1
|
Godinho SA, Basto R. Centrosomes and cancer: balancing tumor-promoting and inhibitory roles. Trends Cell Biol 2025:S0962-8924(25)00043-1. [PMID: 40274495 DOI: 10.1016/j.tcb.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 04/26/2025]
Abstract
The centrosome duplicates only once per cell cycle such that, in preparation for mitosis, cells contain two centrosomes, allowing the formation of a bipolar spindle and segregation of chromosomes to the two daughter cells. Defects in centrosome numbers have long been recognized in human tumors and are postulated to be a driver of malignancy through chromosome instability. However, current work has revealed a multitude of phenotypes associated with amplified centrosomes beyond mitotic defects that may play a role in disease onset and progression, including cancer. This review focuses on the complexity of outcomes connected to centrosome abnormalities and the challenges that result from aberrant loss and gain of centrosome numbers. We discuss the tumor-promoting and inhibitory roles of amplified centrosomes, and propose that their impact on both physiology and disease is intrinsically linked to cellular context.
Collapse
Affiliation(s)
- Susana A Godinho
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Renata Basto
- Biology of Centrosomes and Genetic Instability, Institut Curie, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 144, Université Paris Sciences et Lettres (PSL Research University), Paris, France.
| |
Collapse
|
2
|
Liu M, Teng T. Exosomes: new targets for understanding axon guidance in the developing central nervous system. Front Cell Dev Biol 2025; 12:1510862. [PMID: 39850798 PMCID: PMC11754257 DOI: 10.3389/fcell.2024.1510862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
Axon guidance is a key event in neural circuit development that drives the correct targeting of axons to their targets through long distances and unique patterns. Exosomes, extracellular vesicles that are smaller than 100 nm, are secreted by most cell types in the brain. Regulation of cell-cell communication, neuroregeneration, and synapse formation by exosomes have been extensively studied. However, the interaction between exosomes and axon guidance molecules is poorly understood. This review summarizes the relationship between exosomes and canonical and non-canonical guidance cues and hypothesizes a possible model for exosomes mediating axon guidance between cells. The roles of exosomes in axon outgrowth, regeneration, and neurodevelopmental disorders are also reviewed, to discuss exosome-guidance interactions as potential clinical therapeutic targets.
Collapse
Affiliation(s)
- Mingyu Liu
- Key Laboratory of Tropical Translational Medicine and Ministry of Education, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
| | - Teng Teng
- Key Laboratory of Tropical Translational Medicine and Ministry of Education, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
- School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
- Department of Histology and Embryology, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China
| |
Collapse
|
3
|
Lv Y, Wang C, Liu R, Wu S, Chen J, Zheng X, Jiang T, Chen L. NUP37 promotes the proliferation and invasion of glioma cells through DNMT1-mediated methylation. Cell Death Discov 2024; 10:373. [PMID: 39174498 PMCID: PMC11341718 DOI: 10.1038/s41420-024-02138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
Nuclear regulation has potential in cancer therapy, with the nuclear pore complex (NPC) serving as a critical channel between the nucleus and cytoplasm, playing a role in regulating various biological processes and cancer. DNA methylation, an epigenetic modification mediated by DNA methyltransferases (DNMTs), influences gene expression and cell differentiation, and is crucial for the development and progression of tumor cells. Gliomas are the most common primary brain tumors, with glioblastoma being particularly aggressive, characterized by invasiveness, migration capability, and resistance to conventional treatments, resulting in poor prognosis. Our study revealed that the expression level of NUP37 affects the proliferation and invasion of glioma cells, and that the overexpression of DNMT1 can alleviate the adverse effects caused by NUP37 depletion. These findings suggest that NUP37 promotes the proliferation and invasion of glioma cells through its interaction with DNMT1.
Collapse
Affiliation(s)
- Yongqiang Lv
- Department of Neurosurgery, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Chaolian Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Ruoyu Liu
- Department of Neurosurgery, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Shaoxian Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Junjun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Tianwei Jiang
- Department of Neurosurgery, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China.
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China.
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China.
- Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China.
| |
Collapse
|
4
|
Qiu L, Xu H, Sui B, Jiang P, Wang J, Xu D, Liang F, Ma T, Wang H, Chen J. Elucidating the Functional Mechanism of PTK7 in Cancer Development through Spatial Assembly Analysis Using Super Resolution Imaging. Anal Chem 2024; 96:7669-7678. [PMID: 38708542 DOI: 10.1021/acs.analchem.4c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Protein tyrosine kinase-7 (PTK7) has been reported as a vital participant in the Wnt signaling pathway, influencing tumorigenesis and metastasis. However, their specific roles in the mechanisms underlying cancer development and progression remain elusive. Here, using direct stochastic optical reconstruction microscopy (dSTORM) with aptamer-probe labeling, we first revealed that a weakening clustering distribution of PTK7 on the basal membranes happened as cellular migration increased during cancer progression. This correspondence was further supported by a diminished aggregated state of PTK7 caused by direct enhancement of cell migration. By comparing the alterations in PTK7 distribution with activation or inhibition of specific Wnt signaling pathway, we speculated that PTK7 could modulate cell migration by participating in the interplay between canonical Wnt (in MCF7 cells) and noncanonical Wnt signals (in MDA-MB-231 cells). Furthermore, we discovered that the spatial distribution morphology of PTK7 was also subject to the hydrolysis ability and activation state of the related hydrolase Matrix metallopeptidase14 (MMP14). This function-related specific assembly of PTK7 reveals a clear relationship between PTK7 and cancer. Meanwhile, potential molecular interactions predicted by the apparent assembly morphology can promote a deep understanding of the functional mechanism of PTK7 in cancer progress.
Collapse
Affiliation(s)
- Luqi Qiu
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Haijiao Xu
- Research Center of Biomembranomics, State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Binglin Sui
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Pengwei Jiang
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Jiaqi Wang
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Dandan Xu
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Feng Liang
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Tao Ma
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Hongda Wang
- Research Center of Biomembranomics, State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Junling Chen
- School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| |
Collapse
|
5
|
Qi D, Lu Y, Qu H, Dong Y, Jin Q, Sun M, Li Y, Quan C. Independent prognostic value of CLDN6 in bladder cancer based on M2 macrophages related signature. iScience 2024; 27:109138. [PMID: 38380255 PMCID: PMC10877962 DOI: 10.1016/j.isci.2024.109138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
M2 macrophages are associated with the prognosis of bladder cancer. CLDN6 has been linked to immune infiltration and is crucial for predicting the prognosis in multi-tumor. The effect of CLDN6 on M2 macrophages in bladder cancer remains elusive. Here, we compared a total of 40 machine learning algorithms, then selected optimal algorithm to develop M2 macrophages-related signature (MMRS) based on the identified M2 macrophages related module. MMRS predicted the prognosis better than other models and associated to immunotherapy response. CLDN6, as an important variable in MMRS, was an independent factor for poor prognosis. We found that CLDN6 was highly expressed and affected immune infiltration, immunotherapy response, and M2 macrophages polarization. Meanwhile, CLDN6 promoted the growth of bladder cancer and enhanced the carcinogenic effect by inducing polarization of M2 macrophages. In total, CLDN6 is an independent risk factor in MMRS to predict the prognosis of bladder cancer.
Collapse
Affiliation(s)
- Da Qi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, China
| | - Yan Lu
- The Department of Anatomy, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, China
| | - Huinan Qu
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, China
| | - Yuan Dong
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, China
| | - Qiu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, China
| | - Minghao Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, China
| | - Yanru Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, China
| |
Collapse
|
6
|
Lei Q, Yu Q, Yang N, Xiao Z, Song C, Zhang R, Yang S, Liu Z, Deng H. Therapeutic potential of targeting polo-like kinase 4. Eur J Med Chem 2024; 265:116115. [PMID: 38199166 DOI: 10.1016/j.ejmech.2023.116115] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Polo-like kinase 4 (PLK4), a highly conserved serine/threonine kinase, masterfully regulates centriole duplication in a spatiotemporal manner to ensure the fidelity of centrosome duplication and proper mitosis. Abnormal expression of PLK4 contributes to genomic instability and associates with a poor prognosis in cancer. Inhibition of PLK4 is demonstrated to exhibit significant efficacy against various types of human cancers, further highlighting its potential as a promising therapeutic target for cancer treatment. As such, numerous small-molecule inhibitors with distinct chemical scaffolds targeting PLK4 have been extensively investigated for the treatment of different human cancers, with several undergoing clinical evaluation (e.g., CFI-400945). Here, we review the structure, distribution, and biological functions of PLK4, encapsulate its intricate regulatory mechanisms of expression, and highlighting its multifaceted roles in cancer development and metastasis. Moreover, the recent advancements of PLK4 inhibitors in patent or literature are summarized, and their therapeutic potential as monotherapies or combination therapies with other anticancer agents are also discussed.
