular D-statistic method. We show from simulated data that under certain frequently encountered conditions, the donors and recipients of horizontal gene flow can be wrongly identified if ghost lineages are not taken into account. In particular, having a distant outgroup, which is usually recommended, leads to an increase in the error probability and to false interpretations in most cases. We conclude that introgression from ghost lineages should be systematically considered as an alternative possible, even probable, scenario. [ABBA-BABA; D-statistic; gene flow; ghost lineage; introgression; simulation.].
Collapse
Affiliation(s)
- Théo Tricou
- Laboratoire de Biométrie et Biologie Évolutive UMR5558, Univ Lyon, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Eric Tannier
- Laboratoire de Biométrie et Biologie Évolutive UMR5558, Univ Lyon, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
- Inria, Centre de Recherche de Lyon, F-69603 Villeurbanne, France
| | - Damien M de Vienne
- Laboratoire de Biométrie et Biologie Évolutive UMR5558, Univ Lyon, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| |
Collapse
|
14
|
Garcia-Erill G, Jørgensen CHF, Muwanika VB, Wang X, Rasmussen MS, de Jong YA, Gaubert P, Olayemi A, Salmona J, Butynski TM, Bertola LD, Siegismund HR, Albrechtsen A, Heller R. Warthog Genomes Resolve an Evolutionary Conundrum and Reveal Introgression of Disease Resistance Genes. Mol Biol Evol 2022; 39:6627297. [PMID: 35779009 PMCID: PMC9250280 DOI: 10.1093/molbev/msac134] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
African wild pigs have a contentious evolutionary and biogeographic history. Until recently, desert warthog (Phacochoerus aethiopicus) and common warthog (P. africanus) were considered a single species. Molecular evidence surprisingly suggested they diverged at least 4.4 million years ago, and possibly outside of Africa. We sequenced the first whole-genomes of four desert warthogs and 35 common warthogs from throughout their range. We show that these two species diverged much later than previously estimated, 400,000–1,700,000 years ago depending on assumptions of gene flow. This brings it into agreement with the paleontological record. We found that the common warthog originated in western Africa and subsequently colonized eastern and southern Africa. During this range expansion, the common warthog interbred with the desert warthog, presumably in eastern Africa, underlining this region’s importance in African biogeography. We found that immune system–related genes may have adaptively introgressed into common warthogs, indicating that resistance to novel diseases was one of the most potent drivers of evolution as common warthogs expanded their range. Hence, we solve some of the key controversies surrounding warthog evolution and reveal a complex evolutionary history involving range expansion, introgression, and adaptation to new diseases.
Collapse
Affiliation(s)
- Genís Garcia-Erill
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Christian H F Jørgensen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Vincent B Muwanika
- Department of Environmental Management, Makerere University, PO Box 7062, Kampala, Uganda
| | - Xi Wang
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Malthe S Rasmussen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Yvonne A de Jong
- Eastern Africa Primate Diversity and Conservation Program & Lolldaiga Hills Research Programme, PO Box 149, Nanyuki 10400, Kenya
| | - Philippe Gaubert
- Laboratoire Évolution & Diversité Biologique, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Ayodeji Olayemi
- Natural History Museum, Obafemi Awolowo University, HO 220005 Ile Ife, Nigeria
| | - Jordi Salmona
- Laboratoire Évolution & Diversité Biologique, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Thomas M Butynski
- Eastern Africa Primate Diversity and Conservation Program & Lolldaiga Hills Research Programme, PO Box 149, Nanyuki 10400, Kenya
| | - Laura D Bertola
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Anders Albrechtsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Rasmus Heller
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
15
|
Wang MS, Thakur M, Jhala Y, Wang S, Srinivas Y, Dai SS, Liu ZX, Chen HM, Green RE, Koepfli KP, Shapiro B. OUP accepted manuscript. Genome Biol Evol 2022; 14:6524629. [PMID: 35137061 PMCID: PMC8841465 DOI: 10.1093/gbe/evac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ming-Shan Wang
- Howard Hughes Medical Institute, University of California Santa Cruz, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, USA
- Corresponding authors: E-mails: ; ; ;
| | - Mukesh Thakur
- Zoological Survey of India, New Alipore, Kolkata, West Bengal, India
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Corresponding authors: E-mails: ; ; ;
| | | | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yellapu Srinivas
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Shan-Shan Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zheng-Xi Liu
- College of Animal Science, Jilin University, Changchun, China
| | - Hong-Man Chen
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Richard E Green
- Department of Biomolecular Engineering, University of California Santa Cruz, USA
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, USA
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
- Computer Technologies Laboratory, ITMO University, St. Petersburg, Russia
- Corresponding authors: E-mails: ; ; ;
| | - Beth Shapiro
- Howard Hughes Medical Institute, University of California Santa Cruz, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, USA
- Corresponding authors: E-mails: ; ; ;
| |
Collapse
|
16
|
Sinding MHS, Ciucani MM, Ramos-Madrigal J, Carmagnini A, Rasmussen JA, Feng S, Chen G, Vieira FG, Mattiangeli V, Ganjoo RK, Larson G, Sicheritz-Pontén T, Petersen B, Frantz L, Gilbert MTP, Bradley DG. Kouprey ( Bos sauveli) genomes unveil polytomic origin of wild Asian Bos. iScience 2021; 24:103226. [PMID: 34712923 PMCID: PMC8531564 DOI: 10.1016/j.isci.2021.103226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/11/2021] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
The evolution of the genera Bos and Bison, and the nature of gene flow between wild and domestic species, is poorly understood, with genomic data of wild species being limited. We generated two genomes from the likely extinct kouprey (Bos sauveli) and analyzed them alongside other Bos and Bison genomes. We found that B. sauveli possessed genomic signatures characteristic of an independent species closely related to Bos javanicus and Bos gaurus. We found evidence for extensive incomplete lineage sorting across the three species, consistent with a polytomic diversification of the major ancestry in the group, potentially followed by secondary gene flow. Finally, we detected significant gene flow from an unsampled Asian Bos-like source into East Asian zebu cattle, demonstrating both that the full genomic diversity and evolutionary history of the Bos complex has yet to be elucidated and that museum specimens and ancient DNA are valuable resources to do so. We generated two genomes from the likely extinct kouprey (Bos sauveli) Extensive mt and nuclear-genome-wide incomplete lineage sorting across wild Asian Bos Initial polytomic diversification of the wild Asian Bos—kouprey, banteng, and gaur
Collapse
Affiliation(s)
| | | | | | - Alberto Carmagnini
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Jacob Agerbo Rasmussen
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Shaohong Feng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | - Guangji Chen
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Thomas Sicheritz-Pontén
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Bent Petersen
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Laurent Frantz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - M. Thomas P. Gilbert
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
- Norwegian University of Science and Technology, University Museum, Trondheim, Norway
| | - Daniel G. Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Upadhyay M, Kunz E, Sandoval-Castellanos E, Hauser A, Krebs S, Graf A, Blum H, Dotsev A, Okhlopkov I, Shakhin A, Bagirov V, Brem G, Fries R, Zinovieva N, Medugorac I. Whole genome sequencing reveals a complex introgression history and the basis of adaptation to subarctic climate in wild sheep. Mol Ecol 2021; 30:6701-6717. [PMID: 34534381 DOI: 10.1111/mec.16184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022]
Abstract
To predict species responses to anthropogenic disturbances and climate change, it is reasonable to use species with high sensitivity to such factors. Snow sheep (Ovis nivicola) could represent a good candidate for this; as the only large herbivore species adapted to the cold and alpine habitats of northeastern Siberia, it plays a crucial role in its ecosystem. Despite having an extensive geographical distribution among all ovine species, it is one of the least studied. In this study, we sequenced and analysed six genomes of snow sheep in combination with all other wild sheep species to infer key aspects of their evolutionary history and unveil the genetic basis of their adaptation to subarctic environments. Despite their large census population size, snow sheep genomes showed remarkably low heterozygosity, which could reflect the effect of isolation and historical bottlenecks that we inferred using the pairwise sequential Markovian coalescent and runs of homozygosity. F4 -statistics indicated instances of introgression involving snow sheep with argali (Ovis ammon) and Dall (Ovis dalli) sheep, suggesting that these species might have been more widespread during the Pleistocene. Furthermore, the introgressed segments, which were identified using mainly minimum relative node depth, covered genes associated with immunity, adipogenesis and morphology-related traits, representing potential targets of adaptive introgression. Genes related to mitochondrial functions and thermogenesis associated with adipose tissue were identified to be under selection. Overall, our data suggest introgression as a mechanism facilitating adaptation in wild sheep species and provide insights into the genetic mechanisms underlying cold adaptation in snow sheep.