Collapse
Affiliation(s)
- Qian Lei
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Quanwei Yu
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Na Yang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhaolin Xiao
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chao Song
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rui Zhang
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guizhou, Guiyang, 550002, China
| | - Shuxin Yang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhihao Liu
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Hui Deng
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
7
|
Iazzi M, St-Germain J, Acharya S, Raught B, Gupta GD. Proximity Mapping of Ciliary Proteins by BioID. Methods Mol Biol 2024; 2725:181-198. [PMID: 37856025 DOI: 10.1007/978-1-0716-3507-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The primary cilium is a highly conserved microtubule-based organelle present in most vertebrate cell types. Mutations in ciliary protein genes can lead to dysfunctional or absent cilia and are the cause of a large group of heterogeneous diseases known as ciliopathies. ARL13B is a member of the ARF family of regulatory GTPases and is highly enriched on the ciliary membrane. The absence of ARL13B disrupts cilia architecture and mutations have been linked to several diseases; yet there remain major gaps in our understanding of the role that ARL13B plays in primary cilia function. Here, we demonstrate how in cellulo proximity-dependent biotinylation (BioID) can be used to generate a comprehensive protein proximity map of ciliary proteins by performing BioID on N- and C-terminally BirA*-tagged ARL13B. This method can theoretically provide insight into any cilia protein, identifying key interactors that play a critical role in ciliary biology.
Collapse
Affiliation(s)
- Melissa Iazzi
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Saujanya Acharya
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | - Gagan D Gupta
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada.
| |
Collapse
|
8
|
He R, Chen Y, Qian C, Hu Y, Huang X, Tao R. Dishevelled segment polarity protein 2 promotes gastric cancer progression through Wnt/β-catenin pathway. Tissue Cell 2023; 82:102119. [PMID: 37257286 DOI: 10.1016/j.tice.2023.102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Dishevelled family proteins (DVL1-3), key scaffold proteins, act on canonical and non-canonical Wnt/β-catenin signaling pathway. DVL has been implicated in various tumor progression. However, its role and underlying mechanisms in gastric cancer (GC) remain unclear. The aim of this study was to investigate the role of DVL in GC development using cell lines and 209 GC specimens. We analyzed three orthologs of DVL in GC tissues and paired adjacent non-tumor tissues, and only DVL2 is highly expressed in GC tissues. We also analyzed clinicopathological data on DVL2 expression in gastric cancer specimens. In immunohistochemistry, DVL2 expression was up-regulated in GC tissues compared with paired adjacent non-tumor tissues (153/209, 73.2%). DVL2 expression level was significantly correlated with many clinicopathological parameters such as T stage (P < 0.001) and N stage (P < 0.001). Survival analysis showed that the overall survival (OS) of patients with high expression of DVL2 was significantly shorter than those with low expression. Multivariate Cox regression analysis revealed that DVL2 expression was an important and independent prognostic factor for gastric cancer patients (P = 0.011, HR=1.78, 95%CI (1.14-2.79). Depletion of endogenous DVL2 using short hairpin RNA (shRNA) inhibited GC cell proliferation, migration, and invasion. The abnormal activation of Wnt/β-catenin signaling pathway is mainly achieved through the abnormal expression of DVL2. DVL2 is highly expressed in gastric cancer tissues, which may be a new independent risk factor for the prognosis of gastric cancer patients. In gastric cancer, DVL2 overexpression plays a crucial role in the occurrence and development of gastric cancer, so it may become a new, effective and complementary therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Ruofei He
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong 226001, China
| | - Yu Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong 226001, China
| | - Chenyu Qian
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong 226001, China
| | - YiLin Hu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong 226001, China
| | - Xinkun Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Ran Tao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
9
|
Li Z, Wei X, Zhu Y. The prognostic value of DAAM2 in lower grade glioma, liver cancer, and breast cancer. Clin Transl Oncol 2023:10.1007/s12094-023-03111-x. [PMID: 36790676 DOI: 10.1007/s12094-023-03111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE Dishevelled-associated activator of morphogenesis 2 (DAAM2) is a formin protein and has a potential role in the tumor metastasis. The prognostic value of DAAM2 in pan-cancer is investigated in this study. METHODS TCGA and GTEx database were downloaded to perform bioinformatics analysis and ROC curves. Then we explored protein-protein interaction and GO-KEGG enrichment to figure out the protein pathways associated with DAAM2 and studied DAAM2-related immune infiltration and methylation. Fifteen pairs of BRCA clinical samples were enrolled to determine the expression and distribution of DAAM2 in BRCA sections by immunohistochemistry. Finally, BRCA cells were transfected with siRNA targeting DAAM2 and subsequently subject to cell proliferation, migration, and invasion assays. RESULTS DAAM2 was closely related to the diagnosis and clinical characteristics of lower grade glioma (LGG), liver hepatocellular carcinoma (LIHC), and breast cancer (BRCA). Survival curve analysis demonstrated DAAM2 served as a potential prognostic indicator of LGG and LIHC (P = 0.0029 and P = 0.025, respectively). DAAM2 was mainly participated in signaling pathways mediating cytoskeleton regulation and tumor development. The correlation of DAAM2 with tumor-infiltrating immune cells (TIICs) and methylation levels was conducive to the prediction of novel biomarkers of pan-carcinoma. DAAM2 was highly expressed in BRCA tissues than that in paracancerous tissues. The proliferation, invasion, and migration of BRCA cells were inhibited by DAAM2 siRNA. CONCLUSION DAAM2 had a specific value in foretelling the prognosis of LGG, LIHC, and BRCA. High expression level of DAAM2 has longer survival rates in LGG and LIHC. The knockdown of DAAM2 retards the proliferation, invasion, and migration of BRCA cells. This study provides a novel sight of DAAM2 into the exploration of a potential biomarker in pan-cancer.