Collapse
Affiliation(s)
- Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Elisabeth Kunz
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | | | - Andreas Hauser
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Arsen Dotsev
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | | | - Alexey Shakhin
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | - Vugar Bagirov
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, VMU, Vienna, Austria
| | - Ruedi Fries
- Lehrstuhl für Tierzucht, Technische Universität München, Freising, Germany
| | - Natalia Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|
18
|
Mohan NH, Misha MM, Gupta VK. Consequences of African swine fever in India: Beyond economic implications. Transbound Emerg Dis 2021; 68:3009-3011. [PMID: 34498419 DOI: 10.1111/tbed.14318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/05/2023]
Affiliation(s)
| | | | - Vivek K Gupta
- ICAR National Research Centre on Pig, Guwahati, Assam, India
| |
Collapse
|
19
|
Almarri MA, Haber M, Lootah RA, Hallast P, Al Turki S, Martin HC, Xue Y, Tyler-Smith C. The genomic history of the Middle East. Cell 2021; 184:4612-4625.e14. [PMID: 34352227 PMCID: PMC8445022 DOI: 10.1016/j.cell.2021.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/17/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022]
Abstract
The Middle East region is important to understand human evolution and migrations but is underrepresented in genomic studies. Here, we generated 137 high-coverage physically phased genome sequences from eight Middle Eastern populations using linked-read sequencing. We found no genetic traces of early expansions out-of-Africa in present-day populations but found Arabians have elevated Basal Eurasian ancestry that dilutes their Neanderthal ancestry. Population sizes within the region started diverging 15–20 kya, when Levantines expanded while Arabians maintained smaller populations that derived ancestry from local hunter-gatherers. Arabians suffered a population bottleneck around the aridification of Arabia 6 kya, while Levantines had a distinct bottleneck overlapping the 4.2 kya aridification event. We found an association between movement and admixture of populations in the region and the spread of Semitic languages. Finally, we identify variants that show evidence of selection, including polygenic selection. Our results provide detailed insights into the genomic and selective histories of the Middle East. Middle Easterners do not have ancestry from an early out-of-Africa expansion Basal Eurasian and African ancestry in Arabians deplete their Neanderthal ancestry Populations experienced bottlenecks overlapping aridification events Identification of recent single and polygenic signals of selection in Arabia
Collapse
Affiliation(s)
- Mohamed A Almarri
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Department of Forensic Science and Criminology, Dubai Police GHQ, Dubai, United Arab Emirates.
| | - Marc Haber
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, UK.
| | - Reem A Lootah
- Department of Forensic Science and Criminology, Dubai Police GHQ, Dubai, United Arab Emirates
| | - Pille Hallast
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Saeed Al Turki
- Translational Pathology, Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia; Department of Genetics & Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Yali Xue
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Chris Tyler-Smith
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| |
Collapse
|
20
|
Bakoev S, Getmantseva L, Kostyunina O, Bakoev N, Prytkov Y, Usatov A, Tatarinova TV. Genome-wide analysis of genetic diversity and artificial selection in Large White pigs in Russia. PeerJ 2021; 9:e11595. [PMID: 34249494 PMCID: PMC8256806 DOI: 10.7717/peerj.11595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
Breeding practices adopted at different farms are aimed at maximizing the profitability of pig farming. In this work, we have analyzed the genetic diversity of Large White pigs in Russia. We compared genomes of historic and modern Large White Russian breeds using 271 pig samples. We have identified 120 candidate regions associated with the differentiation of modern and historic pigs and analyzed genomic differences between the modern farms. The identified genes were associated with height, fitness, conformation, reproductive performance, and meat quality.
Collapse
Affiliation(s)
- Siroj Bakoev
- Federal Research Center for Animal Husbandry named after Academy Member LK. Ernst, Dubrovitsy, Russia.,Centre for Strategic Planning and Management of Biomedical Health Risks, Moscow, Russia
| | - Lyubov Getmantseva
- Federal Research Center for Animal Husbandry named after Academy Member LK. Ernst, Dubrovitsy, Russia
| | - Olga Kostyunina
- Federal Research Center for Animal Husbandry named after Academy Member LK. Ernst, Dubrovitsy, Russia
| | - Nekruz Bakoev
- Federal Research Center for Animal Husbandry named after Academy Member LK. Ernst, Dubrovitsy, Russia
| | - Yuri Prytkov
- Federal Research Center for Animal Husbandry named after Academy Member LK. Ernst, Dubrovitsy, Russia
| | | | - Tatiana V Tatarinova
- Department of Biology, University of La Verne, La Verne, CA, United States of America.,Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia.,Institute for Information Transmission Problems, Moscow, Russia.,Vavilov Institute for General Genetics, Moscow, Russia
| |
Collapse
|
21
|
de Visser M, Liu L, Bosse M. Pygmy hogs. Curr Biol 2021; 31:R366-R368. [PMID: 33905687 DOI: 10.1016/j.cub.2021.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Manon de Visser and colleagues introduce the rarest and smallest wild pig species, the pygmy hog (Porcula salvania).
Collapse
Affiliation(s)
- Manon de Visser
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands; Naturalis Biodiversity Center, Leiden, The Netherlands; Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands.
| | - Langqing Liu
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Mirte Bosse
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
22
|
Liu L, Bosse M, Megens H, de Visser M, A. M. Groenen M, Madsen O. Genetic consequences of long-term small effective population size in the critically endangered pygmy hog. Evol Appl 2021; 14:710-720. [PMID: 33767746 PMCID: PMC7980308 DOI: 10.1111/eva.13150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
Increasing human disturbance and climate change have a major impact on habitat integrity and size, with far-reaching consequences for wild fauna and flora. Specifically, population decline and habitat fragmentation result in small, isolated populations. To what extend different endangered species can cope with small population size is still largely unknown. Studies on the genomic landscape of these species can shed light on past demographic dynamics and current genetic load, thereby also providing guidance for conservation programs. The pygmy hog (Porcula salvania) is the smallest and rarest wild pig in the world, with current estimation of only a few hundred living in the wild. Here, we analyzed whole-genome sequencing data of six pygmy hogs, three from the wild and three from a captive population, along with 30 pigs representing six other Suidae. First, we show that the pygmy hog had a very small population size with low genetic diversity over the course of the past ~1 million years. One indication of historical small effective population size is the absence of mitochondrial variation in the six sequenced individuals. Second, we evaluated the impact of historical demography. Runs of homozygosity (ROH) analysis suggests that the pygmy hog population has gone through past but not recent inbreeding. Also, the long-term, extremely small population size may have led to the accumulation of harmful mutations suggesting that the accumulation of deleterious mutations is exceeding purifying selection in this species. Thus, care has to be taken in the conservation program to avoid or minimize the potential for further inbreeding depression, and guard against environmental changes in the future.