Collapse
Affiliation(s)
- Zeying Li
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao Wei
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
10
|
Langlois-Lemay L, D’Amours D. Moonlighting at the Poles: Non-Canonical Functions of Centrosomes. Front Cell Dev Biol 2022; 10:930355. [PMID: 35912107 PMCID: PMC9329689 DOI: 10.3389/fcell.2022.930355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Centrosomes are best known as the microtubule organizing centers (MTOCs) of eukaryotic cells. In addition to their classic role in chromosome segregation, centrosomes play diverse roles unrelated to their MTOC activity during cell proliferation and quiescence. Metazoan centrosomes and their functional doppelgängers from lower eukaryotes, the spindle pole bodies (SPBs), act as important structural platforms that orchestrate signaling events essential for cell cycle progression, cellular responses to DNA damage, sensory reception and cell homeostasis. Here, we provide a critical overview of the unconventional and often overlooked roles of centrosomes/SPBs in the life cycle of eukaryotic cells.
Collapse
Affiliation(s)
- Laurence Langlois-Lemay
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
11
|
Liu Z, Gao Z, Li B, Li J, Ou Y, Yu X, Zhang Z, Liu S, Fu X, Jin H, Wu J, Sun S, Sun S, Wu Q. Lipid-associated macrophages in the tumor-adipose microenvironment facilitate breast cancer progression. Oncoimmunology 2022; 11:2085432. [PMID: 35712121 PMCID: PMC9196645 DOI: 10.1080/2162402x.2022.2085432] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The tumor-adipose microenvironment (TAME) is a universal microecosystem, that is characterized by the dysfunction of lipid metabolism, such as excessive free fatty acids (FFAs). Macrophages are the most abundant immune cell type within TAME, although their diversity in the TAME is not clear. We first reveal that infiltration of M2-like macrophages in the TAME is associated with poor survival in breast cancer. To explore lipid-associated alterations in the TAME, we also detected the levels of FFAs transporters including fatty acid binding proteins (FABPs) and fatty acid transport protein 1 (FATP1). The results indicated that expression of fatty acid transporters in the TAME is tightly linked to the function of macrophages and predicts survival in breast cancer. To explore the impact of FFAs transporters on the function of macrophages, we performed single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics. Consequently, we identified a special subpopulation of macrophages defined as lipid-associated macrophages (LAMs), highly expressed macrophage markers (CD163, SPP1 and C1QC), genes involved in lipid metabolism (FABP3, FABP4, FABP5, LPL and LIPA) and some lipid receptors (LGALS3 and TREM2). Functionally, LAMs were characterized by a canonical functional signature of M2-like macrophages, lipid accumulation and enhancing phagocytosis, and they were mostly distributed in tumor-adipose junctional regions. Finally, the allograft cancer mouse models confirmed that LAMs depletion in the TAME synergizes the antitumorigenic effects of anti-PD1 therapy. In summary, we defined a novel subtype of macrophages in the TAME, that has unique features and clinical outcomes.