Collapse
Affiliation(s)
- Langqing Liu
- Animal Breeding and GenomicsWageningen University & ResearchWageningenthe Netherlands
| | - Mirte Bosse
- Animal Breeding and GenomicsWageningen University & ResearchWageningenthe Netherlands
| | - Hendrik‐Jan Megens
- Animal Breeding and GenomicsWageningen University & ResearchWageningenthe Netherlands
| | - Manon de Visser
- Animal Breeding and GenomicsWageningen University & ResearchWageningenthe Netherlands
| | - Martien A. M. Groenen
- Animal Breeding and GenomicsWageningen University & ResearchWageningenthe Netherlands
| | - Ole Madsen
- Animal Breeding and GenomicsWageningen University & ResearchWageningenthe Netherlands
| |
Collapse
|
23
|
Million-year-old DNA sheds light on the genomic history of mammoths. Nature 2021; 591:265-269. [PMID: 33597750 PMCID: PMC7116897 DOI: 10.1038/s41586-021-03224-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/11/2021] [Indexed: 11/17/2022]
Abstract
Temporal genomic data hold great potential for studying evolutionary processes, including speciation. However, sampling across speciation events would in many cases require genomic time series that stretch well into the Early Pleistocene (>1 million years). Although theoretical models suggest that DNA should survive on this timescale1, the oldest genomic data recovered so far is from a 560-780 ka old horse specimen2. Here we report the recovery of genome-wide data from three Early and Middle Pleistocene mammoth specimens, two of which are more than one million years old. We find that two distinct mammoth lineages were present in eastern Siberia during the Early Pleistocene. One of these gave rise to the woolly mammoth, whereas the other represents a previously unrecognised lineage that was ancestral to the first mammoths to colonise North America. Our analyses reveal that the North American Columbian mammoth traces its ancestry to a Middle Pleistocene hybridisation between these two lineages, with roughly equal admixture proportions. Finally, we show that the majority of protein-coding changes associated with cold adaptation in woolly mammoths were present already a million years ago. These findings highlight the potential of deep time palaeogenomics to expand our understanding of speciation and long-term adaptive evolution.
Collapse
|
24
|
Historical range expansion and biological changes of Sus scrofa corresponding to domestication and feralization. MAMMAL RES 2020. [DOI: 10.1007/s13364-020-00534-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Fu Y, Xu J, Tang Z, Wang L, Yin D, Fan Y, Zhang D, Deng F, Zhang Y, Zhang H, Wang H, Xing W, Yin L, Zhu S, Zhu M, Yu M, Li X, Liu X, Yuan X, Zhao S. A gene prioritization method based on a swine multi-omics knowledgebase and a deep learning model. Commun Biol 2020; 3:502. [PMID: 32913254 PMCID: PMC7483748 DOI: 10.1038/s42003-020-01233-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/07/2020] [Indexed: 12/27/2022] Open
Abstract
The analyses of multi-omics data have revealed candidate genes for objective traits. However, they are integrated poorly, especially in non-model organisms, and they pose a great challenge for prioritizing candidate genes for follow-up experimental verification. Here, we present a general convolutional neural network model that integrates multi-omics information to prioritize the candidate genes of objective traits. By applying this model to Sus scrofa, which is a non-model organism, but one of the most important livestock animals, the model precision was 72.9%, recall 73.5%, and F1-Measure 73.4%, demonstrating a good prediction performance compared with previous studies in Arabidopsis thaliana and Oryza sativa. Additionally, to facilitate the use of the model, we present ISwine (http://iswine.iomics.pro/), which is an online comprehensive knowledgebase in which we incorporated almost all the published swine multi-omics data. Overall, the results suggest that the deep learning strategy will greatly facilitate analyses of multi-omics integration in the future. Yuhua Fu et al. develop a CNN model that integrates multi-omics information to prioritize candidate genes of objective traits. Their model performs well when applied to important livestock non-model animals like Sus scrofa. Finally, the authors present ISwine, an online comprehensive knowledgebase which includes all published swine omics data to facilitate the integration of heterogeneous data.