Collapse
Affiliation(s)
- Zhou Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Zhijie Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Yangyang Ou
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Zun Zhang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Siqin Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Hongzhong Jin
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Juan Wu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, P. R. China
| |
Collapse
|
12
|
TEC kinase stabilizes PLK4 to promote liver cancer metastasis. Cancer Lett 2022; 524:70-81. [PMID: 34637843 DOI: 10.1016/j.canlet.2021.08.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/12/2021] [Accepted: 08/27/2021] [Indexed: 01/09/2023]
Abstract
Aberrated PLK4 expression has been reported in different malignancies and causes centrosome amplification, aneuploidy, and genomic instability. However, the mechanism by which PLK4 is regulated in carcinogenesis remains not fully characterised. Here, we showed that PLK4 was overexpressed in human HCC and overexpression of PLK4 predicted poorer patient prognosis. Unexpectedly, we found that induced expression of PLK4 promotes, but knockdown of PLK4 inhibits, HCC cell migration and invasion. Mechanistically, we found that TEC tyrosine kinase, which also promotes HCC cell migration, stabilizes PLK4 by phosphorylation. TEC directly phosphorylates PLK4 at tyrosine 86 residue, which not only stabilizes the protein but also enhances PLK4-mediated HCC cell invasion. Further investigation by transcriptome sequencing indicated that PLK4 promotes the phosphorylation of focal adhesion kinase to regulate the focal adhesion pathway in HCC cell migration. Taken together, our results demonstrated that PLK4 plays an important role in HCC metastasis and revealed for the first time the mechanism by which PLK4 promotes HCC metastasis via TEC phosphorylation.
Collapse
|
13
|
Kressin M, Fietz D, Becker S, Strebhardt K. Modelling the Functions of Polo-Like Kinases in Mice and Their Applications as Cancer Targets with a Special Focus on Ovarian Cancer. Cells 2021; 10:1176. [PMID: 34065956 PMCID: PMC8151477 DOI: 10.3390/cells10051176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (PLKs) belong to a five-membered family of highly conserved serine/threonine kinases (PLK1-5) that play differentiated and essential roles as key mitotic kinases and cell cycle regulators and with this in proliferation and cellular growth. Besides, evidence is accumulating for complex and vital non-mitotic functions of PLKs. Dysregulation of PLKs is widely associated with tumorigenesis and by this, PLKs have gained increasing significance as attractive targets in cancer with diagnostic, prognostic and therapeutic potential. PLK1 has proved to have strong clinical relevance as it was found to be over-expressed in different cancer types and linked to poor patient prognosis. Targeting the diverse functions of PLKs (tumor suppressor, oncogenic) are currently at the center of numerous investigations in particular with the inhibition of PLK1 and PLK4, respectively in multiple cancer trials. Functions of PLKs and the effects of their inhibition have been extensively studied in cancer cell culture models but information is rare on how these drugs affect benign tissues and organs. As a step further towards clinical application as cancer targets, mouse models therefore play a central role. Modelling PLK function in animal models, e.g., by gene disruption or by treatment with small molecule PLK inhibitors offers promising possibilities to unveil the biological significance of PLKs in cancer maintenance and progression and give important information on PLKs' applicability as cancer targets. In this review we aim at summarizing the approaches of modelling PLK function in mice so far with a special glimpse on the significance of PLKs in ovarian cancer and of orthotopic cancer models used in this fatal malignancy.
Collapse
Affiliation(s)
- Monika Kressin
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Sven Becker
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
- German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, 60590 Frankfurt, Germany
| |
Collapse
|
14
|
Chen A, Liu Z, Wu Q, Li H. Disheveled-associated activator of morphogenesis 2 promotes invasion of colorectal cancer by activating PAK1 and promoting MMP7 expression. Genes Genomics 2021; 43:923-935. [PMID: 33974241 DOI: 10.1007/s13258-021-01111-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Disheveled-associated activator of morphogenesis (DAAM) family, including DAAM1 and DAAM2, is key regulators in Wnt signaling pathway. Although the oncogenic role of Wnt signaling pathway in colorectal cancer (CRC) was investigated in several lines, the expression and function of DAAM in CRC are still obscure. OBJECTIVE To investigate the expression and function of DAAM in CRC. METHODS DAAM1 and DAAM2 expression in high grade dysplasia (HGD), CRCs and corresponding adjacent tissues were detected with qRT-PCR and immunohistochemistry (IHC). The prognostic significance of DAAM1/2 were estimated with univariate and multivariate analyses. Moreover, the correlations between clinicopathological factors and DAAM were evaluated with the χ2 test. With experiments in vitro, we investigated the function of DAAM2 in CRC cell proliferation and invasion, and investigated the underlying mechanism of how DAAM2 facilitated CRC invasion. RESULTS DAAM2, instead of DAAM1, was substantially up-regulated in CRCs compared with paired adjacent normal tissues and HGDs. The ratio of high DAAM1 and DAAM2 expression accounted for 44.83% and 46.31%, respectively. High DAAM2, instead of DAAM1, was a risk factor indicating an unfavorable prognosis of CRC. In multivariate analysis, high DAAM2 was identified as an independent prognostic biomarker of CRC predicting poor prognosis. With experiments in vitro, DAAM2 promoted invasion of CRC cells via activating PAK1 and promoting the expression of MMP7, suggesting an essential role of DAAM2 in CRC invasion. CONCLUSIONS High expression of DAAM2, instead of DAAM1, indicated an unfavorable prognosis of CRC independently, which suggested that detecting DAAM2 can help define the high-risk patients. DAAM2 activated PAK1 and promoted MMP7 expression and facilitated the invasion of CRC cells, indicating that DAAM2 may be a potential drug target of CRC.
Collapse
Affiliation(s)
- Aimei Chen
- Department of Chinese Traditional Medicine, Weifang Yidu Central Hospital, Weifang, 262500, Shandong, China
| | - Zhiqiang Liu
- Department of Chinese Traditional Medicine, Weifang Yidu Central Hospital, Weifang, 262500, Shandong, China
| | - Quanyan Wu
- Department of Chinese Traditional Medicine, Weifang Yidu Central Hospital, Weifang, 262500, Shandong, China
| | - Hailin Li
- Department of General Surgery, Qilu Hospital of Shandong University, #107 Wenhua Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
15
|
Use of the Polo-like kinase 4 (PLK4) inhibitor centrinone to investigate intracellular signalling networks using SILAC-based phosphoproteomics. Biochem J 2020; 477:2451-2475. [PMID: 32501498 PMCID: PMC7338032 DOI: 10.1042/bcj20200309] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022]
Abstract
Polo-like kinase 4 (PLK4) is the master regulator of centriole duplication in metazoan organisms. Catalytic activity and protein turnover of PLK4 are tightly coupled in human cells, since changes in PLK4 concentration and catalysis have profound effects on centriole duplication and supernumerary centrosomes, which are associated with aneuploidy and cancer. Recently, PLK4 has been targeted with a variety of small molecule kinase inhibitors exemplified by centrinone, which rapidly induces inhibitory effects on PLK4 and leads to on-target centrosome depletion. Despite this, relatively few PLK4 substrates have been identified unequivocally in human cells, and PLK4 signalling outside centriolar networks remains poorly characterised. We report an unbiased mass spectrometry (MS)-based quantitative analysis of cellular protein phosphorylation in stable PLK4-expressing U2OS human cells exposed to centrinone. PLK4 phosphorylation was itself sensitive to brief exposure to the compound, resulting in PLK4 stabilisation. Analysing asynchronous cell populations, we report hundreds of centrinone-regulated cellular phosphoproteins, including centrosomal and cell cycle proteins and a variety of likely 'non-canonical' substrates. Surprisingly, sequence interrogation of ∼300 significantly down-regulated phosphoproteins reveals an extensive network of centrinone-sensitive [Ser/Thr]Pro phosphorylation sequence motifs, which based on our analysis might be either direct or indirect targets of PLK4. In addition, we confirm that NMYC and PTPN12 are PLK4 substrates, both in vitro and in human cells. Our findings suggest that PLK4 catalytic output directly controls the phosphorylation of a diverse set of cellular proteins, including Pro-directed targets that are likely to be important in PLK4-mediated cell signalling.
Collapse
|
16
|
Nejedlá M, Klebanovych A, Sulimenko V, Sulimenko T, Dráberová E, Dráber P, Karlsson R. The actin regulator profilin 1 is functionally associated with the mammalian centrosome. Life Sci Alliance 2020; 4:4/1/e202000655. [PMID: 33184056 PMCID: PMC7668531 DOI: 10.26508/lsa.202000655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
The actin regulator profilin 1 recently shown to control microtubule elongation at the cell periphery is found to interact with the γ-tubulin ring complex and tune centrosomal microtubule nucleation. Profilin 1 is a crucial actin regulator, interacting with monomeric actin and several actin-binding proteins controlling actin polymerization. Recently, it has become evident that this profilin isoform associates with microtubules via formins and interferes with microtubule elongation at the cell periphery. Recruitment of microtubule-associated profilin upon extensive actin polymerizations, for example, at the cell edge, enhances microtubule growth, indicating that profilin contributes to the coordination of actin and microtubule organization. Here, we provide further evidence for the profilin-microtubule connection by demonstrating that it also functions in centrosomes where it impacts on microtubule nucleation.