Collapse
Affiliation(s)
- Yuhua Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei, P.R. China.,School of Computer Science and Technology, Wuhan University of Technology, 430070, Wuhan, Hubei, P.R. China
| | - Jingya Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei, P.R. China
| | - Zhenshuang Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei, P.R. China
| | - Lu Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei, P.R. China
| | - Dong Yin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei, P.R. China
| | - Yu Fan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei, P.R. China
| | - Dongdong Zhang
- School of Computer Science and Technology, Wuhan University of Technology, 430070, Wuhan, Hubei, P.R. China
| | - Fei Deng
- School of Computer Science and Technology, Wuhan University of Technology, 430070, Wuhan, Hubei, P.R. China
| | - Yanping Zhang
- School of Computer Science and Technology, Wuhan University of Technology, 430070, Wuhan, Hubei, P.R. China
| | - Haohao Zhang
- School of Computer Science and Technology, Wuhan University of Technology, 430070, Wuhan, Hubei, P.R. China
| | - Haiyan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei, P.R. China
| | - Wenhui Xing
- School of Computer Science and Technology, Wuhan University of Technology, 430070, Wuhan, Hubei, P.R. China
| | - Lilin Yin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei, P.R. China
| | - Shilin Zhu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei, P.R. China
| | - Mengjin Zhu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei, P.R. China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei, P.R. China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei, P.R. China
| | - Xiaolei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei, P.R. China.
| | - Xiaohui Yuan
- School of Computer Science and Technology, Wuhan University of Technology, 430070, Wuhan, Hubei, P.R. China.
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei, P.R. China.
| |
Collapse
|
26
|
Allen R, Ryan H, Davis BW, King C, Frantz L, Irving-Pease E, Barnett R, Linderholm A, Loog L, Haile J, Lebrasseur O, White M, Kitchener AC, Murphy WJ, Larson G. A mitochondrial genetic divergence proxy predicts the reproductive compatibility of mammalian hybrids. Proc Biol Sci 2020; 287:20200690. [PMID: 32486979 PMCID: PMC7341909 DOI: 10.1098/rspb.2020.0690] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Numerous pairs of evolutionarily divergent mammalian species have been shown to produce hybrid offspring. In some cases, F1 hybrids are able to produce F2s through matings with F1s. In other instances, the hybrids are only able to produce offspring themselves through backcrosses with a parent species owing to unisexual sterility (Haldane's Rule). Here, we explicitly tested whether genetic distance, computed from mitochondrial and nuclear genes, can be used as a proxy to predict the relative fertility of the hybrid offspring resulting from matings between species of terrestrial mammals. We assessed the proxy's predictive power using a well-characterized felid hybrid system, and applied it to modern and ancient hominins. Our results revealed a small overlap in mitochondrial genetic distance values that distinguish species pairs whose calculated distances fall within two categories: those whose hybrid offspring follow Haldane's Rule, and those whose hybrid F1 offspring can produce F2s. The strong correlation between genetic distance and hybrid fertility demonstrated here suggests that this proxy can be employed to predict whether the hybrid offspring of two mammalian species will follow Haldane's Rule.