Collapse
Affiliation(s)
- Michaela Nejedlá
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anastasiya Klebanovych
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vadym Sulimenko
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tetyana Sulimenko
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eduarda Dráberová
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Roger Karlsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
17
|
Collins C, Majekodunmi A, Mitchell B. Centriole Number and the Accumulation of Microtubules Modulate the Timing of Apical Insertion during Radial Intercalation. Curr Biol 2020; 30:1958-1964.e3. [PMID: 32243862 PMCID: PMC7239760 DOI: 10.1016/j.cub.2020.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/03/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022]
Abstract
Centrioles are microtubule (MT)-based structures that provide important functions during cell migration, cell division, and cell signaling [1]. Modulating centriole number in 3D cell cultures has been shown to influence protrusive behavior [2-5]. Here, we address in vivo the role of centrioles and the accumulation of MTs on the protrusive behavior required during the initiation of radial intercalation. Radial intercalation is an important developmental process whereby cells undergo polarized movements and interdigitate into a more superficial layer [6, 7]. It is commonly employed during metamorphic events, such as the tissue thinning coupled with expansion or during the introduction of different cell types into an epithelium. During radial intercalation, cells emerge from a basal layer by undergoing a process of apical migration, apical insertion, and expansion [8]. In Xenopus skin, multiciliated cells (MCCs), which contain ∼150 centrioles, and ionocytes (ICs), which contain two centrioles, differentiate during the same developmental window, but MCCs complete intercalation prior to ICs. Here, we utilize this difference in timing to create a quantifiable assay for insertion and find that the timing of insertion is modulated by changes in centriole number and the accumulation of acetylated MTs. Additionally, centrioles align between the nucleus and the leading edge creating an axis of migration with apically oriented (+) ends. Using the MT (-) end protein CAMSAP1 fused to the apically positioned Par6 protein, we have artificially reversed the orientation of MTs and find that the accumulation of MTs in either orientation is sufficient to promote apical insertion.
Collapse
Affiliation(s)
- Caitlin Collins
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Ahmed Majekodunmi
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Brian Mitchell
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA.
| |
Collapse
|
18
|
Effect of endostatin on Wnt pathway of stem-like cells in bladder cancer in tumor microenvironment. Mol Biol Rep 2020; 47:3937-3948. [PMID: 32388699 DOI: 10.1007/s11033-020-05487-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
Abstract
Wnt/β-catenin signaling pathway modulates miscellaneous biological events in cells including gene expression, cell growth, apoptosis, metabolism and transition. The aim of this study was to investigate the effect of endostatin on Wnt signaling pathway of stem-like cells in bladder cancer in tumor microenvironment. The qRT-PCR assay and western blot were conducted to evaluate related factors expressions of Wnt signaling pathway in both bladder cancer 5637 cells and stem cells. Loss of function assays were carried out to detect the influence of endostatin on the proliferation, migration, cell proliferation and apoptosis of bladder cancer cells. We demonstrated that endostatin triggered the degradation of β-catenin, a key mediator of Wnt signaling. The activation of the endostatin blocked β-catenin function and inhibited cell growth and migration of bladder cancer. In order to verify that the Wnt/β-catenin signaling pathway was inhibited by endostain in 5637 bladder cancer cells and stem cells, the Wnt/β-catenin signaling pathway-associated molecules, including DKK1, LRP5, TCF4, β-catenin, cyclin D1, and c-Myc, were evaluated in 5637 bladder cancer cells and stem cells. The western blotting results showed that expressions of these molecules were remarkably increased in the 5637 bladder cancer cells and stem cells compared to the control group. In summary, our study demonstrated that endostatin inhibited angiogenesis. The downregulation of the Wnt/β-catenin pathway may be engaged in the suppression of angiogenesis by endostatin in bladder cancer cells and cancer stem cells.
Collapse
|
19
|
Liu Y, Kim J, Philip R, Sridhar V, Chandrashekhar M, Moffat J, van Breugel M, Pelletier L. Direct interaction between CEP85 and STIL mediates PLK4-driven directed cell migration. J Cell Sci 2020; 133:jcs238352. [PMID: 32107292 PMCID: PMC7183410 DOI: 10.1242/jcs.238352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
PLK4 has emerged as a prime target for cancer therapeutics, and its overexpression is frequently observed in various types of human cancer. Recent studies have further revealed an unexpected oncogenic activity of PLK4 in regulating cancer cell migration and invasion. However, the molecular basis behind the role of PLK4 in these processes still remains only partly understood. Our previous work has demonstrated that an intact CEP85-STIL binding interface is necessary for robust PLK4 activation and centriole duplication. Here, we show that CEP85 and STIL are also required for directional cancer cell migration. Mutational and functional analyses reveal that the interactions between CEP85, STIL and PLK4 are essential for effective directional cell motility. Mechanistically, we show that PLK4 can drive the recruitment of CEP85 and STIL to the leading edge of cells to promote protrusive activity, and that downregulation of CEP85 and STIL leads to a reduction in ARP2 (also known as ACTR2) phosphorylation and reorganization of the actin cytoskeleton, which in turn impairs cell migration. Collectively, our studies provide molecular insight into the important role of the CEP85-STIL complex in modulating PLK4-driven cancer cell migration.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yi Liu
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, 600 University Avenue, Toronto M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jaeyoun Kim
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, 600 University Avenue, Toronto M5G 1X5, Canada
| | - Reuben Philip
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, 600 University Avenue, Toronto M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Vaishali Sridhar
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, 600 University Avenue, Toronto M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Megha Chandrashekhar
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Donnelly Centre and Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, ON M5S 1A8, Canada
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Donnelly Centre and Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, ON M5S 1A8, Canada
| | - Mark van Breugel
- Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, 600 University Avenue, Toronto M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
20
|
Carreira-Barbosa F, Nunes SC. Wnt Signaling: Paths for Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:189-202. [PMID: 32130700 DOI: 10.1007/978-3-030-34025-4_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Wnt signaling pathways are well known for having several pivotal roles during embryonic development. However, the same developmental signaling pathways also present key roles in cancer initiation and progression. In this chapter, several issues regarding the roles of both canonical and non-canonical Wnt signaling pathways in cancer will be explored, mainly concerning their role in the maintenance of cancer stemness, in the metabolism reprograming of cancer cells and in the modulation of the tumor microenvironment. The role of Wnt signaling cascades in the response of cancer cells to anti-cancer treatments will be also discussed, as well as its potential therapeutic targeting during cancer treatment. Collectively, increasing evidence has been supporting pivotal roles of Wnt signaling in several features of cancer biology, however; a lot is still to be elucidated.
Collapse
Affiliation(s)
| | - Sofia C Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| |
Collapse
|
21
|
Meng L, Zhou Y, Ju S, Han J, Song C, Kong J, Wu Y, Lu S, Xu J, Yuan W, Zhang E, Wang C, Hu Z, Gu Y, Luo R, Wang X. A cis-eQTL genetic variant in PLK4 confers high risk of hepatocellular carcinoma. Cancer Med 2019; 8:6476-6484. [PMID: 31489978 PMCID: PMC6797585 DOI: 10.1002/cam4.2487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose The overexpression and knockdown of PLK4 were both reported to generate aneuploidy. Thus, we aimed to investigate whether genetic variants in PLK4 contribute to the development of hepatocellular carcinoma (HCC). Methods We evaluated associations of common variants in PLK4 and its promoter for the risk of HCC in our association study (1300 cases and 1344 controls). The genotype‐tissue expression (GTEx) and The cancer genome atlas (TCGA) databases were used to quantify the expression of PLK4. Cell proliferation and migration affected by PLK4 in HCC were assessed in vitro. Drug susceptibility testing (DST) model was used to assess the sensibility of PLK4‐activated HCC to CFI‐400945, a small molecule inhibitor of PLK4. Results Herein, we found a significant association between rs3811741, located in the PLK4 intron, and liver cancer risk (OR = 1.26, P = 9.81 × 10−5). Although PLK4 expressed at lower levels in somatic tissues compared to the testis, the risk allele A of rs3811741 was associated with increased PLK4 expression in liver cancer tissues. Additionally, PLK4 high expression was remarkably associated with shortened survival of HCC (HR = 1.97, P = .001). Furthermore, overexpression of PLK4 promoted, while knockdown of PLK4 suppressed cancer cell proliferation, migration, and invasion. DST model demonstrated that CFI‐400945 can effectively suppress rampant proliferation of HCC with highly expressed PLK4. Conclusion Taken together, our study demonstrated that PLK4 is a susceptibility gene and plays an oncogenic role in HCC. Furthermore, we identified that PLK4 sensitives HCC to CFI‐400945, which may be an ideal therapy target for HCC.
Collapse
Affiliation(s)
- Lijuan Meng
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yan Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Sihan Ju
- Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jing Han
- Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ci Song
- Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jing Kong
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yifei Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Shuai Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jiani Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Wenwen Yuan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Erbao Zhang
- Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Bioinformatics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Rongcheng Luo
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xuehao Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Liver Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|