Collapse
Affiliation(s)
- Richard Allen
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
| | - Hannah Ryan
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
| | - Brian W. Davis
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Charlotte King
- Department of Archaeology, Durham University, Science Site, Durham DH1 3LE, UK
- Department of Anatomy, University of Otago, Great King Street, Dunedin 9016, New Zealand
| | - Laurent Frantz
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Evan Irving-Pease
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
- Lundbeck GeoGenetics Centre, The Globe Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Ross Barnett
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
| | - Anna Linderholm
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
- Department of Anthropology, Texas A&M University, College Station, TX 77843-4352, USA
| | - Liisa Loog
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - James Haile
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
| | - Ophélie Lebrasseur
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
- Department of Archaeology, Classics and Egyptology, University of Liverpool, 12-14 Abercromby Square, Liverpool L69 7WZ, UK
| | - Mark White
- Department of Archaeology, Durham University, Science Site, Durham DH1 3LE, UK
| | - Andrew C. Kitchener
- Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 IJF, UK
- Institute of Geography, School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH9 3PX, UK
| | - William J. Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
| |
Collapse
|
27
|
Ottenburghs J. Ghost Introgression: Spooky Gene Flow in the Distant Past. Bioessays 2020; 42:e2000012. [DOI: 10.1002/bies.202000012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/25/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Jente Ottenburghs
- Department of Evolutionary Biology, Evolutionary Biology Centre Uppsala University Norbyvägen 18D Uppsala SE‐752 36 Sweden
- Wildlife Ecology and Conservation Group Wageningen University Droevendaalsesteeg 3a Wageningen 6708 PB The Netherlands
- Forest Ecology and Forest Management Group Wageningen University Droevendaalsesteeg 3a Wageningen 6708 PB The Netherlands
| |
Collapse
|
28
|
Bhaskar R, Kanaparthi P, Sakthivel R. DNA barcode approaches to reveal interspecies genetic variation of Indian ungulates. Mitochondrial DNA B Resour 2020; 5:938-944. [PMID: 33366818 PMCID: PMC7748596 DOI: 10.1080/23802359.2020.1719912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In the past two decades, identification of species from noninvasive sampling has turned out to be an important tool for wildlife conservation. In this study a total 93 specimens representing 22 species of ungulates were analyzed from partial sequences of mtDNA COI and Cytb genes. All the species showed unique clades, and sequences divergence within species was between 0.01–3.9% in COI and 0.01–13.7 in Cytb, whereas divergence between species ranged from 2.2 to 29.5% in COI and 2.3 to 28.8% in Cytb. Highest intraspecific divergence was observed within the Ovis aries in COI and Porcula salvania in Cytb. Bayesian (BA) phylogeny analysis of both genes combined distinguishes all the studied species as monophyletic criteria. The Indian rhinoceros (Rhinoceros unicornis) exhibited closer relation to horse (Equus caballus). No barcode gap was observed between species in COI. This study demonstrates that even short fragments of COI and Cytb generated from fecal pellets can efficiently identify the Indian ungulates, thus demonstrating its high potential for use in wildlife conservation activities.
Collapse
Affiliation(s)
- Ranjana Bhaskar
- Southern Regional Centre, Zoological Survey of India, Chennai, India
| | | | | |
Collapse
|
29
|
McHugo GP, Dover MJ, MacHugh DE. Unlocking the origins and biology of domestic animals using ancient DNA and paleogenomics. BMC Biol 2019; 17:98. [PMID: 31791340 PMCID: PMC6889691 DOI: 10.1186/s12915-019-0724-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Animal domestication has fascinated biologists since Charles Darwin first drew the parallel between evolution via natural selection and human-mediated breeding of livestock and companion animals. In this review we show how studies of ancient DNA from domestic animals and their wild progenitors and congeners have shed new light on the genetic origins of domesticates, and on the process of domestication itself. High-resolution paleogenomic data sets now provide unprecedented opportunities to explore the development of animal agriculture across the world. In addition, functional population genomics studies of domestic and wild animals can deliver comparative information useful for understanding recent human evolution.
Collapse
Affiliation(s)
- Gillian P McHugo
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Michael J Dover
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8, Ireland.
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland.
| |
Collapse
|